Skip to main content

Weakly Supervised Deep Learning for Aortic Valve Finite Element Mesh Generation from 3D CT Images

  • Conference paper
  • First Online:
Book cover Information Processing in Medical Imaging (IPMI 2021)

Abstract

Finite Element Analysis (FEA) is useful for simulating Transcather Aortic Valve Replacement (TAVR), but has a significant bottleneck at input mesh generation. Existing automated methods for imaging-based valve modeling often make heavy assumptions about imaging characteristics and/or output mesh topology, limiting their adaptability. In this work, we propose a deep learning-based deformation strategy for producing aortic valve FE meshes from noisy 3D CT scans of TAVR patients. In particular, we propose a novel image analysis problem formulation that allows for training of mesh prediction models using segmentation labels (i.e. weak supervision), and identify a unique set of losses that improve model performance within this framework. Our method can handle images with large amounts of calcification and low contrast, and is compatible with predicting both surface and volumetric meshes. The predicted meshes have good surface and correspondence accuracy, and produce reasonable FEA results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  2. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89(2–3), 114–141 (2003)

    Article  Google Scholar 

  3. Dowling, C., Firoozi, S., Brecker, S.J.: First-in-human experience with patient-specific computer simulation of TAVR in bicuspid aortic valve morphology. JACC Cardiovasc. Interven. 13(2), 184–192 (2020)

    Article  Google Scholar 

  4. Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  5. Ghesu, F.C., et al.: Marginal space deep learning: efficient architecture for volumetric image parsing. IEEE Trans. Med. imaging 35(5), 1217–1228 (2016)

    Article  Google Scholar 

  6. Gkioxari, G., Malik, J., Johnson, J.: Mesh R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9785–9795 (2019)

    Google Scholar 

  7. Ionasec, R.I., et al.: Patient-specific modeling and quantification of the aortic and mitral valves from 4-D cardiac CT and tee. IEEE Trans. Med. Imaging 29(9), 1636–1651 (2010)

    Article  Google Scholar 

  8. Jacobson, A., Panozzo, D., et al.: libigl: A simple C++ geometry processing library (2018). https://libigl.github.io/

  9. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Lee, M.C.H., Petersen, K., Pawlowski, N., Glocker, B., Schaap, M.: Tetris: template transformer networks for image segmentation with shape priors. IEEE Trans. Med. Imaging 38(11), 2596–2606 (2019)

    Article  Google Scholar 

  11. Liang, L., et al.: Machine learning-based 3-D geometry reconstruction and modeling of aortic valve deformation using 3-D computed tomography images. Int. J. Numer. Methods Biomed. Eng. 33(5), e2827 (2017)

    Article  MathSciNet  Google Scholar 

  12. Loriot, S., Rouxel-Labbé, M., Tournois, J., Yaz, I.O.: Polygon mesh processing. In: CGAL User and Reference Manual. CGAL Editorial Board, 5.1.1 edn. (2020). https://doc.cgal.org/5.1.1/Manual/packages.html#PkgPolygonMeshProcessing

  13. Pak, D.H., Caballero, A., Sun, W., Duncan, J.S.: Efficient aortic valve multilabel segmentation using a spatial transformer network. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1738–1742. IEEE (2020)

    Google Scholar 

  14. Papademetris, X., et al.: Bioimage suite: an integrated medical image analysis suite: an update. Insight J. 2006, 209 (2006)

    Google Scholar 

  15. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  16. Pouch, A.M., et al.: Medially constrained deformable modeling for segmentation of branching medial structures: application to aortic valve segmentation and morphometry. Med. Image Anal. 26(1), 217–231 (2015)

    Article  Google Scholar 

  17. Ravi, N., et al.: Accelerating 3D deep learning with pytorch3d. arXiv:2007.08501 (2020)

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  20. SandkĂ¼hler, R., Jud, C., Andermatt, S., Cattin, P.C.: Airlab: Autograd image registration laboratory. arXiv preprint arXiv:1806.09907 (2018)

  21. Schroeder, W.J., Lorensen, B., Martin, K.: The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics. Kitware, NewYork (2004)

    Google Scholar 

  22. Sun, W., Martin, C., Pham, T.: Computational modeling of cardiac valve function and intervention. Annu. Rev. Biomed. Eng. 16, 53–76 (2014)

    Article  Google Scholar 

  23. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2Mesh: generating 3D mesh models from single RGB images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 52–67 (2018)

    Google Scholar 

  24. Wang, Q., Primiano, C., McKay, R., Kodali, S., Sun, W.: CT image-based engineering analysis of transcatheter aortic valve replacement. JACC Cardiovasc. Imaging 7(5), 526–528 (2014)

    Article  Google Scholar 

  25. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)

    Article  Google Scholar 

Download references

Acknowledgments and Conflict of Interest

This work was supported by the NIH R01HL142036 grant. Dr. Wei Sun is a co-founder and serves as the Chief Scientific Advisor of Dura Biotech. He has received compensation and owns equity in the company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. Pak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pak, D.H. et al. (2021). Weakly Supervised Deep Learning for Aortic Valve Finite Element Mesh Generation from 3D CT Images. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds) Information Processing in Medical Imaging. IPMI 2021. Lecture Notes in Computer Science(), vol 12729. Springer, Cham. https://doi.org/10.1007/978-3-030-78191-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78191-0_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78190-3

  • Online ISBN: 978-3-030-78191-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics