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Abstract. In this paper, we consider a type of image quality assess-
ment as a task-specific measurement, which can be used to select images
that are more amenable to a given target task, such as image classifi-
cation or segmentation. We propose to train simultaneously two neural
networks for image selection and a target task using reinforcement learn-
ing. A controller network learns an image selection policy by maximising
an accumulated reward based on the target task performance on the
controller-selected validation set, whilst the target task predictor is op-
timised using the training set. The trained controller is therefore able to
reject those images that lead to poor accuracy in the target task. In this
work, we show that the controller-predicted image quality can be signifi-
cantly different from the task-specific image quality labels that are man-
ually defined by humans. Furthermore, we demonstrate that it is possible
to learn effective image quality assessment without using a “clean” valida-
tion set, thereby avoiding the requirement for human labelling of images
with respect to their amenability for the task. Using 6712, labelled and
segmented, clinical ultrasound images from 259 patients, experimental
results on holdout data show that the proposed image quality assess-
ment achieved a mean classification accuracy of 0.94± 0.01 and a mean
segmentation Dice of 0.89 ± 0.02, by discarding 5% and 15% of the ac-
quired images, respectively. The significantly improved performance was
observed for both tested tasks, compared with the respective 0.90± 0.01
and 0.82±0.02 from networks without considering task amenability. This
enables image quality feedback during real-time ultrasound acquisition
among many other medical imaging applications.

Keywords: Reinforcement learning · Medical image quality assessment
· Deep learning · Task amenability
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1 Introduction

Image quality assessment (IQA) has been developed in the field of medical im-
age computing and image-guided intervention as it is important to ensure that
the intended diagnostic, therapeutic or navigational tasks can be performed re-
liably. It is intuitive that low-quality images can result in inaccurate diagnoses
or measurements obtained from medical images [1, 2], but there has been little
evidence that such corroboration can be quantified, between completion of a spe-
cific clinical application and a single general-purpose IQA methodology. Chow
and Paramesran [3] also pointed out that measures of image quality may not
indicate diagnostic accuracy. We further argue that a general-purpose approach
for medical image quality assessment is both challenging and potentially counter-
productive. For example, various artefacts, such as reflections and shadows, may
not be present near regions of clinical interest, yet a “good quality” image might
still have inadequate field-of-view for the clinical task. In this work, we investi-
gate the type of image quality which indicates how well a specific downstream
target task performs and refer to this quality as task amenability.

Current IQA approaches in clinical practice rely on subjective human inter-
pretation of a set of ad hoc criteria [3]. Automating IQA methods, for example,
by computing dissimilarity to empirical references [3], typically can provide an
objective and repeatable measurement, but requires robust mathematical models
to approximate the underlying statistical and physical principles of good-quality
image generation process or known mechanisms that reduce image quality (e.g.
[4, 5]). Recent deep-learning-based IQA approaches provide fast inference using
expert labels of image quality for training [2, 6, 7, 8]. However, besides the poten-
tially high variability in these human-defined labels, to what extent they reflect
task amenability - i.e. their usefulness for a specific task - is still an open ques-
tion. In particular, a growing number of these target tasks have been modelled
and automated by, for example, neural networks, which may result in different
or unknown task amenability.

In this work, we focus on a specific use scenario of the task-specific IQA, in
which images are selected by the measured task-specific image quality, such that
the selected subset of high-quality images leads to improved target classification
or segmentation accuracy. This image selection by task amenability has many
clinical applications, such as meeting a clinically-defined accuracy requirement
by removing the images with poor task amenability and maximising task perfor-
mance given a predefined tolerance on how many images with poor amenability
can be rejected and discarded. The rejected images may be re-acquired imme-
diately in applications such as the real-time ultrasound imaging investigated in
this work. The IQA feedback during scanning also provides an indirect measure
of user skills, though skill assessment is not discussed further in this paper.

Furthermore, we propose to train a controller network and a task predictor
network together for selecting task amenable images and for completing the
target task, respectively. We highlight that optimising the controller is dependent
on the task predictor being optimised. This may therefore be considered a meta-
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learning problem that maximises the target task performance with respect to
the controller-selected images.

Reinforcement learning (RL) has increasingly been used for meta-learning
problems, such as augmentation policy search [9, 10], automated loss function
search [11] and training data valuation [12]. Common in these approaches, a
target task is optimised with a controller which modifies parameters associated
with this target task. The parameter modification action is followed by a reward
signal computed based on the target task performance, which is subsequently
used to optimise the controller. This allows the controller to learn the param-
eter setting that results in a better performed target task. The target appli-
cation can be image classification, regression or segmentation, while the task-
associated parameter modification actions include transforming training data for
data augmentation [9, 10], selecting convolution filters and activation functions
for network architecture search [13] and sampling training data for data valu-
ation [12]. Among these recent developments, the data valuation approach [12]
shares some interesting similarities with our proposed IQA method, but with
several important differences in the reward formulation by weighting/sampling
validation set, the availability of “clean” high-quality image data, in addition
to the different RL algorithms and other methodological details described in
Sec. 2. For medical imaging applications, the RL-based meta-learning has also
been proposed, for instance, to search for optimal weighting between different
ultrasound modalities for the downstream breast cancer detection [14] and to op-
timise hyper-parameters for a subsequent 3D medical image segmentation [15],
using the REINFORCE algorithm [16] and the proximal policy optimization
algorithm [17], respectively.

In this work, we propose using RL to train the controller and the task pre-
dictor for assessing medical image quality with respect to two common medical
image analysis tasks. Using medical ultrasound data acquired from prostate can-
cer patients, the two tasks are a) classifying 2D ultrasound images that contain
prostate glands from those that do not and b) segmenting the prostate gland.
These two tasks are not only the basis of several computational applications, such
as 3D volume reconstruction, image registration and tumour detection, but are
also directly useful for navigating ultrasound image acquisition during surgical
procedures, such as ultrasound-guided biopsy and therapies. Our experiments
were designed to investigate the following research questions:

– Can the task performance be improved on holdout test data selected by the
trained controller network, compared with the same task predictor network
based on supervised training and non-selective test data?

– Does the trained controller network provide a better or different measure
of task amenability, compared with human labels of image quality that are
intended to indicate amenability to the same tasks?

– What is the trade-off between the quantity of rejected images and the im-
provement in task performance?

The contributions are summarised as follows: We 1) propose to formulate
task-specific IQA to learn task amenable data selection; 2) propose a novel RL-
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based approach to quantify the task amenability, using different reward formu-
lations with and without the need for human labels of task amenability; and 3)
present experiments to demonstrate the efficacy of the proposed IQA approach
using real medical ultrasound images in two different downstream target tasks.

Fig. 1: Illustration of the training for controller and task predictor networks.

2 Method

2.1 Image quality assessment by task amenability

The proposed IQA consists of two parametric functions, task predictor and con-
troller, illustrated in Fig. 1. The task predictor f(·;w) : X → Y, with parameters
w, outputs a prediction y ∈ Y for a given image sample x ∈ X . The controller
h(·; θ) : X → [0, 1], with parameters θ, generates an image quality score for a
sample x, measuring task amenability of the sample. X and Y denote the image
and label domains specific to a certain task, respectively.

Let PX and PXY be the image distribution and the joint image-label distri-
bution, with probability density functions p(x) and p(x, y), respectively. The task
predictor’s objective is to minimise a weighted loss function Lf : Y ×Y → R≥0:

min
w

E(x,y)∼PXY [Lf (f(x;w), y)h(x; θ)], (1)

where Lf measures how well the task is performed by the predictor f(x;w), given
label y. It is weighted by the controller-measured task amenability on the same
image x, as mistakes (high loss) on images with lower task amenability ought to
be less weighted - with a view to rejecting them, and vice versa. The controller’s
objective is to minimise a weighted metric function Lh : Y × Y → R≥0:

min
θ

E(x,y)∼PXY [Lh(f(x;w), y)h(x; θ)], (2)

s.t. Ex∼PX [h(x; θ)] ≥ c > 0 (3)
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such that the controller is encouraged to predict lower quality scores for images
with higher metric values (lower task performance), as the weighted sum is min-
imised. The intuition is that making correct predictions on low-quality images
tends to be more difficult. The constraint prevents the trivial solution h ≡ 0.

Thus, the overall objective to learn the proposed task-specific IQA can be
assembled as the following minimisation problem:

min
θ

E(x,y)∼PXY [Lh(f(x;w∗), y)h(x; θ)], (4a)

s.t. w∗ = arg min
w

E(x,y)∼PXY [Lf (f(x;w), y)h(x; θ)], (4b)

Ex∼PX [h(x; θ)] ≥ c > 0. (4c)

To facilitate a sampling or selection action (see Sec. 2.3) by controller-predicted
task amenability scores, Eq. (4) is re-written as:

min
θ

E(x,y)∼PhXY
[Lh(f(x;w∗), y)], (5a)

s.t. w∗ = arg min
w

E(x,y)∼PhXY
[Lf (f(x;w), y)], (5b)

Ex∼PhX [1] ≥ c > 0. (5c)

where the data x and (x, y) are sampled from the controller-selected or -sampled
distributions PhX and PhXY , with probability density functions ph(x) ∝ p(x)h(x; θ)
and ph(x, y) ∝ p(x, y)h(x; θ), respectively.

2.2 The reinforcement learning algorithm

In this work, an RL agent interacting with an environment is considered as a
finite-horizon Markov decision process with (S,A, p, r, π, γ). S is the state space
and A is a continuous action space. p : S ×S ×A → [0, 1] is the state transition
distribution conditioned on state-actions, e.g. p(st+1 | st, at) denotes the proba-
bility of the next state st+1 ∈ S given the current state st ∈ S and action at ∈ A.
r : S × A → R is the reward function and Rt = r(st, at) denotes the reward
given st and at. π(at | st) : S ×A ∈ [0, 1] is the policy represents the probability
of performing action at given st. The constant γ ∈ [0, 1] discounts the accumu-
lated rewards starting from time step t: Qπ(st, at) =

∑T
k=0 γ

kRt+k. A sequence
(s1, a1, R1, s2, a2, R2, . . . , sT , aT , RT ) is thereby created with the RL agent train-
ing, with the objective to learn a parameterised policy πθ which maximises the
expected return J(θ) = Eπθ [Qπ(st, at)].

Two different algorithms have been considered in our experiments, REIN-
FORCE [16] and Deep Deterministic Policy Gradient (DDPG) [18]. Based on
initial results indicating little difference in performance between the two, all the
results presented in this paper are based on DDPG, with which a noticeably more
efficient and stable training was observed. Further investigation into the choice
of RL algorithms remains interesting in future work. While the REINFORCE
computes policy gradient to update the controller parameters directly, DDPG is
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an actor-critic algorithm, with an off-policy critic Q(st, at; θ
Q) : S ×A → R and

a deterministic actor µ(st; θ
µ) : S → A. To maximise the performance function

J(θµ) = Eµ[Qπ(st, µ(st; θ
µ))], the variance-reduced policy gradient is used to up-

date the controller: ∇θµJ(θµ) = Eµ[∇θµµ(st; θ
µ)∇aQπ(st, a)|a=µ(st;θµ)], which

can be approximated by sampling the behaviour policy β(st) 6= µ(st; θ
µ):

∇θµJ(θµ) ≈ Eβ [∇θµµ(st; θ
µ)∇aQ(st, a; θQ)|a=µ(st;θµ)], (6)

where the critic Q(st, at; θ
Q) is updated with respect to minimising:

Eβ [(Rt + γQ(st+1, at+1; θQ)−Q(st, at; θ
Q))2]. (7)

In our implementation, copies of the actor Q′(st, at; θQ
′
) and the critic µ′(st; θµ

′
)

are used for computing moving averages during parameter updates, θQ
′ ← τθQ+

(1−τ)θQ
′
and θµ

′ ← τθµ+(1−τ)θµ
′
, respectively. Additionally, a random noise

N is added to µ(st; θ
µ) for exploration. Here, τ = 0.001 and N is the Ornstein-

Uhlenbeck process [19] with the scale and the mean reversion rate parameters
set to 0.2 and 0.15, respectively.

2.3 Image quality assessment with reinforcement learning

In this section, the IQA in Eq.(5) is formulated as a RL problem and solved by the
algorithm described in Sec. 2.2. The pseudo-code is provided in Algorithm 1. A
finite dataset together with the task predictor is considered the environment. At
time step t, the observed state from the environment st = (f(·;wt),Bt) consists
of the predictor f(·;wt) and a mini-batch of samples Bt = {(xi, yi)}Bi=1 from a
training dataset Dtrain = {(xi, yi)}Ni=1. The agent is the controller h(·; θ) that
outputs sampling probabilities {h(xi; θ)}Bi=1. The action at = {ait}Bi=1 ∈ {0, 1}B
is the sample selection decision, by which (xi, yi) is selected if ait = 1 for training
the predictor. The policy πθ(at | st) is thereby defined as:

log πθ(at | st) =

D∑
i=1

h(xi; θ)a
i
t + (1− h(xi; θ)(1− ait)) (8)

The unclipped reward R̃t is calculated based on the predictor’s performance
{lj,t}Mj=1 = {Lh(f(xj ;wt), yj)}Mj=1 on a validation dataset Dval = {(xj , yj)}Mj=1

and the controller’s outputs {hj}Mj=1 = {h(xj ; θ)}Mj=1. Three definitions for re-
ward computation are considered in this work:

1. R̃avg,t = − 1
M

∑M
j=1 lj,t, the average performance.

2. R̃w,t = − 1
M

∑M
j=1 lj,thj , the weighted sum.

3. R̃sel,t = − 1
M ′

∑M ′

j′=1 lj′,t, the average of the selected M ′ samples.

where {j′}M ′

j′=1 ⊆ {j}Mj=1 and hj′ ≤ hk′ ,∀k′ ∈ {j′}c,∀j′ ∈ {j′}, i.e. the unclipped
reward R̃sel,t is the average of {lj′} from the subset of M ′ = b(1 − srej)Mc
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samples, by removing the first srej×100% samples, after sorting hj in decreasing
order. It is important to note that, for the first reward definition R̃avg,t without
being weighted or selected by the controller, the validation set requires pre-
selected “high-amenability” data. In this work, additional human labels of task
amenability were used for generating such a clean fixed validation set (details in
Sec. 3). During training, the clipped reward Rt = R̃t− R̄t is used with a moving
average R̄t = αRR̄t−1 + (1− αR)R̃t, where αR is a hyper-parameter set to 0.9.

Algorithm 1: Image quality assessment by task amenability
Data: Training dataset Dtrain and validation dataset Dval.
Result: Task predictor f(·;w) and controller h(·; θ).
while not converged do

for k ← 1 to K do
for t← 1 to T do

Sample a mini-batch Bt = {(xi, yi)}Bi=1 from Dtrain;
Compute selection probabilities {h(xi; θt)}Bi=1;
Sample actions at = {ait}Bi=1 w.r.t. ait ∼ Bernoulli(h(xi; θ));
Selected samples Bt,selected from Bt;
Update predictor f(·;wt) using Bt,selected;
Compute reward Rt;

end
Collect one episode {Bt, at, Rt}Tt=1;

end
Update controller h(·; θ) using reinforcement learning algorithm;

end

3 Experiment

Transrectal ultrasound images were acquired from 259 patients, at the beginning
stages of the ultrasound-guided biopsy procedures, as part of the SmartTarget:
THERAPY and SmartTarget: BIOPSY clinical trials (clinicaltrials.gov identi-
fiers NCT02290561 and NCT02341677 respectively). For each subject, a range
of 50-120 2D frames were acquired with the side-firing transducer of a bi-plane
transperineal ultrasound probe (C41L47RP, HI-VISION Preirus, Hitachi Med-
ical Systems Europe), during manual positioning a digital transperineal step-
per (D&K Technologies GmbH, Barum, Germany) or rotating the stepper with
recorded relative angles, for navigating ultrasound view and scanning entire
gland, respectively. For the purpose of feasibility in manual labelling, the ultra-
sound images were further sampled at approximately every 4 degrees, resulting
in 6712 images in total.

Prostate glands were segmented in all images by three trained biomedical
engineering researchers, in which the prostate gland is visible. Two sets of task
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Fig. 2: Examples of ultrasound images in this study. Top-left (green): task-
amenable images that contain prostate gland (shaded in red); Bottom-left
(red): images with poor task amenability that are difficult to recognise prostate
glands (for classification) and their boundaries (for segmentation); Top-right
(yellow), images that are likely to contain prostate glands (blue arrows) but
identifying the complete gland boundaries for segmentation is challenging; and
Bottom-right (blue): images that contain visible noise and artefacts (orange
arrows), but may be amenable to both classification and segmentation tasks.

labels were curated for individual images: classification labels (a binary scalar
indicating the presence of prostate) and segmentation labels (a binary mask of
the gland). In this work, a single label for each of the classification and seg-
mentation tasks was obtained by consensus over all three observers, based on
majority voting at image-level and pixel-level, respectively.

As discussed in Sec. 1, the task-specific image quality of interest for the clas-
sification task and the segmentation task can be different. Therefore, additional
two binary labels were assigned for each image to represent the human label of
task amenability, based on the observer assessment of whether the image quality
adversely affects the completion of each task (see examples in Fig. 2).

The labelled images were randomly split, at the patient-level, into train,
validation, and holdout sets with 4689, 1023, and 1000 images from 178, 43, and
38 subjects, respectively.

The proposed RL framework was evaluated on both tasks. The three reward
definitions proposed in Sec. 2.3 were compared together with two non-selective
baseline networks for classification and segmentation trained on all training data.
For comparison purposes, they share the same network architectures and training
strategies as the task predictors in the RL algorithms. For the classification tasks,
Alex-Net [20, 21] was trained with a cross-entropy loss and a reward based on
classification accuracy (Acc.), i.e. classification correction rate. For segmentation
tasks, U-Net [22] was trained with a pixel-wise cross-entropy loss and a mean
binary Dice score to form the reward. For the purpose of this work, the reported
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experimental results are based on empirically configured networks and RL hyper-
parameters that were unchanged, unless specified, from the default values in the
original Alex-Net, U-Net and DDPG algorithms. It is perhaps noteworthy that,
based on our initial experiments, changing these configurations seems unlikely to
alter the conclusions summarised in Sec. 4, but future research may be required
to confirm this and further optimise their performance.

Based on the holdout set, a mean Acc. and a mean binary Dice were computed
to evaluate the trained task predictor networks, in classification and segmenta-
tion tasks, respectively, with different percentages of the holdout set removed
according to the trained controller networks. Selection is not applicable to the
baseline networks. Standard deviation (St.D.) is also reported to measure the
inter-patient variance. Paired two-sample t-test results at a significance level of
α = 0.05 are reported for comparisons.

4 Result

To evaluate the trained controllers, the 2×2 contingency tables in Fig. 3 compare
subjective task amenability labels with controller predictions. For the purpose
of comparison, 5% and 15% of images were removed from the holdout set by the
trained controller, for the classification and segmentation tasks, respectively. The
results of the selective reward R̃sel,t with srej = 5% and srej = 15% are used as
examples, for the two respective tasks. Thereby, agreement and disagreement are
quantified between images assessed by the proposed IQA and the same images
assessed by the subjective human labels of task amenability, denoted as predicted
low/high and subjective low/high, respectively. In classifying prostate presence,
the rewards based on fixed-, weighted- and selective validation sets resulted in
agreed 75%, 70% and 43% low task amenability samples, with Cohen’s kappa
values of 0.75, 0.51 and 0.30, respectively. In the segmentation task, the three
rewards have 65%, 58% and 49% agreed low task amenability samples, with
Cohen’s kappa values of 0.63, 0.48 and 0.37, respectively.

Task Reward computation strategy Mean ± St.D.

Prostate
presence
(Acc.)

Non-selective baseline 0.897 ± 0.010
R̃avg,t, fixed validation set 0.935 ± 0.014
R̃w,t, weighted validation set 0.926 ± 0.012
R̃sel,t, selective validation set 0.913 ± 0.012

Prostate
segmentation
(Dice)

Non-selective baseline 0.815 ± 0.018
R̃avg,t, fixed validation set 0.890 ± 0.017
R̃w,t, weighted validation set 0.893 ± 0.018
R̃sel,t, selective validation set 0.865 ± 0.014

Table 1: Comparison of results on the controller-selected holdout set.
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Fig. 3: Contingency tables comparing subjective labels to controller predictions
for the different reward computation strategies.

To evaluate the task performances on the trained-controller-selected holdout
set, the Acc. and Dice are summarised in Table 1. The average training time was
approximately 12 hours on a single Nvidia Quadro P5000 GPU. In both tasks,
all three proposed RL-based IQA algorithms provide statistically significant im-
provements, compared with the non-selective baseline counterparts, with all p-
values<0.001. For both tasks, the results from the reward definition based on
the selective validation set led to relatively inferior performances compared with
the other two reward definitions, with statistical significance (p-values<0.001 ).
Interestingly, no statistical significance was found between the reward definitions
based on fixed- and weighted validation sets, for the classification (p-value=0.06 )
or segmentation (p-value=0.49 ) tasks, despite the disagreement summarised in
Fig. 3. Fig. 4a and 4b plot mean performance against (holdout) rejection ratio for
the three reward computation strategies. The peak classification Acc. are 0.935,
0.932 and 0.913 at 5%, 10% and 5% rejection ratios, for the fixed-, weighted- and
selective reward formulations, respectively, while the peak segmentation Dice are
0.891, 0.893 and 0.866 at 20%, 15% and 20% rejection ratios, respectively.

5 Discussion and Conclusion

An interesting observation when inspecting Fig. 4 is that, in both tasks, the
task performance peaked before decreasing as more samples were discarded for
most tested methods. This seems counter-intuitive as the controller was trained
to select task amenable data. While it remains an open question, we consider
the following potential contributing factors: the variance of predictions, the pos-
sible over-fitting of the RL algorithms, the potentially non-monotonic relation
between the optimal predictions conditioned on different values of srej , and the
limitation of the datasets which may be considered of above-average quality
(therefore higher amenability that limits potential performance improvement).
Importantly, the significant improvement over the non-selective baseline net-
works demonstrated the efficacy of the proposed IQA approach.
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(a) Prostate presence classification task (b) Prostate segmentation task

Fig. 4: Plots of the task performance (in respective Acc. and Dice metrics) against
the ratios of removed holdout samples in each tasks.

The proposed weighted and selective reward formulations learned effective
IQA without human labels of task amenability, which can be subjective and
costly. Although the selective strategy performed moderately in this experiment,
it may not be a general case for different datasets or applications and potentially
provides a means to specify the desirable rejection rate.

In summary, this paper has formulated IQA as a measure of task amenability,
which can be learned by the proposed RL algorithm with and without human
labels. The proposed IQA has been demonstrated and analysed with experiments
based on clinical ultrasound images from prostate cancer patients.
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