Skip to main content

Optimized Item Selection to Boost Exploration for Recommender Systems

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2021)

Abstract

Recommender Systems have become the backbone of personalized services that provide tailored experiences to individual users. Still, data sparsity remains a common challenging problem, especially for new applications where training data is limited or not available. In this paper, we formalize a combinatorial problem that is concerned with selecting the universe of items for experimentation with recommender systems. On one hand, a large set of items is desirable to increase the diversity of items. On the other hand, a smaller set of items enable rapid experimentation and minimize the time and the amount of data required to train machine learning models. We show how to optimize for such conflicting criteria using a multi-level optimization framework. Our approach integrates techniques from discrete optimization, unsupervised clustering, and latent text embeddings. Experimental results on well-known movie and book recommendation benchmarks demonstrate the benefits of optimized item selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Thanks to our anonymous reviewer for this suggestion.

References

  1. Beasley, J.E.: An algorithm for set covering problem. Eur. J. Oper. Res. 31(1), 85–93 (1987)

    Article  MathSciNet  Google Scholar 

  2. Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)

    Google Scholar 

  3. Caruana, R., Munson, A., Niculescu-Mizil, A.: Getting the most out of ensemble selection. In: Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006), Hong Kong, China, 18–22 December 2006, pp. 828–833. IEEE Computer Society (2006)

    Google Scholar 

  4. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from libraries of models. In: Brodley, C.E. (ed.) Machine Learning, Proceedings of the Twenty-first International Conference (ICML 2004), Banff, Alberta, Canada, 4–8 July 2004. ACM International Conference Proceeding Series, vol. 69. ACM (2004)

    Google Scholar 

  5. Cheng, H., et al.: Wide & deep learning for recommender systems. In: Karatzoglou, A., et al. (eds.) Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, DLRS@RecSys 2016, Boston, MA, USA, 15 September 2016, pp. 7–10. ACM (2016)

    Google Scholar 

  6. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Academic Press, Cambridge (2013)

    Book  Google Scholar 

  7. Covington, P., Adams, J., Sargin, E.: Deep neural networks for Youtube recommendations. In: Sen, S., Geyer, W., Freyne, J., Castells, P. (eds.) Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016, pp. 191–198. ACM (2016)

    Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  9. Goldberg, D., Nichols, D.A., Oki, B.M., Terry, D.B.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)

    Article  Google Scholar 

  10. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. In: Bauer, F.L. (ed.) Linear Algebra, Handbook for Automatic Computation. HDBKAUCO, vol. 2, pp. 134–151. Springer, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10

    Chapter  Google Scholar 

  11. Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vectors for 157 languages. In: Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018) (2018)

    Google Scholar 

  12. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR prediction. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 1725–1731. ijcai.org (2017)

    Google Scholar 

  13. Hansen, C., et al.: Contextual and sequential user embeddings for large-scale music recommendation. In: Santos, R.L.T., et al. (eds.) RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, 22–26 September 2020, pp. 53–62. ACM (2020)

    Google Scholar 

  14. Harper, F., Konstan, J.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 1–19 (2015)

    Article  Google Scholar 

  15. Hooker, J.N.: Integrated Methods for Optimization. International Series in Operations Research and Management Science, vol. 100. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-38274-6

    Book  MATH  Google Scholar 

  16. Forrester, J., et al.: coin-or/Cbc: Version 2.10.5, March 2020

    Google Scholar 

  17. Jones, K.S.: A statistical interpretation of term specificity and its application in retrieval. J. Document. 28, 11–21 (1972)

    Article  Google Scholar 

  18. Kilitcioglu, D., Kadioglu, S.: Representing the unification of text featurization using a context-free grammar. In: Proceedings of the AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  19. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  20. Lake, T., Williamson, S.A., Hawk, A.T., Johnson, C.C., Wing, B.P.: Large-scale collaborative filtering with product embeddings. CoRR abs/1901.04321 (2019)

    Google Scholar 

  21. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)

    Google Scholar 

  22. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2001)

    Google Scholar 

  23. Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_3

    Chapter  Google Scholar 

  24. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  25. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

  26. Mehrotra, R., Shah, C., Carterette, B.A.: Investigating listeners’ responses to divergent recommendations. In: Santos, R.L.T., et al. (eds.) RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, 22–26 September 2020, pp. 692–696. ACM (2020)

    Google Scholar 

  27. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  28. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  29. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  30. Quadrana, M., Karatzoglou, A., Hidasi, B., Cremonesi, P.: Personalizing session-based recommendations with hierarchical recurrent neural networks. In: Cremonesi, P., Ricci, F., Berkovsky, S., Tuzhilin, A. (eds.) Proceedings of the Eleventh ACM Conference on Recommender Systems, RecSys 2017, Como, Italy, 27–31 August 2017, pp. 130–137. ACM (2017)

    Google Scholar 

  31. Rendle, S.: Factorization machines. In: Webb, G.I., Liu, B., Zhang, C., Gunopulos, D., Wu, X. (eds.) ICDM 2010, The 10th IEEE International Conference on Data Mining, Sydney, Australia, 14–17 December 2010, pp. 995–1000. IEEE Computer Society (2010)

    Google Scholar 

  32. Ricci, F., Rokach, L., Shapira, B. (eds.): Recommender Systems Handbook. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6

    Book  MATH  Google Scholar 

  33. Ryan, T.P., Morgan, J.: Modern experimental design. J. Stat. Theory Pract. 1(3–4), 501–506 (2007)

    Article  Google Scholar 

  34. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 3–6 December 2007, pp. 1257–1264. Curran Associates, Inc. (2007)

    Google Scholar 

  35. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1715–1725. Association for Computational Linguistics, Berlin, Germany, August 2016

    Google Scholar 

  36. Strong, E., Kleynhans, B., Kadioglu, S.: MABWiser: a parallelizable contextual multi-armed bandit library for Python. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI 2019), pp. 885–890. IEEE (2019). https://github.com/fidelity/mabwiser

  37. Thompson, W.R.: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25, 285–294 (1933)

    Article  Google Scholar 

  38. Toffolo, T.A.M., Santos, H.G.: Python-MIP: Version 1.9.1. https://www.python-mip.com/

  39. Valko, M., Korda, N., Munos, R., Flaounas, I., Cristianini, N.: Finite-time analysis of kernelised contextual bandits. In: Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, pp. 654–663 (2013)

    Google Scholar 

  40. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04565-7

    Book  MATH  Google Scholar 

  41. Wan, M., McAuley, J.J.: Item recommendation on monotonic behavior chains. In: Pera, S., Ekstrand, M.D., Amatriain, X., O’Donovan, J. (eds.) Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC, Canada, 2–7 October 2018, pp. 86–94. ACM (2018)

    Google Scholar 

  42. Wan, M., Misra, R., Nakashole, N., McAuley, J.J.: Fine-grained spoiler detection from large-scale review corpora. In: Korhonen, A., Traum, D.R., Màrquez, L. (eds.) Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, 28 July–2 August 2019, Volume 1: Long Papers, pp. 2605–2610. Association for Computational Linguistics (2019)

    Google Scholar 

  43. Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions. CoRR abs/1708.05123 (2017)

    Google Scholar 

  44. Wu, C., Alvino, C.V., Smola, A.J., Basilico, J.: Using navigation to improve recommendations in real-time. In: Sen, S., Geyer, W., Freyne, J., Castells, P. (eds.) Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016, pp. 341–348. ACM (2016)

    Google Scholar 

  45. Zhang, S., Yao, L., Sun, A.: Deep learning based recommender system: a survey and new perspectives. CoRR abs/1707.07435 (2017)

    Google Scholar 

  46. Zhao, L., Pan, S.J., Xiang, E.W., Zhong, E., Lu, Z., Yang, Q.: Active transfer learning for cross-system recommendation. In: DesJardins, M., Littman, M.L. (eds.) Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, Bellevue, Washington, USA, 14–18 July 2013. AAAI Press (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Kleynhans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kadıoğlu, S., Kleynhans, B., Wang, X. (2021). Optimized Item Selection to Boost Exploration for Recommender Systems. In: Stuckey, P.J. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2021. Lecture Notes in Computer Science(), vol 12735. Springer, Cham. https://doi.org/10.1007/978-3-030-78230-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78230-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78229-0

  • Online ISBN: 978-3-030-78230-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics