University

of Glasgow

Akgiin, O., Enright, J., Jefferson, C., McCreesh, C., Prosser, P. and Zschaler, S. (2021)
Finding Subgraphs With Side Constraints. In: 18th International Conference on the
Integration of Constraint Programming, Artificial Intelligence, and Operations Research
(CPAOIR 2021), Vienna, Austria, 5-8 July 2021, pp. 348-364. ISBN 9783030782290.

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/239426/

Deposited on: 23 April 2021

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/239426/
http://eprints.gla.ac.uk/

Finding Subgraphs With Side Constraints*

1[0000—0003—4460—6912 ; : 142 [0000—0002—0266—3292
[I, Jessica Enright?l I
1[0000—0003—2979—5989)

Ozgiir Akgiin
Christopher Jefferson , Ciaran

2[0000—0002—6106—4871 : 2[0000—0003—4460—6912

McCreesh?! I, Patrick Prosser?!]

Steffen Zschaler3 [0000—0001—9062—6637]

, and

! University of St Andrews, Scotland
2 University of Glasgow, Scotland
ciaran.mccreesh@glasgow.ac.uk
3 King’s College London, England

Abstract. The subgraph isomorphism problem is to find a small “pat-
tern” graph inside a larger “target” graph. There are excellent dedicated
solvers for this problem, but they require substantial programming ef-
fort to handle the complex side constraints that often occur in practical
applications of the problem; however, general purpose constraint solvers
struggle on more difficult graph instances. We show how to combine the
state of the art Glasgow Subgraph Solver with the Minion constraint
programming solver to get a “subgraphs modulo theories” solver that is
both performant and flexible. We also show how such an approach can
be driven by the Essence high level modelling language, giving ease of
modelling and prototyping to non-expert users. We give practical exam-
ples involving temporal graphs, typed graphs from software engineering,
and costed subgraph isomorphism problems.

1 Introduction

Finding small “pattern” graphs inside larger “target” graphs is a widely ap-
plicable hard problem, with applications including compilers [5], bioinformatics
[6/16], chemistry [29], malware detection [§], pattern recognition [I7], and the
design of mechanical locks [35]. This has led to the development of numerous
dedicated algorithms, with the Glasgow Subgraph Solver [24] being the current
state of the art [33]. However, practitioners are often interested in versions of
the problem with additional restrictions, or side constraints. Some of these, such
as exact vertex labelling schemes, are trivial to include in a dedicated solver,
but others currently require either extensive programming or inefficient post-
processing. This paper explores a different approach: by allowing the Glasgow
Subgraph Solver to use the Minion constraint programming (CP) solver [19] for
side constraints, we achieve both the performance only a dedicated solver can
offer, with the flexibility of a full CP toolkit. This hybrid modelling system can
be driven by the Essence high level modelling language [I8] and the Conjure
toolchain, making it accessible to non-specialists.

* This research was supported by the Engineering and Physical Sciences Research
Council [grant number EP/P026842/1]

2 0. Akgiin et al.

1 2 3)]

pattern: .—1>.i>. H—0
1 2 3 2 4 D)
target: M—E0— @ ®—H— 0
2
i
3
u *
2 5

Fig.1. A small pattern and a larger target graph used in examples throughout this
paper. The plain text numbers are vertex names, and the shapes on vertices represent
vertex labels. The graphs to the right are type graphs, which are used in section[3.1} The
italic labels on edges are used for temporal graphs, which are discussed in section [3.2}
and should otherwise be ignored.

1.1 Preliminaries

We begin with a look at the subgraph isomorphism problem, from a high level
constraint modelling perspective. The basic non-induced subgraph isomorphism
problem is to find an injective mapping from a pattern graph to a target graph,
such that adjacent vertices in the pattern are mapped to adjacent vertices in
the target. Variations on the problem are common, and are often combined. For
example, in the induced version of the problem, non-edges must be mapped to
non-edges; in the directed version, the input graphs have directed edges whose
orientations must be preserved by the mapping; in the vertex labelled version,
each vertex has a label, and the mapping must map vertices to like-labelled
vertices; and in the edge-labelled version, edges have labels which must be pre-
served. It is also common to want to count or enumerate all solutions, rather
than deciding whether at least one solution exists. Subsets of these variations
are supported by many dedicated subgraph isomorphism algorithms, including
the Glasgow Subgraph Solver.

We can express these problems in the Essence modelling language, as follows.
We assume vertices take their labels from the set L = {1...¢} for some given
£, and edges from F = {1...e} (and so £ and / or e may be 1, for applications
that do not use labels on vertices and / or edges):

given 1, e : int
letting L be domain int(1..1)
letting E be domain int(1l..e)

We take as input a directed pattern graph which has p vertices (which we number
from 1 to p, in the set P), and a directed target graph which has ¢ vertices
(numbered from 1 to ¢, the set T'). Each graph is represented as total function
from vertices to vertex labels, and a partial function from pairs of (not necessarily
distinct) vertices to edge labels:

given p, t : int
letting P be domain int(1..p)

Finding Subgraphs With Side Constraints 3

letting T be domain int(1..t)

given pat : function (P, P) --> E
given tgt : function (T, T) --> E
given plab : function (total) P --> L
given tlab : function (total) T --> L

Now we wish to find an injective mapping f:

find f : function (total, injective) P --> T
that preserves vertex labels,

such that forAll a : P . plab(a) = tlab(f(a))
and directed edges, including their labels:

such that forAll ((a, b), 1bl) in pat
((f(a), £(b)), 1bl) in toSet(tgt)

As a simple example, the following inputs show the problem instance rep-
resented in figure |1l We have three different vertex labels (circle, square, and
diamond), and only a single edge type (which is directed; the numerical labels
on edges are not used in this section):

letting 1 be 3
letting e be 1

We may now describe the pattern:

letting p be 3
letting pat be function ((1, 2) --> 1, (2, 3) --> 1)
letting plab be function (1 --> 1, 2 --> 1, 3 --> 2)

and the target:

letting t be 5

letting tgt be functiom ((1, 3) --> 1, (3, 1) --> 1,
(2, 3) --> 1, (3, 4) --> 1, (3, 5) --> 1)

letting tlab be function (1 --> 1, 2 --> 1, 3 --> 1,
4 --> 2, 5 --> 3)

Using the Conjure tool to compile Essence to a constraint programming model
which is then solved by Minion, we find there are exactly two solutions to the
problem, as we would expect:

(1 -->1, 2 --> 3, 3 --> 4)
(1 -->2, 2 --> 3, 3 --> 4)

But what if our application requires induced isomorphisms? Then we can easily
add the constraint

such that forAll (a, b) : (P, P)
(f(a), £(b)) in defined(tgt) -> (a, b) in defined(pat)

And Conjure will now find us a single solution,

4 0. Akgiin et al.

(1 -->2, 2 --> 3, 3 --> 4)

As we will see in section [3] supporting other problem variants and constraints is
similarly straightforward, even if auxiliary variables are required. For example,
if instead we want to allow relabelling on vertex labels (which is typically not
supported by dedicated solvers), we could do the following;:

find r : function (total, injective) L --> L
such that forAll a : P . r(plab(a)) = tlab(f(a))

and we would find two additional solutions,

(1t -->1, 2 --> 3, 3 --> 5)
(1 --> 2, 2 --=> 3, 3 --> 5)

and if we removed the injective keyword for the relabelling, we would find a fifth
mapping
(1 -->2, 2 --> 3, 3 --> 1)

We return to relabelling in section |3.1

1.2 Initial Experiments and Motivation

Unfortunately, whilst elegant and flexible, the performance of this approach
leaves a lot to be desired on basic subgraph isomorphism instances. The compu-
tational experiments in this paper are performed on a cluster of machines with
dual Intel Xeon E5-2697A v4 processors and 512GBytes RAM running Ubuntu
18.04. The source code used for these experiments is released as part of the Glas-
gow Subgraph Solvelﬂ Miniorﬂ and Conjurdﬂ distributions, and we provide a
separate archive for experimental SCI‘iptSE].

For graphs, we will be using the 14,621 unlabelled, undirected instances from
Solnon’s benchmark suiteﬂ This benchmark suite was originally designed for
algorithm portfolios work [21], and brings together several collections of appli-
cation and randomly-generated instances with varying difficulties and solution
counts (including many unsatisfiable instances). Some of the instances have up
to 900 vertices and 14,420 edges in patterns and up to 6,671 vertices and 209,000
edges in targets. These lead to rather large models, by constraint programming
standards: the largest generated table constraint has nearly half a million en-
tries. However, these sizes are realistic from an applications perspective, and it
would be desirable if solvers could handle even larger target graphs.

In figure [2] we plot the cumulative number of instances solved over time for
the non-induced decision problem, comparing the high level approach to the

4 https://github.com/ciaranm/glasgow-subgraph-solver/releases/tag/cpaior
2021-finding-subgraphs-with-side-constraints

° https://github.com/minion/minion/releases/tag/1.9

S https://github.com/conjure-cp/conjure

" https://github.com/ciaranm/cpaior2021-finding-subgraphs-with-side-cons
traints

® https://perso.liris.cnrs.fr/christine.solnon/SIP.html

https://github.com/ciaranm/glasgow-subgraph-solver/releases/tag/cpaior2021-finding-subgraphs-with-side-constraints
https://github.com/ciaranm/glasgow-subgraph-solver/releases/tag/cpaior2021-finding-subgraphs-with-side-constraints
https://github.com/minion/minion/releases/tag/1.9
https://github.com/conjure-cp/conjure
https://github.com/ciaranm/cpaior2021-finding-subgraphs-with-side-constraints
https://github.com/ciaranm/cpaior2021-finding-subgraphs-with-side-constraints
https://perso.liris.cnrs.fr/christine.solnon/SIP.html

Finding Subgraphs With Side Constraints 5

14621 =
Glasgow
14000 PathLAD ~ . .

RI F
/ 100
13000 |~ Essence 105 ;
T VF2 3
g E
K] o e
9 12000 |- g 10" g
g 3 E
e E
% % 10% E
= 11000 |- / & g
_ 102
1000 F
100

0 1L H\‘ HHHH‘ HHHH‘ HHHJ HHHH‘ HHHH‘ H‘ 100 B Il \HHH‘ Il \HHH‘ Il \HHH‘ Il \HHH‘ Il \HHH‘ Il \HHH‘ L1

10° 10! 10?2 10® 10* 10° 10°1h 100 10t 102 10° 10* 10° 10°
Runtime (ms) Essence (ms)

Fig. 2. Left, the cumulative number of instances solved over time, for the non-induced
decision problem with no side constraints. Right, comparing the high level approach
with the Glasgow Subgraph Solver on an instance by instance basis; points on the outer
axes represent timeouts.

Glasgow Subgraph Solver [24] and PathLAD [21] (the two strongest CP-inspired
approaches), and to VF2 [I0] and RI [6] (simpler algorithms which perform well
on easy instances). The high level approach has very slow startup times (which
is to be expected as it involves launching a Java virtual machine and reading in
a very large table constraint), but much more worryingly, only catches up with
the worst other solver in number of instances solved as the timeout approaches.
Worse, as the scatter plot in figure [2| shows, there are almost no instances where
the high level approach does better than the Glasgow Subgraph Solver. (For
induced problems, the results are even less favourable.)

These first results motivate the remainder of this paper. We want to retain the
convenience of the high level modelling approach, and to be able to add arbitrary
side constraints to suit different applications, but we do not want to have to
abandon the performance that dedicated solvers can get on hard instances. In
section [2| we evaluate several ways of using a CP solver in conjunction with the
Glasgow Subgraph Solver, with a focus on low level implementation details. In
section |3| we then return to high level modelling, and look at the convenience it
provides for retyping typed graphs, for temporal problems, and for optimisation
problems.

2 Hybrid Solving With High-Level Modelling

Designing an effective hybrid solving system involved three major decisions: how
the high-level modelling language would identify suitable problems to hybridise,

6 O. Akgiin et al.

how the solvers would communicate, and how often this communication would
occur. The first two decisions were relatively straightforward to make, but the
third required using computational experiments to evaluate different options.
This section discusses all three of these decisions.

2.1 High-Level Modelling

We chose to use the Essence modelling language [I8] because of its support for
convenient high-level types like functions and relations, which can easily describe
graphs and related abstractions. In a conventional modelling pipeline, problems
are specified in Essence and then are converted to concrete models that can be
solved by a CP solver (in our experiments Minion) via the Conjure and Sav-
ileRow tools. We augmented Conjure with a command line option that instructs
it to generate an extra file which describes how the variables representing the
graph are represented in the SavileRow input (known as Essence’). This is used
by the graph solver so it can map between its internal state and the variables
in Essence’. SavileRow converts the graph model to Minion input, and this con-
version contains information which allows Minion to map its internal state back
to the Essence’ given to SavileRow. The graph solver and Minion then commu-
nicate mappings between the nodes and edges in the graph using the identifiers
in the Essence’ representation of the problem.

This design is based upon the notion that a CP solver and a subgraph solver
can have enough of a shared understanding of a problem to solve it co-operatively.
Indeed, the Glasgow Subgraph Solver [24] employs a CP approach to solve
subgraph-finding problems, but using special data structures and algorithms—
for example, rather than representing the adjacency constraint using an explicit
table, it uses bitset adjacency matrices [22]. The solver also exploits various
graph invariants involving degrees [36] and paths [2] to further reduce the search
space, and employs special search order heuristics [I]. From this paper’s per-
spective, the most important design aspect is that internally, the solver has a
CP style variable for each vertex in the pattern graph, whose domains range
over the vertices of the target graph. The solver performs a backtracking search
with restarts and nogood recording, attempting to assign each variable a value
from its domain, whilst respecting adjacency and injectivity constraints. At each
recursive call of search, the solver performs propagation to eliminate infeasible
values from domains. If any domain becomes empty, the solver backtracks; oth-
erwise, it selects a variable, and tries assigning it each value from its domain in
turn.

The high-level approach, then, gives us a way of setting up the subgraph
solver and a CP solver such that they both have an equivalent set of variables
and values for the graph part of the model, and tells us how to form a corre-
spondence between their internal representations. Importantly, this allows the
CP solver to have additional variables that the subgraph solver does not know
about, and we do not specifically require the CP solver to be aware of all of the
graph constraints. (Additionally, due to preprocessing, the CP solver may also
sometimes have only a subset of values for some graph variables visible to it.)

Finding Subgraphs With Side Constraints 7

2.2 When to Communicate?

Having found a way to set up the two solvers, we must next ask when they should
communicate. The simplest approach would be to use the CP solver as a solution
checker for the subgraph solver. Whenever the subgraph solver finds a solution,
it will pass it to the CP solver, which will treat the solution as a set of equality
constraints. The CP solver will then attempt to find a satisfying assignment.
If the CP solver does not have any additional variables, this is equivalent to
simply checking that the remaining constraints hold, but in general this will
require search. For a decision problem, the CP solver then communicates back
to the subgraph solver either “yes, this is a valid solution”, or “no, reject this
solution and keep going”. If we are solving a counting or enumeration problem,
the CP solver must find all solutions and communicate this back to the subgraph
solver.

For more power, but possibly also greater cost, we could additionally ask a
CP solver at every stage of search to test whether the subgraph solver is in an
obviously infeasible state. Whenever the subgraph solver has finished perform-
ing propagation, it can communicate the trail (that is, its current sequence of
guessed assignments) to the CP solver, which again treats these as additional
equality constraints. The CP solver then performs its own propagation (but not
search), and communicates back either a “yes, keep going” or a “no, backtrack
immediately”. Finally, after this testing, we could also ask the CP solver to com-
municate any deletions it infers back to the subgraph solver. In other words, the
subgraph solver would use the CP solver as an additional propagator.

Unfortunately, each of these approaches has drawbacks. The solution we will
settle upon is based upon rollbacks; we will describe this below, after presenting
experiments that demonstrate the difference between these approaches.

2.3 How to Communicate

To enable communication between the two solvers, we use FIFOs (named pipes),
and a simple text-based protocol. Both solvers are run and initialised, and then
the subgraph solver proceeds as normal, whilst the CP solver waits to be given
commands. The subgraph solver then communicates its trail or a candidate
solution as a set of assignment constraints to the CP solver. The CP solver then
sets these assignments as its state and either performs a single propagation, or
complete search, as directed. When finished the solver communicates its success
or failure state, and any deletions (if requested), back to the subgraph solver and
reverts any changes made by setting the assignments. This approach is designed
to be solver-agnostic, and adding support for different CP solvers (or non-CP
solvers) is simple, as long as they support performing a search or propagation
from a given set of assignments.

2.4 Design Experiments

We now present the results of some computational experiments. The experi-
ments in this section are designed to be hard, and to emphasise the difference

8 O. Akgiin et al.

No side constraints More odd than even
14621 — 14400 —
= Gl
C}fesc Q‘IY & llback
Rollbad] ——— (Jasgow+
14000 Propagating 14200 / Checking
Propagating
- 14000
= 13500 -
[[
2 2
& 13000 Essence S 13800
3 3
Q Q
8 12500 £ 13600 [~
7 7]
g g o
1000 T 13000 [~
Essence
500 [~ 12800 [—
0 111 HJ HHHI‘ HHHI‘ \\HHI‘ HHHH‘ HHHH‘ H‘ 12600 Il \‘ Il \HH‘ L 11 \HH‘ Il \‘
10° 10 10% 10° 10* 10° 10°1h 10t 10° 10° 1h
Runtime (ms) Runtime (ms)
Less than three odd Odd to odd, even to even
14500 — 14500 —
Glasgow+
Rollback
Glasgow+ 14400 =
Rollback - .
14000 Propagating 14300 Propagating
- b=}
£ £ 14200 |-
3 A
g 13500 Checking g 14100 -
= =1 T
8 S
E E 13700 —
Essence
13000 — 13600 [— Checking
Essence
/ 13500 |-
12500 bl el] 13400 P ST Y AT
10 10° 10° 1h 10 10° 10° 1h
Runtime (ms) Runtime (ms)

Fig. 3. Comparing different approaches to hybrid solving, showing the cumulative num-
ber of instances solved over time. On the top row, “no side constraints” then with the
“more odd target vertices than even target vertices” side constraint; on the bottom
row, the “mostly odd target vertices” side constraint on the left, and the “odd to odd,
even to even” side constraint on the right. In the top left plot, the “Checking” and
“Rollback” lines are indistinguishable. The Glasgow+ lines show the Glasgow Subgraph
Solver with manually-implemented side constraints.

Finding Subgraphs With Side Constraints 9

between the approaches, rather than to be realistic. We will continue to work
with Solnon’s non-induced subgraph isomorphism benchmark instances, but will
consider four variations. Firstly, we will consider the problem with no side con-
straints. This is, in some sense, the worst case scenario, where we must pay the
full price of hybrid solving, but cannot get any benefit from it. Secondly, let us
say that the number of odd-indexed target vertices used must be greater than
the number of even target vertices used:

such that (sum i : P . f(i) % 2) >
(sum i : P . (£(i) + 1) % 2)

Thirdly, let us instead say that fewer than three odd target vertices may be used:
such that (sum i : P . f£(i) % 2) < 3

And fourthly, let us say that even pattern vertices must be mapped to even
target vertices, and odd pattern vertices to odd target vertices:

such that forAll a : P . (a % 2) = (f(a) % 2)

We chose these problems because the second is likely not to be able to perform
inference until deep in a search tree (when most pattern vertices are mapped to
specific target vertices), the third is likely to be able to perform inference early
in the search tree (after a few assignments have been made, but not at the root
node), and the fourth should propagate only at the root node.

The results of these experiments are presented in figure [3| Let us first look
at the top left plot, where we do not actually have any side constraints. When
calling the CP solver as a solution checker, we ultimately achieve the same per-
formance as the Glasgow Subgraph SolveIEl7 although we can pay a substantial
startup overhead. This should not be surprising: with no side constraints, the
subgraph solver runs as normal, and will perform just one call to the CP solver
on satisfiable instances. The propagating approach is over an order of magnitude
slower: calling the CP solver at every search node is clearly very expensive. (We
also tried calling the CP solver to test feasibility, without communicating dele-
tions; this made no noticeable difference to performance, and so is not pictured.)
Finally, all approaches substantially outperform using a CP solver on its own
without help from the subgraph solver.

What about the remaining three plots in figure [3] where we do have side
constraints? As we hoped, we see differences between the three plots. On the top
right, where we expect the side constraints to fire late, solution checking clearly
beats propagation during search. However, on the bottom left, where we expect
side constraints to fire early, the propagating approach is much better than solu-
tion checking. Meanwhile, on the bottom right, where our constraints fire only at
the root node, checking performs extremely poorly compared to propagating. In
each case, any hybrid approach using the subgraph solver remains much better
than a pure CP approach, except that in bottom right plot checking is slightly
worse than just using the CP solver on its own.

9 Actually, because high level modelling can use different names for variables and val-
ues, we get slight differences due to changes to tiebreaking in search order heuristics.

10 0. Akgiin et al.

As a point of comparison, we also implemented these three sets of side con-
straints natively inside the Glasgow solver: we label these as Glasgow+. For the
“more odd than even” case, we did this through solution checking; for “less than
three odd” we implemented checking during search; and for “odd to odd, even to
even” we implemented initial domain filtering. Our implementation choices here
are intended to reflect what a reasonable programmer would do if the high level
approach were not available (and we intentionally selected side constraints that
would not be too difficult to implement). In two of the three cases, the hand-
crafted code does somewhat outperform the hybrid solving, but in the “more odd
than even” case, hybrid solving actually beats the hand-crafted dedicated solver
implementation when using the rollback approach, which we now describe.

2.5 A Rollback Approach to Communication

From what we have seen so far, it is obviously important to call the CP solver
some of the time during search, but too expensive to call it all of the time. We
will therefore introduce a new approach, which we call rollback. This approach
is inspired by backjumping [27], as well as by the conflict analysis methods used
in SAT and SMT solvers [32] and in lazy clause generating CP solvers [25]34].
The idea is as follows. Firstly, we call the CP solver with full propagation at
the root node, in case we are dealing with a particularly rich labelling scheme.
Secondly, we use the CP solver for solution checking, since this is required for
correctness. Now, suppose the CP solver rejects a candidate solution: this will
cause the subgraph solver to backtrack. At this point, we call the CP solver
again, with full propagation. Either the CP solver indicates feasibility, in which
case we proceed with search (potentially with a reduced set of domains), or the
CP solver indicates failure, in which case we backtrack again, and do another
attempt at full propagation, and so on until feasibility is reached.

The idea behind this approach is to avoid calling the CP solver when it is
unlikely to do anything useful, but that once a failure has been encountered, we
want to extract as much information as we can from the CP solver. If the failure
encountered was due to a “local” property of the solution, such as in the “more
odd than even” example, then we will quickly return to just using the subgraph
solver for search. However, if the failure is due to only a few early assignments,
as in the “fewer than three odd vertices” example, then we will jump back to
nearly the root of the search tree.

The results in figure [3| demonstrate the success of this approach. When there
are no side constraints, this approach has no overheads compared to solution
checking. When constraints fire late, this approach is better than solution check-
ing, and when constraints fire early, this approach is better than always prop-
agating during search. In other words, rolling back from failures gives us all of
the strengths and none of the weaknesses of the simpler approaches. We will
therefore use this method for the remainder of the paper.

Finding Subgraphs With Side Constraints 11

3 Subgraph Problems with Side Constraints

We now look at three classes of real-world subgraph-finding problems that, until
now, have been solved using dedicated approaches. We show how easy it is to
model these problems in Essence, demonstrating the usefulness of the high-level
modelling approach for prototyping and development.

3.1 Retyping Problems

The basic notion of a graph conveys only adjacency information, and a subgraph
isomorphism simply finds a certain structural pattern. In practice, this is often
augmented with additional information—for example, we have seen how labels
can be associated with vertices and edges, which can be used in chemical ap-
plications to represent different kinds of atom or bond. In this case, subgraph
isomorphisms are also expected to preserve labels, so carbon atoms can only be
mapped to carbon atoms, and double bonds must be mapped to double bonds.
A richer labelling abstraction comes in the form of typed graphs, where the labels
themselves also carry a graph structure [15]; we show an example in figure 1| In
practice this labelling structure is specified by providing two graphs, together
with a morphism from the main graph to its type graph.

For typed graphs, morphisms between the graphs are typically defined be-
tween graphs typed over the same type graph, but there are situations where
we are interested in mapping between graphs typed over different type graphs.
One such scenario from a software engineering context is described by Duran et
al. [I312], where graph transformation systems are composed by defining mor-
phisms between the rules constituting the respective transformation systems. In
this case, the source and target transformation systems will normally have dif-
ferent type graphs; a morphism must also be established between the two type
graphs. Mappings between the various graphs making up the rules then need
to preserve structure and typing subject to the morphism between type graphs.
This approach to specification composition is implemented by the GTSMorpher
toolH A key objective is to minimise the amount of specification that needs
to be written. For example, the tool allows morphisms between graph transfor-
mation systems to be only partially specified and then automatically completes
the full morphism, if it can do so unambiguously—this requires solving a sub-
isomorphism problem.

We may describe typed graph subisomorphism problems in Essence as fol-
lows. As before, we are given a pattern graph and a target graph, both of which
carry labels; we will draw the vertex labels from different sets, to emphasise the
relabelling.

given pl, tl, e : int

letting PL be domain int(1..pl)
letting TL be domain int (1..tl)
letting E be domain int(1l..e)

10 https://github.com/gts-morpher/gts_morpher

https://github.com/gts-morpher/gts_morpher

12 0. Akgiin et al.

We are also given labelled graphs,
given p, t : int

letting P be domain int(1l..p)
letting T be domain int(1l..t)

given pat : function (P, P) --> E
given tgt : function (T, T) --> E
given plab : function (total) P --> PL
given tlab : function (total) T --> TL

but now the labels also carry a graph structure,

given pattype : function (PL, PL) --> E
given tgttype : function (TL, TL) --> E

We are looking for an injective mapping from the pattern graph to the target
graph,

find £ : function
(total, injective) P --> T

as well as an injective mapping between the label graphs,

find r : function
(total, injective) PL --> TL

in such a way that graph structure and labels are preserved,

such that forAll ((a, b), 1bl) in pat
((f(a), £(b)), 1bl) in toSet(tgt)
such that forAll a : P
r(plab(a)) = tlab(f(a))

and also requiring that the structure on the labels is preserved,

such that forAll (a,b) in defined(pattype)
pattype((a,b)) = tgttype((r(a),r(b)))

Consider again the example in figure [I} and now suppose they are equipped
with the type structures shown to the right of each graph,

letting pattype be function (

(1, 1) --> 1, (1, 2) --> 1, (2, 1) --> 1)
letting tgttype be function (

1, 1) -->1, (1, 2) --> 1,

(1, 3 --> 1, (3, 1) --> 1)

We now find two solutions:

(1t -->1, 2 --> 3, 3 --> 5)
(1 --> 2, 2 --> 3, 3 --> 5)

because we can map pattern vertex 3 to target vertex 5 through retyping, but
mapping pattern vertex 3 to target vertex 4 would not respect the type graph
structure.

Finding Subgraphs With Side Constraints 13

More generally, the field of model-driven software engineering includes nu-
merous examples of using search and optimisation techniques to generate or
transform graphs [7]. Existing approaches largely make use of ad-hoc [31] and
metaheuristic methods [T4/4[9], but we believe that with the help of suitably
accessible high-level modelling tools, this could become a fruitful area for con-
straint programming research in the future.

3.2 Temporal Subgraph Problems

Another labelling scheme is used in temporal graphs, where edges are labelled
with timestamps that denote times when edges are active—here we use integers
as timestamps. Including information on the timing of edges substantially in-
creases the modelling power of these graphs, allowing them to more accurately
reflect the structure and dynamics of a wide variety of real-world systems (e.g.
trade networks, changing contact networks, transport networks), and address
optimisation questions in which the timing of edges is fundamental.

As algorithms and formalisms have become available for temporal graphs,
examples of their application have become widespread [20], notably including
applications within epidemiology [3] and computational social science [30]. Be-
cause the use of temporal graphs has spread beyond theoretical researchers, the
ability to rapidly define and experiment with new problem definitions and con-
straints is valuable—practitioners are unlikely to define bespoke algorithms for
novel problems as they arise.

There are at least three common kinds of temporal subgraph isomorphism.
In an ezact subisomorphism, times are simply labels that must match exactly.
If we look at figure [I, now ignoring vertex labels but using the edge labels to
carry the timestamps,

letting 1 be 1
letting e be 3

letting p be 3
letting pat be function ((1, 2) --> 1, (2, 3) --> 2)
letting plab be function (1 --> 1, 2 --> 1, 3 --> 1)

letting t be 5

letting tgt be function ((1, 3) --> 2, (3, 1) --> 2,
(2, 3) --> 1, (3, 4) --> 2, (3, 5) --> 3)

letting tlab be function (1 --> 1, 2 --> 1, 3 --> 1,
4 --> 1, 5 --> 1)

then there are two solutions,

(1 -->2, 2 --> 3, 3 --> 1)
(1 -->2, 2 --> 3, 3 --> 4)

A less strict kind of subisomorphism is an offset, where edge labels must
match exactly, but offset by an integer constant. In our example, this means
“find a mapping where the event from 2 to 3 occurs one time unit after the
event from 1 and 2”. We can model this as follows:

14 0. Akgiin et al.

find o : int(-e..e)
such that forAll (a,b) in defined(pat)
pat((a,b)) = o + tgt((f(a), £(b)))

and we find one additional solution,
(1L -->1, 2 --> 3, 3 --> 5)

Finally, in an order embedding, the pattern edge labels simply define an
order on events. We can model this as follows:

find o : function (total) E --> E
such that forAll x : int(l..e - 1) . o(x) <= o(x + 1)
such that forAll (a,b) in defined(pat)

pat((a,b)) = o(tgt((f(a), £(b))))

which gets us yet another solution,
(1 -->2, 2 --> 3, 3 --> 5)

Of course, when using a high level modelling approach, we are not restricted
to these three problem variants, and could easily try out new models in an
interactive setting. For example, it would take only a few minutes to write a
model for a temporal problem where all edges must occur within a short but
unspecified time period [28], whereas adapting a dedicated solver to check this
constraint would be a substantial programming effort (and making the solver
propagate rather than check this constraint would be even harder).

3.3 Subgraph Isomorphism With Costs

The system we created also support optimisation problems (and does not require
that the subgraph isomorphism solver be aware that this is what is going on).
If, for example, each target vertex has a cost associated with it,

given tcost : function (total) T --> int
then we can ask to find the cheapest solution,
minimising sum([tcost(f(a)) | a : PI1)

We could also just as easily ask for the solution whose most expensive edge
is cheapest, or that uses fewest vertices with a particular label. These kinds of
problem occur widely in practice, including in skyline graph queries [26], labelled
subgraph finding [11], and weighted clique problems [23].

4 Conclusion

The system we have presented shows that it is possible to combine the power
of modern subgraph solvers with the flexibility of a general purpose constraint
programming toolkit, although doing so efficiently requires careful consideration
of how frequently the solvers communicate. We believe further research in this

Finding Subgraphs With Side Constraints 15

direction may be useful—for example, would it be possible to make use of some
kind of conflict analysis rather than a backjumping approach?

When driven by a high level modelling approach, this system is particularly
suitable for rapid prototyping and for dynamic queries where side constraints can
be specified in response to user need. However, the high level modelling approach
does come with a large startup cost, which makes it unsuitable for deployment in
application contexts that involve solving many thousands of problem instances
in real-time. Fortunately though, connecting the low level solvers manually is
also an option once a design has been decided upon. We also expect that new
approaches may be necessary to deal with the huge but sparse graphs that arise
in some applications, since table constraints and conventional CP domain stores
both struggle when moving beyond ten thousand of vertices in target graphs.

References

1. Archibald, B., Dunlop, F., Hoffmann, R., McCreesh, C., Prosser, P., Trimble, J.: Se-
quential and parallel solution-biased search for subgraph algorithms. In: Rousseau,
L., Stergiou, K. (eds.) Integration of Constraint Programming, Artificial Intelli-
gence, and Operations Research - 16th International Conference, CPAIOR 2019,
Thessaloniki, Greece, June 4-7, 2019, Proceedings. Lecture Notes in Computer
Science, vol. 11494, pp. 20-38. Springer (2019). https://doi.org/10.1007 /978-3-030-
19212-9_2

2. Audemard, G., Lecoutre, C., Modeliar, M.S., Goncalves, G., Porumbel, D.C.:
Scoring-based neighborhood dominance for the subgraph isomorphism problem.
In: O’Sullivan, B. (ed.) Principles and Practice of Constraint Programming - 20th
International Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8656, pp. 125-141. Springer (2014).
https://doi.org/10.1007/978-3-319-10428-7_12

3. Bansal, S., Read, J., Pourbohloul, B., Meyers, L.A.: The dynamic nature of contact
networks in infectious disease epidemiology. Journal of biological dynamics 4(5),
478-489 (2010)

4. Bill, R., Fleck, M., Troya, J., Mayerhofer, T., Wimmer, M.: A local and
global tour on MOMoT. Softw. Syst. Model. 18(2), 1017-1046 (2019).
https://doi.org/10.1007/s10270-017-0644-3

5. Blindell, G.H., Lozano, R.C., Carlsson, M., Schulte, C.: Modeling universal in-
struction selection. In: Pesant, G. (ed.) Principles and Practice of Constraint Pro-
gramming - 21st International Conference, CP 2015, Cork, Ireland, August 31 -
September 4, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9255,
pp. 609-626. Springer (2015). https://doi.org/10.1007/978-3-319-23219-5_42

6. Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D.E., Ferro, A.: A subgraph iso-
morphism algorithm and its application to biochemical data. BMC Bioinformatics
14(S-7), S13 (2013)

7. Boussaid, I., Siarry, P., Ahmed-Nacer, M.: A survey on search-based
model-driven engineering. Autom. Softw. Eng. 24(2), 233-294 (2017).
https://doi.org/10.1007/s10515-017-0215-4

8. Bruschi, D., Martignoni, L., Monga, M.: Detecting self-mutating malware us-
ing control-flow graph matching. In: Biischkes, R., Laskov, P. (eds.) Detec-
tion of Intrusions and Malware & Vulnerability Assessment, Third Interna-

https://doi.org/10.1007/978-3-030-19212-9_2
https://doi.org/10.1007/978-3-030-19212-9_2
https://doi.org/10.1007/978-3-319-10428-7_12
https://doi.org/10.1007/s10270-017-0644-3
https://doi.org/10.1007/978-3-319-23219-5_42
https://doi.org/10.1007/s10515-017-0215-4

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

0. Akgiin et al.

tional Conference, DIMVA 2006, Berlin, Germany, July 13-14, 2006, Proceed-
ings. Lecture Notes in Computer Science, vol. 4064, pp. 129-143. Springer (2006).
https://doi.org/10.1007/11790754_8
. Burdusel, A., Zschaler, S., John, S.: Automatic generation of atomic consistency
preserving search operators for search-based model engineering. In: Kessentini, M.,
Yue, T., Pretschner, A., Voss, S., Burgueno, L. (eds.) 22nd ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems, MOD-
ELS 2019, Munich, Germany, September 15-20, 2019. pp. 106-116. IEEE (2019).
https://doi.org/10.1109/MODELS.2019.00-10
Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algo-
rithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10),
1367-1372 (2004)
Dell’Olmo, P., Cerulli, R., Carrabs, F.: The maximum labeled clique problem. In:
Adacher, L., Flamini, M., Leo, G., Nicosia, G., Pacifici, A., Piccialli, V. (eds.)
Proceedings of the 10th Cologne-Twente Workshop on graphs and combinatorial
optimization. Extended Abstracts, Villa Mondragone, Frascati, Italy, June 14-16,
2011. pp. 146-149 (2011)
Durdn, F., Moreno-Delgado, A., Orejas, F., Zschaler, S.: Amalgama-
tion of domain specific languages with behaviour. Journal of Logi-
cal and Algebraic Methods in Programming 86, 208-235 (Jan 2017).
https://doi.org/10.1016/j.jlamp.2015.09.005
Duran, F., Zschaler, S., Troya, J.: On the reusable specification of non-functional
properties in DSLs. In: Czarnecki, K., Hedin, G. (eds.) Proc. 5th Int’l Conf. on
Software Language Engineering (SLE’12). LNCS, vol. 7745, pp. 332-351. Springer
2013
](Efstat)hiou, D., Williams, J.R., Zschaler, S.: Crepe Complete: Multi-objective op-
timization for your models. In: Paige, R.F., Kessentini, M., Langer, P., Wimmer,
M. (eds.) Proceedings of the First International Workshop on Combining Mod-
elling with Search- and Example-Based Approaches co-located with 17th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MOD-
ELS 2014), Valencia, Spain, September 28, 2014. CEUR Workshop Proceedings,
vol. 1340, pp. 25-34. CEUR-WS.org (2014)
Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series,
Springer (2006). https://doi.org/10.1007/3-540-31188-2
Elhesha, R., Sarkar, A., Kahveci, T.: Motifs in biological networks. In: Yoon, B.J.,
Qian, X. (eds.) Recent Advances in Biological Network Analysis: Comparative Net-
work Analysis and Network Module Detection, pp. 101-123. Springer International
Publishing, Cham (2021). |https://doi.org/10.1007/978-3-030-57173-3_5
Foggia, P., Percannella, G., Vento, M.: Graph matching and learn-
ing in pattern recognition in the last 10 years. IJPRAI 28(1) (2014).
https://doi.org/10.1142/50218001414500013
Frisch, A.M., Harvey, W., Jefferson, C., Herndndez, B.M., Miguel, I.: Essence : A
constraint language for specifying combinatorial problems. Constraints An Int. J.
13(3), 268-306 (2008). |https://doi.org/10.1007/s10601-008-9047-y
Gent, L.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:
Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI 2006, 17th Eu-
ropean Conference on Artificial Intelligence, August 29 - September 1, 2006, Riva
del Garda, Italy, Including Prestigious Applications of Intelligent Systems (PAIS
2006), Proceedings. Frontiers in Artificial Intelligence and Applications, vol. 141,
pp. 98-102. IOS Press (2006)

https://doi.org/10.1007/11790754_8
https://doi.org/10.1109/MODELS.2019.00-10
https://doi.org/10.1016/j.jlamp.2015.09.005
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-030-57173-3_5
https://doi.org/10.1142/S0218001414500013
https://doi.org/10.1007/s10601-008-9047-y

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Finding Subgraphs With Side Constraints 17

Holme, P., Saramiki, J.: Temporal networks. Physics Reports 519(3), 97 — 125
(2012). |https://doi.org/https://doi.org/10.1016/].physrep.2012.03.001

Kotthoff, L., McCreesh, C., Solnon, C.: Portfolios of subgraph isomorphism algo-
rithms. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) Learning and Intelligent
Optimization - 10th International Conference, LION 10, Ischia, Italy, May 29 -
June 1, 2016, Revised Selected Papers. Lecture Notes in Computer Science, vol.
10079, pp. 107-122. Springer (2016). https://doi.org/10.1007/978-3-319-50349-3_8
McCreesh, C., Prosser, P.: A parallel, backjumping subgraph isomorphism algo-
rithm using supplemental graphs. In: Pesant, G. (ed.) Principles and Practice of
Constraint Programming - 21st International Conference, CP 2015, Cork, Ireland,
August 31 - September 4, 2015, Proceedings. Lecture Notes in Computer Science,
vol. 9255, pp. 295-312. Springer (2015). https://doi.org/10.1007/978-3-319-23219-
5 21

McCreesh, C., Prosser, P., Simpson, K.A., Trimble, J.: On maximum weight
clique algorithms, and how they are evaluated. In: Beck, J.C. (ed.) Principles
and Practice of Constraint Programming - 23rd International Conference, CP
2017, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings.
Lecture Notes in Computer Science, vol. 10416, pp. 206-225. Springer (2017).
https://doi.org/10.1007/978-3-319-66158-2_14

McCreesh, C., Prosser, P., Trimble, J.: The Glasgow subgraph solver: Using con-
straint programming to tackle hard subgraph isomorphism problem variants. In:
Gadducci, F., Kehrer, T. (eds.) Graph Transformation - 13th International Confer-
ence, ICGT 2020, Held as Part of STAF 2020, Bergen, Norway, June 25-26, 2020,
Proceedings. Lecture Notes in Computer Science, vol. 12150, pp. 316-324. Springer
(2020). https://doi.org/10.1007/978-3-030-51372-6_19

Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = lazy clause generation.
In: Bessiere, C. (ed.) Principles and Practice of Constraint Programming - CP 2007,
13th International Conference, CP 2007, Providence, RI, USA, September 23-27,
2007, Proceedings. Lecture Notes in Computer Science, vol. 4741, pp. 544-558.
Springer (2007). https://doi.org/10.1007/978-3-540-74970-7_39

Pande, S., Ranu, S., Bhattacharya, A.: Skygraph: Retrieving regions of interest
using skyline subgraph queries. Proc. VLDB Endow. 10(11), 1382-1393 (2017).
https://doi.org/10.14778/3137628.3137647

Prosser, P.: Hybrid algorithms for the constraint satisfaction problem. Comput.
Intell. 9, 268-299 (1993). https://doi.org/10.1111/j.1467-8640.1993.tb00310.x
Redmond, U., Cunningham, P.: Temporal subgraph isomorphism. In: Rokne, J.G.,
Faloutsos, C. (eds.) Advances in Social Networks Analysis and Mining 2013,
ASONAM 13, Niagara, ON, Canada - August 25 - 29, 2013. pp. 1451-1452. ACM
(2013). https://doi.org/10.1145/2492517.2492586

Régin, J.: Développement d’outils algorithmiques pour I'Intelligence Artificielle.
Application a la chimie organique. Ph.D. thesis, Université Montpellier 2 (1995)
Sekara, V., Stopczynski, A., Lehmann, S.: Fundamental structures of dynamic
social networks. Proceedings of the national academy of sciences 113(36), 9977
9982 (2016)

Semerath, O., Nagy, A.S., Varrd, D.: A graph solver for the automated generation
of consistent domain-specific models. In: Chaudron, M., Crnkovic, 1., Chechik, M.,
Harman, M. (eds.) Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018. pp. 969—
980. ACM (2018). https://doi.org/10.1145/3180155.3180186

https://doi.org/https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1007/978-3-319-50349-3_8
https://doi.org/10.1007/978-3-319-23219-5_21
https://doi.org/10.1007/978-3-319-23219-5_21
https://doi.org/10.1007/978-3-319-66158-2_14
https://doi.org/10.1007/978-3-030-51372-6_19
https://doi.org/10.1007/978-3-540-74970-7_39
https://doi.org/10.14778/3137628.3137647
https://doi.org/10.1111/j.1467-8640.1993.tb00310.x
https://doi.org/10.1145/2492517.2492586
https://doi.org/10.1145/3180155.3180186

18

32.

33.

34.

35.

36.

0. Akgiin et al.

Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: Rutenbar, R.A., Otten, R.H.J.M. (eds.) Proceedings of the 1996 IEEE/ACM
International Conference on Computer-Aided Design, I[CCAD 1996, San Jose, CA,
USA, November 10-14, 1996. pp. 220-227. IEEE Computer Society / ACM (1996).
https://doi.org/10.1109/ICCAD.1996.569607

Solnon, C.: Experimental evaluation of subgraph isomorphism solvers. In: Conte,
D., Ramel, J., Foggia, P. (eds.) Graph-Based Representations in Pattern Recog-
nition - 12th TAPR-TC-15 International Workshop, GbRPR 2019, Tours, France,
June 19-21, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11510, pp.
1-13. Springer (2019). https://doi.org/10.1007/978-3-030-20081-7_1

Stuckey, P.J.: Lazy clause generation: Combining the power of SAT and CP (and
MIP?) solving. In: Lodi, A., Milano, M., Toth, P. (eds.) Integration of AT and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems,
7th International Conference, CPAIOR 2010, Bologna, Italy, June 14-18, 2010. Pro-
ceedings. Lecture Notes in Computer Science, vol. 6140, pp. 5-9. Springer (2010).
https://doi.org/10.1007/978-3-642-13520-0_3

Vomel, C., de Lorenzi, F., Beer, S., Fuchs, E.: The secret life of keys: On the
calculation of mechanical lock systems. SIAM Review 59(2), 393-422 (2017).
https://doi.org/10.1137/15M 1030054

Zampelli, S., Deville, Y., Solnon, C.: Solving subgraph isomorphism problems with
constraint programming. Constraints 15(3), 327-353 (2010)

https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1007/978-3-030-20081-7_1
https://doi.org/10.1007/978-3-642-13520-0_3
https://doi.org/10.1137/15M1030054

	Finding Subgraphs With Side Constraints

