Skip to main content

“Now, I Want to Teach It for Real!”: Introducing Machine Learning as a Scientific Discovery Tool for K-12 Teachers

  • Conference paper
  • First Online:
Artificial Intelligence in Education (AIED 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12748))

Included in the following conference series:

Abstract

Machine Learning (ML) is a powerful tool to unveil hidden patterns in data, unearth new insights and promote scientific discovery (SD). However, expertise is usually required to actualize the potential of ML fully. Very little has been done to begin instructing the youth of society in ML, nor utilize ML as an SD tool for the K-12 age range. This research proposes SmileyDiscovery, an ML-empowered learning environment that facilitates SD for K-12 students and teachers. We conducted a 2-session preliminary study with 18 K-12 STEM teachers. Findings confirm the effectiveness of SmileyDiscovery in supporting teachers to (1) carry out ML-empowered SD, (2) design their own curriculum-aligned SD lesson plans, and (3) simultaneously obtain a rapid understanding of k-means clustering. Design implications distilled from our study can be applied to foster more effective learning support in future systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Understanding science. http://www.understandingscience.org (2021). Accessed 15 Jan 2021

  2. Agassi, A., Erel, H., Wald, I.Y., Zuckerman, O.: Scratch nodes ML: a playful system for children to create gesture recognition classifiers. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–6 (2019)

    Google Scholar 

  3. Ay, M., Kisi, O.: Modelling of chemical oxygen demand by using ANNs, ANFIs and k-means clustering techniques. J. Hydrol. 511, 279–289 (2014)

    Article  Google Scholar 

  4. Boutsidis, C., Drineas, P., Mahoney, M.W.: Unsupervised feature selection for the \( k \)-means clustering problem. In: Advances in Neural Information Processing Systems, pp. 153–161 (2009)

    Google Scholar 

  5. Bybee, R.W., et al.: The BSCS 5E instructional model: origins and effectiveness. In: BSCS, vol. 5, pp. 88–98. Colorado Springs, Co. (2006)

    Google Scholar 

  6. Chernoff, H.: The use of faces to represent points in k-dimensional space graphically. J. Am. Statist. Assoc. 68(342), 361–368 (1973)

    Article  Google Scholar 

  7. Chin-Parker, S., Bradner, A.: A contrastive account of explanation generation. Psychon. Bull. Rev. 24(5), 1387–1397 (2017)

    Article  Google Scholar 

  8. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine preferences by data mining from physicochemical properties. Decis. Support Syst. 47(4), 547–553 (2009)

    Article  Google Scholar 

  9. National Research Council: National Science Education Standards. National Academies Press (1996)

    Google Scholar 

  10. De Jong, T., Sotiriou, S., Gillet, D.: Innovations in STEM education: the Go-Lab federation of online labs. Smart Learn. Environ. 1(1), 1–16 (2014)

    Article  Google Scholar 

  11. Dua, D., Graff, C.: UCI Machine Learning Repository. School of Information and Computer Science, University of California, Irvine, CA (2019)

    Google Scholar 

  12. Endert, A., et al.: The state of the art in integrating machine learning into visual analytics. In: Computer Graphics Forum. vol. 36, pp. 458–486. Wiley Online Library (2017)

    Google Scholar 

  13. Essinger, S.D., Rosen, G.L.: An introduction to machine learning for students in secondary education. In: 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), pp. 243–248. IEEE (2011)

    Google Scholar 

  14. Evangelista, I., Blesio, G., Benatti, E.: Why are we not teaching machine learning at high school? a proposal. In: 2018 World Engineering Education Forum-Global Engineering Deans Council (WEEF-GEDC), pp. 1–6. IEEE (2018)

    Google Scholar 

  15. Folger, R., Stein, C.: Abduction 101: reasoning processes to aid discovery. Hum. Resource Manage. Rev. 27(2), 306–315 (2017)

    Article  Google Scholar 

  16. Gil, Y., Greaves, M., Hendler, J., Hirsh, H.: Amplify scientific discovery with artificial intelligence. Science 346(6206), 171–172 (2014)

    Article  Google Scholar 

  17. Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C.D., Roberts, J.C.: Visual comparison for information visualization. Inf. Visual. 10(4), 289–309 (2011)

    Article  Google Scholar 

  18. Hitron, T., Orlev, Y., Wald, I., Shamir, A., Erel, H., Zuckerman, O.: Can children understand machine learning concepts? The effect of uncovering black boxes. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–11 (2019)

    Google Scholar 

  19. IES: Common guidelines for education research and development. https://www.nsf.gov/pubs/2013/nsf13126/nsf13126.pdf (2013)

  20. Käser, T., Schwartz, D.L.: Modeling and analyzing inquiry strategies in open-ended learning environments. Int. J. Artif. Intell. Educ. 30(3), 504–535 (2020)

    Article  Google Scholar 

  21. Kitano, H.: Artificial intelligence to win the nobel prize and beyond: creating the engine for scientific discovery. AI Mag. 37(1), 39–49 (2016)

    Google Scholar 

  22. Klahr, D., Dunbar, K.: Dual space search during scientific reasoning. Cognit. Sci. 12(1), 1–48 (1988)

    Article  Google Scholar 

  23. Van der Kleij, F.M., Feskens, R.C., Eggen, T.J.: Effects of feedback in a computer-based learning environment on students’ learning outcomes: a meta-analysis. Rev. Educ. Res. 85(4), 475–511 (2015)

    Article  Google Scholar 

  24. Koedinger, K.R., Booth, J.L., Klahr, D.: Instructional complexity and the science to constrain it. Science 342(6161), 935–937 (2013)

    Article  Google Scholar 

  25. Koehler, M., Mishra, P.: What is technological pedagogical content knowledge (TPACK)? Contemp. Issues Technol. Teach. Educ. 9(1), 60–70 (2009)

    Google Scholar 

  26. Kupfer, J.A., Gao, P., Guo, D.: Regionalization of forest pattern metrics for the continental united states using contiguity constrained clustering and partitioning. Ecol. Inform. 9, 11–18 (2012)

    Article  Google Scholar 

  27. Langley, P.: The computational support of scientific discovery. Int. J. Hum.-Comput. Stud. 53(3), 393–410 (2000)

    Article  Google Scholar 

  28. Lin, P., Van Brummelen, J., Lukin, G., Williams, R., Breazeal, C.: Zhorai: designing a conversational agent for children to explore machine learning concepts. In: AAAI, pp. 13381–13388 (2020)

    Google Scholar 

  29. Marques, L.S., Gresse von Wangenheim, C., Hauck, J.C.: Teaching machine learning in school: a systematic mapping of the state of the art. Inform. Educ. 19(2), 283–321 (2020)

    Google Scholar 

  30. McAbee, S.T., Landis, R.S., Burke, M.I.: Inductive reasoning: the promise of big data. Hum. Resource Manage. Rev. 27(2), 277–290 (2017)

    Article  Google Scholar 

  31. Muller, M., Guha, S., Baumer, E.P., Mimno, D., Shami, N.S.: Machine learning and grounded theory method: Convergence, divergence, and combination. In: Proceedings of the 19th International Conference on Supporting Group Work, pp. 3–8 (2016)

    Google Scholar 

  32. NEON: National ecological observatory network data products: [neondp1.100220.001, dp1.10072.001]. http://data.neonscience.org (2020). Accessed 15 Jan 2021

  33. Pedaste, M., et al.: Phases of inquiry-based learning: definitions and the inquiry cycle. Educ. Res. Rev. 14, 47–61 (2015)

    Article  Google Scholar 

  34. Penner, D.E., Giles, N.D., Lehrer, R., Schauble, L.: Building functional models: designing an elbow. J. Res. Sci. Teach.: Official J. Natl. Assoc. Res. Sci. Teach. 34(2), 125–143 (1997)

    Article  Google Scholar 

  35. Perini, F.: High-dimensional, unsupervised cell clustering for computationally efficient engine simulations with detailed combustion chemistry. Fuel 106, 344–356 (2013)

    Article  Google Scholar 

  36. Pike, W., et al.: The scalable reasoning system: lightweight visualization for distributed analytics. Inf. Visual. 8(1), 71–84 (2009)

    Article  Google Scholar 

  37. Quintana, C., et al.: A scaffolding design framework for software to support science inquiry. J. Learn. Sci. 13(3), 337–386 (2004)

    Article  Google Scholar 

  38. Rodrigues, C.T.: The method of scientific discovery in peirce’s philosophy: deduction, induction, and abduction. Logica Universalis 5(1), 127–164 (2011)

    Article  MathSciNet  Google Scholar 

  39. Romesburg, C.: Cluster Analysis for Researchers. Lulu (2004)

    Google Scholar 

  40. Ross, J.M.: Informatics creativity: a role for abductive reasoning? Commun. ACM 53(2), 144–148 (2010)

    Article  Google Scholar 

  41. Sawyer, R.K.: The Cambridge Handbook of the Learning Sciences. Cambridge University Press (2005)

    Google Scholar 

  42. Schulz, L.: The origins of inquiry: inductive inference and exploration in early childhood. Trends Cognit. Sci. 16(7), 382–389 (2012)

    Article  Google Scholar 

  43. Schwartz, D.L., Chase, C.C., Oppezzo, M.A., Chin, D.B.: Practicing versus inventing with contrasting cases: the effects of telling first on learning and transfer. J. Educ. Psychol. 103(4), 759 (2011)

    Article  Google Scholar 

  44. Skapa, J., Dvorsky, M., Michalek, L., Sebesta, R., Blaha, P.: K-mean clustering and correlation analysis in recognition of weather impact on radio signal. In: 2012 35th International Conference on Telecommunications and Signal Processing (TSP), pp. 316–319. IEEE (2012)

    Google Scholar 

  45. Achieve and National Science Teachers Association: EQuIP rubric for lessons and units: Science (2014)

    Google Scholar 

  46. NGSS Lead States: Next Generation Science Standards: For states, by states. National Academies Press, Washington, DC (2013)

    Google Scholar 

  47. Tang, D., et al.: Empowering novices to understand and use machine learning with personalized image classification models, intuitive analysis tools, and MIT App Inventor. Ph.D. thesis, Massachusetts Institute of Technology (2019)

    Google Scholar 

  48. Vazhayil, A., Shetty, R., Bhavani, R.R., Akshay, N.: Focusing on teacher education to introduce AI in schools: Perspectives and illustrative findings. In: 2019 IEEE Tenth International Conference on Technology for Education (T4E), pp. 71–77. IEEE (2019)

    Google Scholar 

  49. Wan, X., Zhou, X., Ye, Z., Mortensen, C.K., Bai, Z.: Smileycluster: supporting accessible machine learning in k-12 scientific discovery. In: Proceedings of the Interaction Design and Children Conference, pp. 23–35 (2020)

    Google Scholar 

  50. Wang, D., Yang, Q., Abdul, A., Lim, B.Y.: Designing theory-driven user-centric explainable AI. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2019)

    Google Scholar 

  51. Wang, D., Nie, F., Huang, H.: Unsupervised feature selection via unified trace ratio formulation and K-means clustering (TRACK). In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8726, pp. 306–321. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44845-8_20

    Chapter  Google Scholar 

  52. Zhang, Y., Wang, J., Bolduc, F., Murray, W.G., Staffen, W.: A preliminary report of integrating science and computing teaching using logic programming. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9737–9744 (2019)

    Google Scholar 

  53. Zimmermann-Niefield, A., Turner, M., Murphy, B., Kane, S.K., Shapiro, R.B.: Youth learning machine learning through building models of athletic moves. In: Proceedings of the 18th ACM International Conference on Interaction Design and Children, pp. 121–132 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, X., Tang, J., Daley, M., Ahmad, S., Bai, Z. (2021). “Now, I Want to Teach It for Real!”: Introducing Machine Learning as a Scientific Discovery Tool for K-12 Teachers. In: Roll, I., McNamara, D., Sosnovsky, S., Luckin, R., Dimitrova, V. (eds) Artificial Intelligence in Education. AIED 2021. Lecture Notes in Computer Science(), vol 12748. Springer, Cham. https://doi.org/10.1007/978-3-030-78292-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78292-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78291-7

  • Online ISBN: 978-3-030-78292-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics