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Abstract. One of the main problems encountered when predicting stu-
dent success, as a tool to aid students, is the lack of data used to model
each student. This lack of data is due in part to the small number of
students in each university course and also, the limited number of fea-
tures that describe the educational background for each student. In this
article, we introduce new features by augmenting the student feature
space to obtain an improved model. These features are divided into sev-
eral groups, namely, external added data, metric and counter data, and
evolutive data. We will then assess the quality of the augmented data to
classify at-risk students in their first year of university. For this article,
the classifiers are built using Random Forests. As this learning method
measures variable importance, we can enquire on the relevance of the
augmented data, as well as the data groups that allow a more significant
collection of features.

Keywords: Student Success · Random Forest · Data Augmentation ·
Educational Data Mining · Student Metrics.

1 Introduction

In France among the students in their first year of university one in two will
either repeat the year, change studies, or stop the course mid-year [14]. In 2017
only 29% got their first cycle degree without repeating or changing course. Many
approaches to predict student success have been investigated through means of
grade prediction or dropout prevention [2,3,7,8]. Generic data such as secondary
education grades but also sociodemographic indicators [6,8,10] are used to pre-
dict student outcome. This ends in having a small amount of features usable by
learning algorithms to output predictions. For this article, we will augment our
initial set of data by performing operations on the existing features to obtain ra-
tios or time-series coefficients. We also have metrics on the various high-schools.
To classify at-risk students we are using Random Forests [4]. We first introduce
the data to train the model, then our method for augmenting the given data,
and lastly, before concluding, we discuss the obtained results.
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2 Data

2.1 Initial Data

The data used comes from students studying in a University Institute of Tech-
nology. Students enter UITs after completing secondary studies. This particular
set of data is pooled from first-year students of 18 different courses. All the data
is thoroughly anonymized beforehand to respect student privacy within the Gen-
eral Data Protection Regulation [1]. Among the different courses, classes vary
in size and display a very heterogeneous distribution of students. The particular
set we are working on is of the year 2019 with a high of 169 students in one
promotion and as low as 10 for another. All the data used for training is taken
from the students’ curriculum during his secondary education at high-school.

The French high-school system is divided into 3 years, and each school year is
divided into 3 trimesters. For each student we have data from the first trimester
of the second year up to the second trimester of the third year. In total five
trimesters. We also have the results for the Baccalauréat (the end of high-school
exam). Each year, a variety of subjects are taught, some common core courses
(e.g., Physical Education) and some speciality courses (e.g., Economy). For every
subject we have (see table 1) the student’s grade (Stu), the class’s mean (Avg),
the class’s highest grade (Max), and the class’s lowest grade (Min). Most of the
augmented data derive from these features.

Table 1. Stored information for each subject.

Stu Avg Min Max

13 8.5 7 17
... ... ... ...
16 10 6 17

Additional data consist of: professor comments for every subject and each
trimester, a cover letter, the student’s high-school name, and comments from the
high-school on the student’s potential for succeeding in further studies. For this
article only numeric data is used, disregarding all non-ordinal or non-categorical
textual data. Therefore the professor comment, high-school comments, and cover
letter are omitted in this work.

Lastly since optional courses can be taken at school, we get rid of features
with a high number of missing data (> 70%) during a pre-processing step.

To train the model we are doing supervised learning, and the label for each
student is whether the student passed or failed. This is done by discretizing
their weighted mean grade in the first university semester. This weighted mean
attributes more weight to more important courses depending on the department
and the field of study.
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2.2 Augmented Data

We separated the augmented data into 3 groups to attribute changes in the
models’ outcomes to the different data. The augmented data is divided as such:
pre-processed initial data(PPD), external data(G1), metrics and counters(G2),
evolving data(G3).

Although most of the features are numeric, i.e., grades, some are nominal such
as chosen language courses and some ordinal (Good, Very Good, etc.). These
features are encoded respectively by one-hot encoding and ordinal encoding.

The first group of external data (G1) consists of various metrics for French
high-schools: the percentage of students that repeat years, the percentage of
graduated-with-honours students, the percentage of students that pass the final
examination, and lastly, the added-value which indicates how well the high-school
performed given its sociodemographic context.

The metrics and counters group (G2) holds features obtained from simple
calculations: Stu-Avg, the student’s highest grade - lowest grade for any given
trimester, Stu-Min, Stu-Max. It also has the number of: repeated years, top
marks, lowest marks, times Stu<Avg.

For the last group of data (G3), we apply linear regression, by k-combinations
of all trimesters, to extract the regression coefficients β. These coefficients depict
the evolution of G1 and G2 data. For instance, the evolution of: the student’s
grades, number of top marks, the difference Stu-Avg.

3 Methodology

For this article we chose Random Forest (RF) due to its high classification accu-
racy rates seen in [9,12,13,15]. To assess the efficiency of the applied methodol-
ogy we use ’Zero-Rule’ [5] as a baseline for this classification task. This predicts
the class as the majority class, in this case the majority will always be students
that have passed the first semester. Therefore, in a class of 100 students where 20
failed, we hope to achieve at least 80% in accuracy. This objective also avoids us-
ing false model accuracy due to class imbalance mentioned in [3]. When running
our algorithms, departments are trained separately for this paper as certain fea-
tures (e.g., French and mathematics grades) vary in relevancy depending on the
chosen field of studies. Additionally, Random Forests’ built-in Gini importance
will be used to score each feature and their importance. The Gini importance
will allow us to assess if our augmentation creates any relevant features.

For each configuration and its corresponding RF model we run the model 10
times with 10-fold cross validation to test the performance. The metrics used
are the accuracy in classification and the F1-score.

4 Results

For the courses with less than 50 students, the results were inconclusive. The
prediction didn’t, or barely, perform better than the baseline. This was expected
as the sample population is too low.
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Fig. 1. Data group evaluation process. Blue: PPD. Yellow: G1. Green: G2. Grey: G3.

The higher scores on average were obtained with a combination of all groups,
(f) in figure 1.

Table 2. Resulting classification scores for each model on the Computer Science course.

Scores PPD PPD+G1 PPD+G2 PPD+G3 PPD+G1+G2 PPD+G1+G3 PPD+G2+G3 PPD+G1+G2+G3

Accuracy 0.76 0.77 0.85 0.78 0.88 0.77 0.85 0.89
F1-score 0.73 0.69 0.79 0.75 0.81 0.70 0.79 0.84

For the particular course in table 2, we notice that G1 and G3 only marginally
improve the classification. Whereas G2 improves it by quite a lot. But some fea-
tures in both G1 and G3 can have substantial importance regarding the classi-
fication, therefore it might be interesting to perform feature selection [11] on all
the augmented features. There were only 350 features before augmentation, and
1500 features total after augmentation. Some examples of augmented features
that figure in the top 10 most relevant features are: Stu-Min for 3rd trimester
French (G2), Stu-Min for 3rd trimester French (G2), regression on the 2nd, 3rd,
and 5th trimesters in mathematics (G3), regression of Stu-Avg on trimesters 2
and 3 in English (G3). Interestingly some other courses such as the statistics
course holds all 10 top features as augmented features from groups G2 and G3
with mostly regressions on the student’s relative grades to the class’s highest
grades in mathematics.

5 Conclusion

This work sought to extend the feature space to improve student failure pre-
diction, allowing a better understanding of what features may best represent
students. Data augmentation improved prediction with courses of more than 50
students. It can also be used as a tool for Random Forest Feature Selection prior
to inputting this into any learning model.

In future works, extra textual data could be exploited. Our dataset also
provides for each subject and trimester professor comments usually in a dozen
words. These comments usually hold information such as regular absenteeism
and class disruption. The next step will be to incorporate these comments in the
model as well, and further increase the prediction accuracy of our model.
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