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Abstract. This work develops a class of relaxations in between the big-
M and convex hull formulations of disjunctions, drawing advantages from
both. The proposed “P -split” formulations split convex additively sepa-
rable constraints into P partitions and form the convex hull of the parti-
tioned disjuncts. Parameter P represents the trade-off of model size vs.
relaxation strength. We examine the novel formulations and prove that,
under certain assumptions, the relaxations form a hierarchy starting from
a big-M equivalent and converging to the convex hull. We computation-
ally compare the proposed formulations to big-M and convex hull formu-
lations on a test set including: K-means clustering, P ball problems, and
ReLU neural networks. The computational results show that the inter-
mediate P -split formulations can form strong outer approximations of
the convex hull with fewer variables and constraints than the extended
convex hull formulations, giving significant computational advantages
over both the big-M and convex hull.

Keywords: Disjunctive programming · Relaxation comparison · Formu-
lations · Mixed-integer programming · Convex MINLP

1 Introduction

There are well-known trade-offs between the big-M and convex hull relaxations
of disjunctions in terms of problem size and relaxation tightness. Convex hull
formulations [4,6,9,16,20,36] provide a sharp formulation for a single disjunction,
i.e., the continuous relaxation provides the best possible lower bound. The con-
vex hull is often represented by so-called extended (a.k.a. perspective/multiple-
choice) formulations [5,7,11,14,15,17,38], which introduce multiple copies of each
variable in the disjunction(s). On the other hand, the big-M formulation only
introduces one binary variable for each disjunct and results in a smaller prob-
lem in terms of both number of variables and constraints; however, in general
it provides a weaker relaxation than the convex hull and may require a solver
to explore significantly more nodes in a branch-and-bound tree [10,38]. Even
though the big-M formulation is weaker, in some cases it can computationally
outperform extended convex hull formulations, as the simpler subproblems can
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offset the larger number of explored nodes. Anderson et al. [1] describe a folklore
observation in mixed-integer programming (MIP) that extended convex hull for-
mulations tend to perform worse than expected. The observation is supported
by the numerical results in Anderson et al. [1] and in this paper.

This paper presents a framework for generating formulations for disjunctions
between the big-M and convex hull with the intention of combining the best of
both worlds: a tight, yet computationally efficient, formulation. The main idea
behind the novel formulations is partitioning the constraints of each disjunct
and moving most of the variables out of the disjunction. Forming the convex
hull of the resulting disjunctions results in a smaller problem, while retaining
some features of the convex hull. We call the new formulation the P -split, as
the constraints are split into P parts. While many efforts have been devoted to
computationally efficient convex hull formulations [3,11,19,33,37,39,40,41] and
techniques for deriving the convex hull of MIP problems [2,22,25,31,35], our
primary goal is not to generate the convex hull. Rather, we provide a straight-
forward framework for generating a family of relaxations that approximate the
convex hull for a general class of disjunctions using a smaller problem formula-
tion. Our experiments show that the P -split formulations can give a significant
computational advantage over both the big-M and convex hull formulations.

This paper is organized as follows: the P -split formulation is presented in
Section 2, together with properties of the P -split relaxations and how they com-
pare to the big-M and convex hull relaxations. We also present a non-extended
realization of the P -split formulation for the special case of a two-term disjunc-
tion. Finally, a numerical comparison of the formulations is presented in Section
3 using both instances with linear and nonlinear disjunctions.

1.1 Background

We consider optimization problems containing disjunctions of the form

∨
l∈D

[
gk(x) ≤ bk ∀k ∈ Cl

]
x ∈ X ⊂ Rn,

(1)

where D contains the indices of the disjuncts, Cl the indices of the constraints
in disjunct l, and X is a convex compact set. This paper assumes the following:

Assumption 1 The functions gk : Rn → R are convex additively separable
functions, i.e., gk(x) =

∑n
i=1 hik(xi) where hik : R → R are convex functions,

and each disjunct is non-empty on X .

Assumption 2 All functions gk are bounded over X .

Assumption 3 Each disjunct contains far fewer constraints than the number
of variables in the disjunction, i.e., |Cl| << n.

The first two assumptions are needed for the P -split formulation to be valid
and result in a convex MIP. While the first assumption simplifies our analysis of
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P -split formulations, it could easily be relaxed to partially additively separable
functions. Furthermore, the computational experiments only consider problems
with linear or quadratic constraints, which ensures that the convex hull of the
disjunction is representable by a polyhedron or (rotated) second-order cone con-
straints [6]. Assumption 3 characterizes problem structures favorable for the
presented formulations. Problems with such a structure include, e.g., cluster-
ing [28,32], mixed-integer classification [24,30], optimization over trained neural
networks [1,8,12,13,34], and coverage optimization [18].

2 Relaxations between convex hull and big-M

The formulations in this section apply to disjunctions with multiple constraints
per disjunct. However, to simplify the derivation, we only consider disjunctions
with one constraint per disjunct, i.e., |Cl| = 1 ∀l ∈ D. The extension to multiple
constraints per disjunct simply applies the splitting procedure to each constraint.

To derive the new formulations, we partition the variables into P sets and
form the corresponding index sets I1, . . . , IP . The constraint for each disjunct
is then split into P constraints, by introducing auxiliary variables αj ∈ RP

∨
l∈D

[
gl(x) ≤ bl

]
x ∈ X

−→
∨
l∈D



∑
i∈I1

hi,l(xi) ≤ αl1
...∑

i∈IP

hi,l(xi) ≤ αlP

P∑
s=1

αls ≤ bl

α
¯
l
s ≤ αls ≤ ᾱls ∀s ∈ {1, . . . , P}


x ∈ X ,αl ∈ RP ∀ l ∈ D.

(2)

By Assumption 2, function hi,l is bounded on X , and bounds on the auxiliary
variables are given by

α
¯
l
s := min

x∈X

∑
i∈Is

hi,l(xi), ᾱls := max
x∈X

∑
i∈Is

hi,l(xi). (3)

The P -split formulation does not require tight bounds, but weak bounds result
in an overall weaker relaxation.

The splitting creates a lifted formulation by introducing P × |D| auxiliary
variables. Both formulations in (2) have the same feasible set in the x variables.
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We relax the disjunction by treating the splitted constraints as global constraints

∨
l∈D


P∑
s=1

αls ≤ bl

α
¯
l
s ≤ αls ≤ ᾱls ∀s ∈ {1, . . . , P}


∑
i∈Is

hi,l(xi) ≤ αls ∀s ∈ {1, . . . , P}, ∀ l ∈ D

x ∈ X ,αl ∈ RP ∀ l ∈ D.

(4)

Definition 1. Formulation (4) is a P -split representation of the original dis-
junction in (2).

Lemma 1 relates the P -split representation to the original disjunction. The prop-
erty is rather simple, but for completeness we have stated it as a lemma.

Lemma 1. The feasible set of P -split representation projected onto the x-space
is equal to the feasible set of the original disjunctions in (2).

Proof. An x̄ that is feasible for (4) and violates (2) gives a contradiction. Simi-
larly, an x̄ that is feasible for (2) is also clearly feasible for (4). ut

Using the extended formulation [4] to represent the convex hull of the dis-
junction in (4) results in the P -split formulation

αls =
∑
d∈D

ν
αl

s

d ∀ s ∈ {1, . . . , P}, ∀ l ∈ D

P∑
s=1

ν
αl

s

l ≤ blλl ∀ l ∈ D

α
¯
l
sλd ≤ ν

αl
s

d ≤ ᾱ
l
sλd ∀ s ∈ {1, . . . , P},∀ l, d ∈ D∑

i∈Is

hi,l(xi) ≤ αls ∀ s ∈ {1, . . . , P}, ∀ l ∈ D

∑
l∈D

λl = 1, λ ∈ {0, 1}|D|

x ∈ X ,αl ∈ RP , να
l
s ∈ RP ∀ s ∈ {1, . . . , P}, ∀ l ∈ D ,

(P -split)

which forms a convex MIP problem. To clarify our terminology: a 2-split formu-
lation is a formulation (P -split) where the constraints of the original disjunction
are split up into two parts, i.e., P = 2. We assume that the disjunction is part of
a larger optimization problem that may contain multiple disjunctions. Therefore,
we need to enforce integrality on the λ variables even if we recover the convex
hull of the disjunction. Proposition 1 shows the correctness of the the (P -split)
formulation of the original disjunction.
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Proposition 1. The set of feasible x variables in formulation (P -split) is equal
to the feasible set of x variables in disjunction (2).

Proof. By Lemma 1, (2) and (4) have equivalent x feasible sets. For λ ∈ {0, 1}|D|,
the extended formulation (P -split) exactly represents the disjunction (4). ut
Proposition 1 states that the P -split formulation is correct for integer feasible
solutions, but it does not give any insight on the quality of the continuous relax-
ation. The following subsections further analyze the properties of the (P -split)
formulation and its relation to the big-M and convex hull formulations.

Remark 1. A (P -split) formulation introduces P ·
(
|D|2 + 1

)
continuous and |D|

binary variables. Unlike the extended convex hull formulation (which introduces
|D| · n continuous and |D| binary variables), the number of “extra” variables is
independent of n, i.e., the number of variables in the original disjunction. As
we later show, there are applications where |D| << n for which (P -split) formu-
lations can be smaller and computationally more tractable than the extended
convex hull formulation.

2.1 Properties of the P -Split formulation

This section focuses on the strength of the continuous relaxation of the P -split
formulation, and how it compares to convex hull and big-M formulations. To
simplify the analyses, we only consider disjunctions with a single constraint per
disjunct. However, the results directly extend to the case of multiple constraints
per disjunct by applying the same procedure to each individual constraint.

We first analyze the 1-split, as summarized in the following theorem.

Theorem 1. The 1-split formulation is equivalent to the big-M formulation.

Proof. We eliminate the disaggregated variables να
l

d from the 1-split formulation
using Fourier-Motzkin elimination. Furthermore, we eliminate trivially redun-
dant constraints, e.g., α

¯
lλd ≤ ᾱlλd, resulting in

αl ≤ blλl +
∑
d∈D\l

ᾱlλd ∀l ∈ D

n∑
i=1

hi,l(xi) ≤ αl ∀ l ∈ D∑
l∈D

λl = 1, λ ∈ {0, 1}|D|,x ∈ X ,αl ∈ R ∀ l ∈ D.

(5)

The auxiliary variables αl are removed by combining the first and second con-
straints in (5). The smallest valid big-M coefficients are M l = ᾱl − bl, which
enables us to write (5) as

n∑
i=1

hi,l(xi) ≤ bl +M l(1− λl) ∀l ∈ Dk∑
l∈D

λl = 1, λ ∈ {0, 1}|D|, x ∈ X .
(6)
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ut
Since the 1-split formulation introduces |D|2 + 1 auxiliary variables, but has
the same continuous relaxation as the big-M formulation, there are no clear
advantages of the 1-split formulation vs the big-M formulation.

We now examine the other extreme, where constraints are fully disaggregated,
i.e., the n-split. Its relation to the convex hull is given in the following theorem.

Theorem 2. If all hi,l are affine functions, then the n-split formulation (where
constraints are split for each variable) provides the convex hull of the disjunction.

Proof. In the linear case, the original disjunction is given by

∨
l∈D

[
(al)Tx ≤ bl

]
x ∈ X ,

(7)

and the n-split formulation can be written compactly as

∨
l∈D

[
Blα̃ ≤ b̃l

]
α̃ = Γx, x ∈ X , α̃ ∈ Rn×|D|.

(8)

The n-split formulation is given by the convex hull of (8) through the extended
formulation. Here, Γ defines a bijective mapping between the x and α̃ variable
spaces (only true for an n-split). A reverse mapping is given by x = Ψα̃. The
linear transformations preserve an exact representation of the feasible sets, i.e.,

Blα̃ ≤ b̃l ⇐⇒ (al)TΨα̃ ≤ b, (al)Tx ≤ bl ⇐⇒ BlΓx ≤ b̃l. (9)

For any point z in the the convex hull of (8) ∃ α̃1, α̃2, . . . α̃|D| and λ ∈ R|D|+

z =

|D|∑
l=1

λlα̃
l (10)

|D|∑
l=1

λl = 1, Blα̃l ≤ b̃l ∀ l ∈ D.

Applying the reverse mapping to (10) gives

Ψz =

|D|∑
l=1

λlΨα̃
l. (11)

By construction,
(
al
)T

Ψα̃l ≤ bl ∀l ∈ D. The point Ψz is given by a convex
combination of points that all satisfy the constraints of one of the disjuncts in
(7) and, therefore, belongs to the convex hull of (7). The same technique easily
shows that any point in the convex hull of disjunction (7) also belongs to the
convex hull of disjunction (8). ut
Theorem 2 does not hold with nonlinear functions, since the mapping may not be
bijective or a homomorphism. In general, the n-split formulation will not obtain
the convex hull of nonlinear disjunctions, as Section 2.2 shows by example, but
it can provide a strong outer approximation.
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Two-term disjunctions We further analyze the special case of a two-term
disjunction for which we also present a non-lifted P -split formulation in the
following theorem.

Theorem 3. For a two-term disjunction, the P -split formulation has the fol-
lowing non-extended realization

∑
j∈Sp

∑
i∈Ij

hi,1(xi)

 ≤
b1 − ∑

s∈S\Sp

α
¯

1
s

λ1 +
∑
s∈Sp

ᾱ1
sλ2 ∀Sp ⊂ S

∑
j∈Sp

∑
i∈Ij

hi,2(xi)

 ≤
b2 − ∑

s∈S\Sp

α
¯

2
s

λ2 +
∑
s∈Sp

ᾱ2
sλ1 ∀Sp ⊂ S

λ1 + λ2 = 1, λ ∈ {0, 1}2, x ∈ X ,

(12)

where S = {1, 2, . . . P}.

Proof. The equality constraints for the disaggregated variables (αls = ν
αl

s
1 +ν

αl
s

2 )

enable us to easily eliminate the variables ν
αl

s
1 from (P -split), resulting in

P∑
s=1

(
α1
s − ν

α1
s

2

)
≤ b1λ1 (13)

P∑
s=1

ν
α2

s
2 ≤ b2λ2 (14)

α
¯
l
sλ1 ≤ αls − ν

αl
s

2 ≤ ᾱlsλ1 ∀s ∈ {1, 2, . . . , P},∀ l ∈ {1, 2} (15)

α
¯
l
sλ2 ≤ ν

αl
s

2 ≤ ᾱlsλ2 ∀s ∈ {1, 2, . . . , P},∀ l ∈ {1, 2} (16)∑
i∈Is

hi,l(xi) ≤ αls ∀ s ∈ {1, 2, . . . , P}, ∀ l ∈ {1, 2} (17)

λ1 + λ2 = 1, λ ∈ {0, 1}2 (18)

x ∈ X ,αl ∈ RP ,να
l
s ∈ RP ∀ l ∈ {1, 2},∀ s ∈ {1, 2, . . . , P}. (19)

Next, we use Fourier-Motzkin elimination to project out the ν
α1

s
2 variables. Com-

bining the constraints in (15) and (16) only results in trivially redundant con-

straints, e.g., αls ≤ ᾱls(λ1 + λ2). Eliminating the first variable ν
α1

1
2 creates two

new constraints by combining (13) with (15)–(16). The first constraint is ob-

tained by removing ν
α1

1
2 and α1

1 from (13) and adding α
¯
1
1λ2 to the left-hand side.

The second constraint is obtained by removing ν
α1

1
2 from (13) and subtracting

ᾱ1
1λ2 from the left-hand side. Eliminating the next variable is done by repeating

the procedure of combining the two new constraints with the corresponding in-
equalities in (15)–(16). Each elimination step doubles the number of constraints
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originating from inequality (13). Eliminating all the variables ν
α1

s
2 and α1

s results
in the first set of constraints

∑
s∈Sp

α1
s ≤

b1 − ∑
s∈S\Sp

α
¯
1
s

λ1 +
∑
s∈Sp

ᾱ1
sλ2 ∀Sp ⊂ S. (20)

The variables ν
α2

s
2 and α2

s are eliminated by same steps, resulting in the second
set of constraints in (12). ut

To further analyze the tightness of different P -split relaxations we require
that the bounds on the auxiliary variables be independent, as defined below:

Definition 2. We say that the upper and lower bounds for the constraint∑n
i=1 hi(xi) ≤ 0 are independent on X if

min
x∈X

(hi(xi) + hj(xj)) = min
x∈X

hi(xi) + min
x∈X

hj(xj)

max
x∈X

(hi(xi) + hj(xj)) = max
x∈X

hi(xi) + max
x∈X

hj(xj),
(21)

hold for all i, j ∈ {1, 2, . . . n}.

Independent bounds are not restricted to linear constraints, but the most general
case of independent bounds are linear disjunctions with X defined as a box.
Independent bounds enable us to establish a strict relation on the tightness of
different P -split formulations, which is presented in the next corollary.

Corollary 1. For a two-term disjunction with independent bounds, a (P + 1)-
split formulation, obtained by splitting one variable group in the P -split, is always
as tight or tighter than the corresponding P-split formulation.

Proof. The non-extended formulation (12) for the (P + 1)-split comprises the
constraints in the P -split formulation and some additional constraints. ut

From Corollary 1 it follows that the P -split formulations represent a hierarchy
of relaxations, and we formally state this property in the following corollary.

Corollary 2. For a linear two-term disjunction the P-split formulations form
a hierarchy of relaxations, starting from the big-M relaxation (P = 1) and con-
verging to the convex hull relaxation (P = n).

Proof. Theorems 1 and 2 give equivalence to big-M and convex hull. By Corollary
1, the (P + 1)-split is as tight or tighter than the P -split relaxation. ut

2.2 Illustrative example

To see the differences between P -split formulations, consider the disjunction[∑4
i=1 x

2
i ≤ 1

]
∨
[∑4

i=1(3− xi)2 ≤ 1
]

x ∈ R4.
(ex-1)
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The tightest valid bounds on all the auxiliary variables are given by

α
¯
l
s = 0, ᾱls :=

(√
|Is| · 32 + 1

)2
∀s ∈ {1, 2, 3, 4}, ∀l ∈ {1, 2}. (22)

These bounds are derived from the fact that one of the two constraints in the
disjunction must hold, and are symmetric for the two set of α-variables. The con-
tinuously relaxed feasible sets of the P -split formulations of disjunction (ex-1) are
shown in Fig. 1, which shows that the relaxations overall tighten with increasing
number of splits P . The 4-split formulation does not give the convex hull, but
provides a good approximation. For this example, the independent bound prop-
erty does not hold and the relaxations do not form a proper hierarchy. To show
why the independent bound property is needed, we compare the non-extended
representations of the 1-split and 2-split formulations:

4∑
i=1

x2i ≤ λ1 +
(√

36 + 1
)2
λ2,

4∑
i=1

(3− xi)2 ≤ λ2 +
(√

36 + 1
)2
λ1 (1-s)

2∑
i=1

x2i ≤ λ1 +
(√

18 + 1
)2
λ2,

4∑
i=3

x2i ≤ λ1 +
(√

18 + 1
)2
λ2 (2-s1)

2∑
i=1

(3− xi)2 ≤ λ2 +
(√

18 + 1
)2
λ1,

4∑
i=3

(3− xi)2 ≤ λ2 +
(√

18 + 1
)2
λ1 (2-s2)

4∑
i=1

x2i ≤ λ1 + 2
(√

18 + 1
)2
λ2,

4∑
i=1

(3− xi)2 ≤ λ2 + 2
(√

18 + 1
)2
λ1. (2-s3)

The 1-split formulation is given by (1-s), and the 2-split by (2-s1)–(2-s3). The
2-split contains additional constraints (2-s1) and (2-s2), but (2-s3) is a weaker
version of (1-s). If the independent bound property were true, then (2-s3) and
(1-s) would be identical and the relaxations would form a proper hierarchy.

1-split/big-M
({x1, x2, x3, x4})

2-split
({x1, x2}, {x3, x4})

4-split
({x1}, {x2}, {x3}, {x4})

Fig. 1: The dark circles show the feasible set of (ex-1) in the x1, x2 space. The
light grey areas show the continuously relaxed feasible set of the P-split formu-
lations. The sets in the parentheses show the partitioning of variables.
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3 Numerical comparison

To compare how the formulations perform computationally, we apply the P -split,
big-M, and convex hull formulations to several test problems. We consider three
types of optimization problems that have a suitable structure for the P -split
formulation (assumptions 1–3) and that are known to be challenging.

K-means clustering Using the formulation by Papageorgiou and Trespalacios
[28], the K-means clustering problem [26] is given by

min
r∈RL,xj∈Rn,∀j∈K

L∑
i=1

ri

s.t. ∨
j∈K

[∥∥xj − di
∥∥2
2
≤ ri

]
∀i ∈ {1, 2, . . . , L},

(23)

where xj are the cluster centers, {di}Li=1 are n-dimensional data points, and
K = {1, 2, . . . k}. The tightest upper bound for the auxiliary variables in the P-
split formulations are given by the largest squared Euclidean distance between
any two data points in the subspace corresponding to the auxiliary variable. By
introducing auxillary variables for the differences (x − d), we can express the
convex hull of the disjunctions by rotated second order cone constraints [6] in a
form suitable for Gurobi. We use the G2 data set [27] to generate low-dimensional
test instances, and the MNIST data set [23] to generate high-dimensional test
instances. For the MNIST-based problems, we select the first images of each
class ranging from 0 to the number of clusters. Details about the problems are
presented in Table 1.

P ball problems The task is to assign p-points to n-dimensional unit balls such
that the total `1 distance between all points is minimized and only one point is
assigned to each unit ball [21]. Upper bounds on the auxiliary variables in the
P-split formulation are given by the same technique as for the M -coefficients in
[21], but in the subspace corresponding to the auxiliary variable. By introducing
auxiliary variables for the differences between the points and the centers, we are
able to express the convex hull by second order cone constraints [6] in a form
suitable for Gurobi. We have generated a few larger instances to obtain more
challenging problems and details of the problems are given in Table 1.

ReLU neural networks Optimization over a ReLU neural network (NN) is
used to quantify extreme outputs [1,8]. Each ReLU activation function (y =
max{0,wTx+ b}) can be expressed as a two-part disjunction using the P -split
formulation, by separating wTx =

∑
i∈S1∪...∪SP wixi. We sort the variables xi

by index and assign them to splits of even size. Upper bounds on node outputs
and auxiliary variables can be computed using simple interval arithmetic. We
created several instances (Table 1) that minimize the prediction of single-output
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NNs trained on the d-dimensional Ackley/Rastrigin functions. All NNs were im-
plemented in PyTorch [29] and trained for 1000 epochs, using a Latin hypercube
of 106 samples. Note that more samples may be required to accurately represent
the target functions, but here we are solely concerned with the performance of
various optimization formulations.

Table 1: Details of the clustering, P ball and neural network problems.
name data points data dimension number of clusters

Cluster g1 20 32 2
Cluster g2 25 32 2
Cluster g3 20 16 3

Cluster m1 5 784 3
Cluster m2 8 784 2
Cluster m3 10 784 2

number of balls number of points ball dimension

P ball 1 10 5 8
P ball 2 10 5 16
P ball 3 8 5 32

input dimension (d) hidden layers function

NN 1 2 [50, 50, 50] Ackley
NN 2 10 [50, 50, 50] Ackley
NN 3 3 [100, 100] Rastrigin

Computational setup Optimization performance is dependent on both the
tightness and the computational complexity of the continuous relaxation. The
default (automatic) parameter selection in Gurobi caused large variations in
the results that were due to different solution strategies rather than differences
between formulations. Therefore, we used the parameter settings MIPFocus =
3, Cuts = 1, and MIQCPMethod = 1 for all problems. We found that using
PreMIQCPForm = 2 drastically improves the performance of the extended convex
hull formulations for the clustering and P ball problems. However, it resulted
in worse performance for the other formulations and, therefore, we only used
it with the convex hull. Since the NN problems only contain linear constraints,
only the MIPFocus and Cuts parameters apply to these problems The default
values were used for all other settings. All problems were solved using Gurobi
9.0.3 on a desktop computer with an i7 8700k processor and 16GB RAM.

Different variable partitionings can lead to differences in the P -split formu-
lations. For all the problems, the variables are simply partitioned based on their
ordered indices. For the K-means clustering and P ball problems, we have used
the smallest valid M-coefficients and thight bounds for the α-variables. The K-
means clustering and P ball problems both have analytical expressions for all
the bounds. For the NN problems tight bounds are not easily obtained, and the
bounds are obtained using interval arithmetic.
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3.1 Numerical results

Table 2 shows the elapsed CPU time and number of nodes explored to solve each
problem. The results show that P -split formulations can drastically reduce the
number of explored nodes compared to the big-M formulation, even with only a
few splits. The differences are clearest for the nonlinear problems, where both the
CPU times and numbers of nodes are reduced by several orders of magnitude.
As expected, the convex hull formulation results in the fewest explored nodes.
However, the P -split formulations have a simpler1 problem formulation, reducing
the CPU times for all but one instance compared to the convex hull. The results
clearly show the advantage of the intermediate P -split formulations, resulting
in a tighter formulation than big-M and a computationally cheaper formulation
than the extended convex hull.

Note that the P -split formulations are in general robust towards the choice of
P . For the clustering and P ball problems, all P -split formulations outperformed
the big-M formulation both in terms of solution times and numbers of explored
nodes. For the cases where the smallest P -split formulations timed out, Gurobi
terminated with a much smaller gap compared to that of the big-M formulation.
The P -split formulations also outperform the convex hull formulations in terms
of solution time for a wide range of P in all but one of the test problems.

For the NN problems, which have linear disjunctions, the situation is some-
what different. Here, while increasing P still decreased the number of explored
nodes, the improvements are less significant, and the trend is not completely
monotonic. Note that bounds on the inputs to layers 2–3 are computed using in-
terval arithmetic, resulting in overall weaker relaxations for all formulations. The
weaker bounds in layers 2–3 reduce the benefits of both the P -split and convex
hull formulations, and may favor the simpler big-M formulation. As the reduc-
tion in explored nodes is less drastic, smaller formulations perform the best in
terms of CPU time, supporting claims that extended formulations may perform
worse than expected [1,39]. This may also be a consequence of Gurobi efficiently
handling linear problems when it detects big-M-type constraints. Ignoring the
big-M (1-split), the 2- and 4-splits have the lowest CPU time for all NNs, and
all the split formulations solve the problems significantly faster than the convex
hull formulation.

1 The extended convex hull formulations for the nonlinear problems require auxiliary
variables and (rotated) second order cone constraints. All P -split formulations have
fewer variables and constraints and only contain linear/convex-quadratic constraints.
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Table 2: CPU times [s] and numbers of nodes explored for test problems. In
bold is the winner for each test instance with respect to both time and number
of nodes. The grey shading shows the P -split times that strictly outperform
both the big-M and convex hull formulations. The time limit was 1800 CPU
seconds. Cells marked NA correspond to instances with fewer than P terms per
disjunction.

instance big-M 2-split 4-split 8-split 16-split 32-split convex hull

Cluster g1 time >1800 81.0 13.9 2.9 1.7 3.5 42.0
nodes >8998 2946 1096 256 98 91 73

Cluster g2 time >1800 106.3 7.7 4.3 2.1 4.5 40.6
nodes >10431 1736 481 217 104 86 77

Cluster g3 time >1800 >1800 870.6 407.2 597.5 NA >1800
nodes >28906 >40820 19307 14923 16806 >7797

P ball 1 time 403.0 235.4 285.1 18.5 NA NA 42.2
nodes 29493 7919 5518 2202 1437

P ball 2 time >1800 483.6 326.6 41.6 30.6 NA 28.2
nodes >19622 13602 5871 3921 1261 531

P ball 3 time >1800 >1800 >1800 149.3 91.1 78.7 114.0
nodes >7537 >6035 >6708 7042 3572 631 554

big-M 14-split 28-split 56-split 196-split 392-split convex hull

Cluster m1 time >1800 >1800 129.5 76.8 32.0 33.2 313.3
nodes >10680 >9651 2926 1462 524 195 228

Cluster m2 time >1800 1116.5 156.1 27.1 97.0 54.2 1260.1
nodes >4867 6220 1915 805 2752 1155 131

Cluster m3 time >1800 >1800 429.5 60.0 23.2 19.8 >1800
nodes >4419 >4197 3095 1502 741 397 >93

1-split/ 2-split 4-split 8-split 16-split 32-split 50-split/
big-M convex hull*

NN 1 time 36.1 29.4 41.8 57.0 85.7 145.1 198.5
nodes 24177 12377 11229 7415 11117 9793 11734

NN 2 time 21.6 35.5 50.7 131.4 287.3 776.1 >1800
nodes 19746 20157 14003 11174 6687 12685 >4016

NN 3 time 141.8 210.6 206.5 275.5 305.8 429.1 556.6
nodes 116996 101113 86582 84455 69022 56873 48153

*50-split is not the convex hull of each node for NN 3, which has layers of 100 nodes.

4 Conclusions

We have presented a general framework for generating intermediate relaxations
in between the big-M and convex hull. The numerical results show a great po-
tential of the intermediate relaxations, by providing a good approximation of the
convex hull through a computationally simpler problem. For several of the test
problems, the intermediate relaxations result in a similar number of explored
nodes as the convex hull formulation while reducing the total solution time by
an order of magnitude.
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10. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer programming, volume 271 of
graduate texts in mathematics (2014)

11. Conforti, M., Wolsey, L.A.: Compact formulations as a union of polyhedra. Math-
ematical Programming 114(2), 277–289 (2008)

12. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296–309 (2018)

13. Grimstad, B., Andersson, H.: ReLU networks as surrogate models in mixed-integer
linear programs. Computers & Chemical Engineering 131, 106580 (2019)

14. Grossmann, I.E., Lee, S.: Generalized convex disjunctive programming: Nonlinear
convex hull relaxation. Computational optimization and applications 26(1), 83–100
(2003)
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