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Abstract. Exploiting available medical records to train high perfor-
mance computer-aided diagnosis (CAD) models via the semi-supervised
learning (SSL) setting is emerging to tackle the prohibitively high la-
bor costs involved in large-scale medical image annotations. Despite the
extensive attentions received on SSL, previous methods failed to 1) ac-
count for the low disease prevalence in medical records and 2) utilize the
image-level diagnosis indicated from the medical records. Both issues are
unique to SSL for CAD models. In this work, we propose a new knowl-
edge distillation method that effectively exploits large-scale image-level
labels extracted from the medical records, augmented with limited expert
annotated region-level labels, to train a rib and clavicle fracture CAD
model for chest X-ray (CXR). Our method leverages the teacher-student
model paradigm and features a novel adaptive asymmetric label sharp-
ening (AALS) algorithm to address the label imbalance problem that
specially exists in medical domain. Our approach is extensively eval-
uated on all CXR (N = 65,845) from the trauma registry of Chang
Gung Memorial Hospital over a period of 9 years (2008-2016), on the
most common rib and clavicle fractures. The experiment results demon-
strate that our method achieves the state-of-the-art fracture detection
performance, i.e., an area under receiver operating characteristic curve
(AUROC) of 0.9318 and a free-response receiver operating characteristic
(FROC) score of 0.8914 on the rib fractures, significantly outperforming
previous approaches by an AUROC gap of 1.63% and an FROC im-
provement by 3.74%. Consistent performance gains are also observed for
clavicle fracture detection.

Keywords: Knowledge Distillation - Adaptive Asymmetric Label Sharp-
ening - Semi-supervised Learning - Fracture Detection - Chest X-ray.
1 Introduction

Computer-aided diagnosis (CAD) of medical images has been extensively stud-
ied in the past decade. In recent years, substantial progress has been made
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in developing deep learning-based CAD systems to diagnose a wide range of
pathologies, e.g., lung nodule diagnosis in chest computed tomography (CT)
images [17], mass and calcification characterization in mammography [12], bone
fracture detection/classification in radiography [16]. The state-of-the-art CAD
solutions are typically developed based on large-scale expert annotations (e.g.,
128,175 labeled images for diabetic retinopathy detection [3], 14,021 labeled
cases for skin condition diagnosis [10]). However, the labor cost of large-scale
annotations in medical area is prohibitively high due to the required medical
expertise, which hinders the development of deep learning-based CAD solutions
for applications where such large-scale annotations are not yet available. In this
work, we aim to develop a cost-effective semi-supervised learning (SSL) solution
to train a reliable, robust and accurate fracture detection model for chest X-ray
(CXR) using limited expert annotations and abundant clinical diagnosis records.

While expert annotations are expensive to obtain, medical records can often
be efficiently /automatically collected retrospectively at large scale from a hospi-
tal’s information system. Motivated by the availability of retrospective medical
records, a few large-scale X-ray datasets with natural language processing (NLP)
generated image-level labels are collected and publicly released, e.g., ChestXray-
14 [15], CheXpert [5]. Previous works have subsequently investigated weakly-
supervised learning to train CAD models using purely image-level labels [11,16].
However, since the image-level labels lack localization supervision, these meth-
ods often cannot deliver sufficient diagnosis and localization accuracy for clinical
usage [7]. In addition, the public CXR datasets rely only on radiology reports,
which are known to have substantial diagnostic errors and inaccuracies [2].

A more promising and practical strategy for training CAD models is to use
large-scale image-level labels extracted from the clinical diagnosis reports with
a small number of expert annotated region-level labels. Different from radiology
diagnoses made by the radiologist based on a single image modality, clinical di-
agnoses are made by the primary doctor considering all sources of information,
e.g., patient history, symptoms, multiple image modalities. Therefore, clinical
diagnoses offer more reliable image-level labels for training CAD models. Pre-
vious SSL methods (e.g., II-model [6], Mean Teacher [13], Mix-Match [1]) have
studied a similar problem setup, i.e., training classification/segmentation models
using a combination of labeled and unlabeled images. However, these general-
purpose SSL methods assume that no label information is given for the unlabeled
set. Therefore, they fail to take advantage of the clinical diagnosis reports that
are available in our application. In addition, there is an unique data imbalance
challenge in training CAD models using clinical diagnoses. In particular, due
to the low prevalence of fractures in CXRs, the image-level diagnostic labels
are imbalanced toward more negative (e.g., 1:10 ratio). The region-level labeled
positives and image-level diagnostic negatives are even more imbalanced (e.g.,
1:100 ratio). As a result, a specifically-designed SSL method is required to fully
exploit the clinical diagnoses with imbalanced data distribution to effectively
train CAD models.
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To bridge this gap, we propose an effective SSL solution for fracture detection
in CXR that better accounts for the imbalanced data distribution and exploits
the image-level labels of the unannotated data. We adopt the teacher-student
mechanism, where a teacher model is employed to produce pseudo ground-truths
(GTs) on the image-level diagnostic positive images for supervising the training
of the student model. Different from previous knowledge distillation methods
where the pseudo GTs are directly used or processed with symmetric sharp-
ening/softening, we propose an adaptive asymmetric label sharpening (AALS)
to account for the teacher model’s low sensitivity caused by the imbalanced
data distribution and to encourage positive detection responses on the image-
level positive CXRs. The proposed method is evaluated on a real-world scenario
dataset of all (N = 65,843) CXR images taken in the trauma center of Chang
Gung Memorial Hospital from year 2008 to 2016. Experiments demonstrate that
our method reports an area under receiver operating characteristic curve (AU-
ROC) of 0.9318/0.9646 and an free-response receiver operating characteristic
(FROC) score of 0.8914/0.9265 on the rib/clavicle fracture detection. Compared
to state-of-the-art methods, our method significantly improves the AUROC by
1.63%/0.86% and the FROC by 3.74%/3.81% on rib/clavicle fracture detection,
respectively.

2 Method

Problem Setup We develop a fracture detection model using a combination
of image-level and region-level labeled CXRs. While the image-level labels can
be obtained efficiently at a large scale by mining a hospital’s image archive and
clinical records, the region-level labels are more costly to obtain as they need to
be manually annotated by experts. We collected 65,845 CXRs from the trauma
registry of a medical center. Diagnosis code and keyword matching of the clin-
ical records are used to obtain image-level labels, resulting in 6,792 positive
and 59,051 negative CXRs. Among positive CXRs, 808 CXRs with positive di-
agnosis are annotated by experts to provide region-level labels in the form of
bounding-box. The sets of region-level labeled, image-level positive and image-
level negative CXRs are denoted by R, P and N, respectively. Our method aims
to effectively exploit both the region-level labels and the image-level labels under
extremely imbalanced positive/negative ratio.

2.1 Knowledge Distillation Learning

Similar to recent CAD methods [7], we train a neural network to produce a prob-
ability map that indicates the location of the detected fracture. Since the shape
and scale of fractures can vary significantly, we employ feature pyramid network
(FPN) [8] with a ResNet-50 backbone to tackle the scale variation challenge
by fusing multi-scale features. The training consists of two steps: 1) supervised
pre-training and 2) semi-supervised training. In the pre-training step, a frac-
ture detection model is trained via supervised learning using R U A. In the
semi-supervised training step, P are further exploited to facilitate the training.
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Fig. 1. An overview of the proposed knowledge distillation with AALS. The student
model is trained via back-propagation. The teacher model is updated by the EMA.

Supervised pre-training We train the network using only CXRs in R and N,
where pixel-level supervision signals can be generated. Specifically, for CXRs in
R, GT masks are generated by assigning one to the pixels within the bounding-
boxes and zero elsewhere. For CXRs in A, GT masks with all zeros are gen-
erated. During training, we use the pixel-wise binary cross-entropy (BCE) loss
between the predicted probability map and the generated GT mask, written as:

Esup = Z BCE (f@(x)ay) ) (1)

z€(RUN)

where x and y denote the CXR and its pixel-level supervision mask. fy(z) denotes
the probability map output of the network parameterized by 6. Due to the
extreme imbalance between R and N (e.g., 808 vs. 59,861), the pre-trained
model tends to have a low detection sensitivity, i.e., producing low probabilities
on fracture sites.

Semi-supervised training To effectively leverage P in training, we adopt a teacher-
student paradigm where the student model learns from the pseudo GT produced
by the teacher model on P. The teacher and student models share the same net-
work architecture, i.e., ResNet-50 with FPN, and are both initialized using the
pre-trained weights from the supervised learning step. Inspired by the Mean
Teacher method [13], we train the student model via back propagation and iter-
atively update the teacher model using the exponential moving average (EMA)
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of the student model weights during training. Denoting the weights of the teacher
and student models at training step ¢ as 6, and 6;, respectively, the weights of
the teacher model are updated following:

0, = afy_y + (1 — )6, (2)

where « is a smoothing coefficient to control the pace of knowledge update. « is
set to 0.999 in all our experiments following [13].

CXRs in the region-level labeled set (R), image-level labeled positive set (P)
and image-level labeled negative set (V) are all used to train the teacher-student
model. The training mechanism is illustrated in Fig. 1. For CXRs in R and N,
the same supervised loss L, is used. For CXRs in P, the teacher model is
applied to produce a pseudo GT map, which is further processed by an AALS
operator. The sharpened pseudo GT of image x is denoted as

y' = S(fo,(x)), 3)

where fg; denotes the teacher model at the ¢-th step, S (-) denotes AALS. The
KL divergence between the sharpened pseudo GT 3’ and the student model’s
prediction fy, () is calculated as an additional loss:

Loomi = 3 KLDiv (S (fo; (1)) . fo, () (4)

zEP

The total loss used to train the student network is

L= Esup + ﬁsemi- (5)

2.2 Adaptive Asymmetric Label Sharpening

In previous knowledge distillation models, the pseudo GTs are produced on
unlabeled data to supervise the student model. Since no prior knowledge is given
for the unlabeled data, the pseudo GTs are either directly used [13], or processed
with symmetric softening [4] or sharpening [1]. In our problem setup, we have
important prior knowledge that can be exploited: 1) image-level positive CXRs
contain visible fracture sites, 2) due to the imbalanced positive/negative ratio,
the pseudo GT tends to have low sensitivity (i.e., low probabilities at fracture
sites). Therefore, when the maximum value of the pseudo GT map is low, we
are motivated to enhance the activation via AALS:

S(y") = expit (a ~logit(y') + (1 — a) - logit(t)), (6)

where expit(-) and logit(-) denote Sigmoid function and its inverse. a and t
control the strength and center of the sharpening operator, respectively. The
effects of a and ¢ are shown in Fig. 2. Since the asymmetric sharpening aims to
enhance the low probabilities in the pseudo GT, ¢t < 0.5 should be used (¢t = 0.4
is used in our experiments). Since there are still many fracture sites missed in
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Fig. 2. Asymmetric label sharpening func- Fig. 3. Model performance using a subset
tion at ¢ = 0.4 with different a. of P.

y' (i.e. with low probability values) due to the imbalanced training data, we
use max(S(y'),y’) as the label sharpening function in our final solution to avoid
over penalization of the student model’s activation on fracture sites with low
probability values in 3’.

The sharpening strength a is dynamically selected based on the maximum
probability in the pseudo GT map, written as:

a=aop — (ao - 1)y7/naz7 (7)

where g/, ... is the maximum probability in the pseudo GT map, ag is a hyperpa-
rameter that controls the largest sharpening strength allowed. The sharpening
strength a is negatively correlated with the maximum probability y/,,.. When
Yraw aDproaches 1, a approaches its minimum value 1, making S(-) an iden-
tity mapping. When 3/, .. decreases, a increases toward ag, leading to stronger
sharpening of the pseudo GT. A dynamic a is required because the sharpening
operator is asymmetric. If a constant a > 1 is used, the sharpening operation
will always enlarge the activation area in the pseudo GT map, which drives the
model to produce probability maps with overly large activation areas. With the
adaptive sharpening strength, when a fracture site is confidently detected in a
CXR (i.e., Y. approaches 1), the sharpening operation degenerates to identity
mapping to avoid consistently expanding the activation area.

2.3 Implementation Details

We trained our model on a workstation with a single Intel Xeon E5-2650 v4 CPU
@ 2.2 GHz, 128 GB RAM, 4 NVIDIA Quadro RTX 8000 GPUs. All methods
are implemented in Python 3.6 and PyTorch v1.6. We use the ImageNet pre-
trained weights to initialize the backbone network. Adam optimizer is employed
in all methods. A learning rate of 4e — 5, a weight decay of 0.0001 and a batch
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Fig. 4. Examples of the fracture detection results. GT and FCOS detected fracture
bounding-boxes are shown in green and blue colors.

size of 48 are used to train the model for 25 epochs. All images are padded
to square and resized to 1024 x 1024 for network training and inference. We
randomly perform rotation, horizontal flipping, intensity and contrast jittering
to augment the training data. The trained model is evaluated on the validation
set after every training epoch, and the one with the highest validation AUROC
is selected as the best model for inference.

3 Experiments

3.1 Experimental Settings

Dataset We collected 65,843 CXRs of unique patients that were admitted to the
trauma center of Chang Gung Memorial Hospital from year 2008 to 2016. Based
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Table 1. Fracture classification and localization performance comparison with state-
of-the-art models. AUROC is reported for classification performance. FROC score is
reported for localization performance.

Rib fracture Clavicle fracture
Method
AUROC FROC AUROC FROC
CheXNet [11] 0.8867 - 0.9555 -
RetinaNet [9] 0.8609 0.4654 0.8610 0.7985
FCOS [14] 0.8646 0.5684 0.8847 0.8471
Li et al. [7] 0.8446 - 0.9560 -
I1-Model [6] 0.8880 0.7703 0.9193 0.8536
Temporal Ensemble [(] 0.8924 0.7915 0.9132 0.8204
Mean Teacher [13] 0.9155 0.8540 0.9474 0.8884
Supervised pre-training 0.9025 0.7267 0.9174 0.7967
Ours 0.9318 0.8914 0.9646 0.9265
(+1.63%) (+3.74%) (4+0.86%) (+3.81%)

on the clinical diagnosis records, the CXRs are assigned image-level labels for rib
and clavicle fractures. In total, we obtained 6,792 (R UP) CXRs with positive
label for at least one type of fracture and 59,051 (A) CXRs with negative label
for both fracture types. 808 (R) image-level positive CXRs are randomly selected
for expert annotation by two experienced trauma surgeons. The annotations are
confirmed by the best available information, including the original CXR images,
radiologist reports, clinical diagnoses, and advanced imaging modality findings
(if available). All experiments are conducted using five-fold cross-validation with
a 70%/10%/20% training, validation, and testing split, respectively.

Evaluation metrics We evaluate both fracture classification and localization
performances. The widely used classification metric AUROC is used to assess
classification performance. For object detection methods, the maximum classifi-
cation score of all predicted bounding-boxes is taken as the classification score.
For methods producing probability map, the maximum value of the probability
map is taken as the classification score. We also assess the fracture localization
performance of different methods. Since our method only produces probability
map, standard FROC metric based on bounding-box predictions is infeasible.
Thus, we report a modified FROC metric to evaluate the localization perfor-
mance of all compared methods. A fracture site is considered as recalled if
the center of its bounding-box is activated. And the activated pixels outside
bounding-boxes are regarded as false positives. Thus, the modified FROC mea-
sures the fracture recall and the average ratio of false positive pixels per image.
To calculate the modified FROC for object detection methods, we convert their
predicted bounding-boxes into a binary mask using different thresholds, with
the pixels within the predicted box as positive, and the pixels outside the box as
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negative. To quantify the localization performance, we calculate an FROC score
as an average of recalls at ten false positive ratios from 1% to 10%.

Compared methods We compare the proposed method with baseline methods
in the following three categories. 1) Weakly-supervised methods: We evalu-
ate CheXNet [11], a representative state-of-the-art X-ray CAD method trained
purely using image-level labels. 2) Object detection methods: We evaluate
two state-of-the-art object detection methods: an anchor-based detector Reti-

naNet [9] and an anchor-free detector FCOS [14]. 3) Semi-supervised meth-
ods: We evaluate three popular knowledge distillation methods, TI-Model [6],
Temporal Ensemble [6] and Mean Teacher [13], and a state-of-the-art medical

image SSL method by Li et al. [7]. For all evaluated methods, ResNet-50 is em-
ployed as the backbone network. FPN is employed in the two detection methods,
RetinaNet and FCOS.

3.2 Comparison with Baseline Methods

Table 1 summarizes the quantitative results of all compared methods and the
proposed method. On the more challenging rib fracture detection task, Mean
Teacher is the most competitive baseline method, measuring an AUROC of
0.9155 and an FROC score of 0.8540. Our proposed method measures an AUROC
of 0.9318 and an FROC score of 0.8914, which significantly outperforms Mean
Teacher by a 1.63% gap on the AUROC, and a 3.74% gap on the FROC score.
The ROC and FROC curves of the evaluated methods are shown in Fig. 5. On
the easier clavicle fracture detection task, CheXNet and Li et al. [7] report the
highest AUROCS (i.e., above 0.95) among the baseline methods. Mean Teacher
delivers the strongest FROC score of 0.8884 among the baseline methods. Our
proposed method also outperforms all baseline methods on the clavicle fracture
detection task, reporting an AUROC of 0.9646 and an FROC of 0.9265.

We note that the three knowledge distillation methods, II-Model, Temporal
Ensemble and Mean Teacher, perform stronger than the supervised detection
methods. The advantage is more significant on the easier clavicle fracture de-
tection task. This is mainly because clavicle fractures have simpler geometric
property and similar visual patterns, which knowledge distillation methods can
effectively learn from the pseudo GT of unlabeled data. However, on the more
complex rib fracture detection, the advantage of knowledge distillation meth-
ods is much less significant. Due to the complex visual patterns of rib fracture
and the limited region-labeled positive data, the pseudo GT maps have a low
sensitivity (i.e., the supervised pre-trained model reports a low FROC score of
0.7267), which limits the knowledge transferred to the distilled model. Using
the proposed AALS, our method effectively transfers more knowledge to the
student model, hence achieving significantly improved performance compared to
the previous knowledge distillation methods.

We observed that CheXNet and Li et al. [7] significantly outperform base-
line knowledge distillation methods on the clavicle fracture AUROC metric, but
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Fig. 5. FROC curves of rib fracture (left) and clavicle fracture (right) detection results
using different methods.

no performance advantage is observed on the rib fracture AUROC. This is be-
cause CheXNet and Li et al. [7] specifically use the positive image-level label,
while the baseline knowledge distillation methods do not. In particular, CheXNet
is trained via weakly-supervised learning purely using image-level labels. Li et
al. [7] exploits image-level positive labels in a multi-instance learning manner.
In contrast, the baseline knowledge distillation methods treat the image-level
positive images as unlabeled data. While weakly-supervised learning and multi-
instance learning are effective on learning the simpler clavicle fractures, they
are less effective on more complex rib fractures. In addition, CheXNet and Li et
al. [7] also produce poor localization performances. CheXNet provides localiza-
tion visualization via class activation maps (CAM). Since the CAM values are
not comparable across images, the FROC cannot be calculated for CheXNet re-
sults. As Li et al. [7] consistently produces overly large activation areas, it does
not report meaningful FROC scores. For both CheXNet and Li et al. [7], we
qualitatively verified that their localization performances are worse than other
methods, as demonstrated by the examples shown in Fig. 4.

3.3 Ablation Study

We validate our proposed AALS by conducting experiments with different sharp-
ening strengths ag and centers ¢, respectively. First, to analyze the effect of the
label sharpening center ¢, we evaluate AALS with ¢ = 0.2,0.3,0.4,0.5 and sum-
marize the results in Table 2. Using ¢ = 0.4 achieves the best detection perfor-
mance, measuring the highest/second highest AUROC score of 0.9318/0.9646,
and the highest FROC score of 0.8914/0.9265, on rib/clavicle fracture detection.
Note that for clavicle fracture classification, the best AUROC score of 0.9661
achieved at ¢t = 0.2 is only marginally better than that of ¢ = 0.4. The sharpening
center behaves as a trade-off between sensitivity and specificity. We note that our
method consistently outperforms baseline methods using all four ¢ values. Sec-
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Table 2. Study of the sharpening bias. Table 3. Study of the sharpening strength.

. Rib fracture Clavicle fracture a Rib fracture Clavicle fracture
0

AUROC FROC AUROC FROC AUROC FROC AUROC FROC

0.2 09289 0.8902 0.9661 0.9236 1 0.9222 0.8783 0.9550 0.9036
0.3 0.9261 0.8888 0.9611 0.9168 4 0.9318 0.8914 0.9646 0.9265
8
1

0.4 0.9318 0.8914 0.9646 0.9265 0.9283 0.8884 0.9606 0.9090
0.5 09271 0.8848 0.9577 0.9106 6 0.9302 0.8911 0.9620 0.9185

ond, we fix the center ¢ = 0.4 and evaluate ag = 1,4, 8,16 to study the impact
of the sharpening strength. As summarized in Table 3, label sharpening with
strength ag = 4 results in the best detection performance. For ag = 1, no label
sharpening is applied, which results in degraded performance. For ag = 8,16,
the label sharpening becomes overly aggressive (as shown in Fig. 2), which also
causes false positives in sharpened pseudo GT and hence slight performance
degradation.

We further conduct an experiment to study the involvement of image-level
positive set P. Figure 3 shows the classification and detection performances
for rib and clavicle using a subset of P with different ratios (0%, 20%, 60%,
100%), where 0% and 100% correspond to the supervised pre-training student
model and the proposed method, respectively. We observe that larger P improves
both the classification AUROC and detection FROC scores. This verifies the
motivation of our method that CAD model training can benefit from utilizing
image-level labels from clinical diagnoses. It also suggests a potential of our
method to further improve its performance by incorporating more data with
clinical diagnoses without additional annotation efforts.

4 Conclusion

In this paper, we introduced a specifically-designed SSL method to exploit both
limited expert annotated region-level labels and large-scale image-level labels
mined from the clinical diagnoses records for training a fracture detection model
on CXR. We demonstrated that by accounting for the imbalanced data dis-
tribution and exploiting the clinical diagnoses, the proposed AALS scheme can
effectively improve the effectiveness of knowledge distillation on only image-level
labeled data. On a large-scale real-world scenario dataset, our method reports the
state-of-the-art performance and outperforms previous methods by substantial
margins. Our method offers a promising solution to exploit potentially unlim-
ited and automatically mined clinical diagnosis data to facilitate CAD model
training.
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