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Abstract Computer systems deployed in hospital environments, particularly phys-
iological and biochemical real-time monitoring of patients in an Intensive Care Unit
(ICU) environment, routinely collect a large volume of data that can hold very useful
information. However, the vast majority are either not stored and lost forever or are
stored in digital archives and seldom re-examined. In recent years, there has been
extensive work carried out by researchers utilizing Machine Learning (ML) and
Artificial Intelligence (AI) techniques on these data streams, to predict and prevent
disease states. Such work aims to improve patient outcomes, to decrease mortality
rates and decrease hospital stays, and, more generally, to decrease healthcare costs.

This chapter reviews the state of the art in that field and reports on our
own current research, with practicing clinicians, on improving ventilator weaning
protocols and lung protective ventilation, using ML and AI methodologies for
decision support, including but not limited to Neural Networks and Decision Trees.
The chapter considers both the clinical and Computer Science aspects of the field.
In addition, we look to the future and report how physiological data holds clinically
important information to aid in decision support in the wider hospital environment.

Keywords Healthcare · Predictive analytics · Artificial Intelligence · Clinical
decision support

The chapter relates to the technical priorities Data Analytics of the European Big
Data Value Strategic Research and Innovation Agenda [1]. It addresses the horizon-
tal concern Data Analytics of the BDV Technical Reference Model and addresses
the vertical concerns of Big Data Types and Semantics. The chapter further relates
to the Reasoning and Decision Making cross-sectorial technology enablers of the
AI, Data and Robotics Strategic Research, Innovation and Deployment Agenda [2].
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1 Overview

The chapter begins by discussing Intensive Care medicine and the types of machines
and data that is being recorded continuously, and thus producing ‘Big Data’. It
proceeds to explain some of the challenges that can arise when working with such
data, including measurement errors and bias. The subsequent section explains some
of the common methodologies used to provide predictive analytics with examples
given for both acute and chronic clinical conditions, and discuss our own work
for the promotion of lung protective ventilation, to highlight the accuracies that
can be achieved when pairing health ‘Big Data’ with common machine learning
methodologies. The chapter concludes by discussing the future of this field and
how we, as a society, can provide value to our healthcare systems by utilizing the
routinely collected data at our disposal.

2 Intensive Care Medicine and Physiological Data

Intensive Care Units (ICU) offer expensive and labor-intensive treatments for the
critically ill and are therefore a costly resource for the health sector around the
world. They can also be referred to as Intensive Therapy Units (ITU) or Critical
Care Units (CCU). UK estimates in 2007 highlighted that intensive care in the NHS
costs £719 million per year [3]. Comparably, American studies reported in 2000
have shown that median costs per ICU stay can range between $10,916 and $70,501
depending on the length of stay [4]. A typical length of stay varies depending on
the condition of the patient with studies showing the mean length of stay being
5.04 days [3], while the condition of the patient can change quickly and sometimes
unpredictably.

Patients will normally be admitted to intensive care after a serious accident, a
serious condition such as a stroke, an infection or for surgical recovery. Throughout
their stay in ICU, these patients are monitored closely due to their critical condition,
and on average require one nurse for every one or two patients. Many devices and
tests may be used to ensure the correct level of care is provided. Patients will be
placed on machines to monitor their condition, support organ function and allow for
the detection of any improvements or deterioration. The functions of these machines
can vary: from the monitoring of vital parameters such as heart rate via the patient
monitor to the use of mechanical ventilators that provide respiratory function when
a patient is not able to do so themselves.

The workload on the clinical staff in ICU is intense and so utilizing Big Data
analytics will allow for healthcare providers to improve their efficiency through
better management of resources, detection of decompensation and adverse events,
and treatment optimization, among many benefits to both patient outcomes and
hospital costs [5].
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2.1 Physiological Data Acquisition

Health data recorded in ICU can be classified as ‘Big Data’ due to the volume,
complexity, diversity and timeliness of the parameters [6], the aim being to turn
these ‘Big Data’ records into a valuable asset in the healthcare industry.

As highlighted, patients requiring critical care are placed on numerous monitors
and machines to help with and provide their care. Equipment can include, but is not
limited to [7]:

• Patient monitoring system to monitor clinical parameters such as electrocardio-
gram (ECG), peripheral oxygen saturation, blood pressure, temperature.

• Organ support systems such as mechanical ventilator, extracorporeal organ
support such as continuous renal replacement therapy.

• Syringe pump for the delivery of medicines.

These machines are all monitoring continuously (24×7) and thus representing
one example of the emerging field of Big Data. It is important to wean patients off
these machines as quickly as possible to avoid dependency and to lower the risk
of infection. In addition to the organ support machines, the electronic health record
includes laboratory data, imaging reports such as X-rays and CT scans, and daily
review record.

2.1.1 Time Series Data

The human physiologic state is a time-dependent picture of the functions and mech-
anisms that define life and is amenable to mathematical modeling and data analysis.
Physiology involves processes operating across a range of time scales resulting in
different granularities. Parameters such as heart rate and brain activity are monitored
on the millisecond level while others such as breathing have time windows over
minutes and blood glucose regulation over hours. Analysis of instantaneous values
in these circumstances is rarely of value. On the other hand, application of analytical
techniques for time series offers the opportunity to investigate both the trends
in individual physiological variables and the temporal correlation between them,
thereby enabling the possibility to make predictions.

Features can also be extracted from these time series using packages such as the
Python tsfresh software toolkit to use as input into Machine Learning models and
to gain further insights into the relationship between the parameter and time [8]. By
analyzing the time series we can make predictions on the future trajectory and alert
care givers of possible issues in order to prevent complications.

Prior research has shown that these streams of data have very useful information
buried in them, yet in most medical institutions today, the vast majority of the data
collected is either dropped and lost forever, or is stored in digital archives and
seldom reexamined [9].
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In the past number of years there has been a rapid implementation of Electronic
health records, or EHRs, around the world. EHRs are a common practice to record
and store real-time, patient health data, enabling authorized users to track a patient
from initial admission into the hospital, their deterioration/improvement, diagnoses,
and all physiological parameters monitored and drugs given across all healthcare
systems.

2.1.2 Publicly Available Datasets

As part of a global effort to improve healthcare, numerous institutions have put
together publicly available data sets based on their EHRs for people to use in
research; enabling visualization, analysis, and model development.

One of the best-known and commonly used publicly available databases is
MIMIC, the Multiparameter Intelligent Monitoring in Intensive Care database.
Produced from the critical care units of the Beth Deaconess Medical Centre at
Harvard Medical School, Boston, this large, freely available database consists of
de-identified health-related data associated with over 40,000 patients who were in
critical care between 2001 and 2012 [10]. After being approved access, users are
provided with vital signs, medications, laboratory measurements, observations, and
charted notes. Furthermore, waveforms are available for use, along with patient
demographics and diagnoses.

PhysioNet offers access to a large collection of health data and related open-
source software, including the MIMIC databases [11]. All data recorded in these
publically available databases are anonymous, ensuring no patient can be identified
from their data.

3 Artificial Intelligence in ICU

The broad field of Data Science has emerged within the discipline of Computer
Science over the past 10 years, approximately. Its roots arguably lie in the work
of Fayyad et al. [12], which defined a pipelined process for the extraction of
abstract models from data using an amalgam of techniques, including Statistics and
Machine Learning. Artificial Intelligence (AI) is the ability of a computer system to
perform tasks that aim to reach the level of intelligent thinking of the human brain
through applying machine learning methodologies, further details are discussed in
the methodologies section.

3.1 Challenges

As in majority of real-world applications, there comes a series of challenges that
arise when applying Big Data-driven analytics to such sensitive and intense data. We
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must aim to build trust and quality between the decision support tools and the end
users. It is always important to question if there is real clinical impact from carrying
out such work and exploring AI methodologies for solving particular problems.

3.1.1 Data Integrity

Before building any Big Data-driven analytic system, it is important to ensure data
has been collected and preprocessed correctly, with any errors handled accurately.
It is crucial to ensure data harmonization, the process of bringing together all
data formats from the different machines and tests into one database. Without this
step, the algorithms will produce unreliable results, which in turn could result in a
critically dangerous implementation and a lack of trust in the system. Errors in the
data can be due to a variety of reasons:

• Data input errors: In intensive care, caregivers often have to input readings on the
system. Fields will have a required metric in which the data should be entered and
these may sometimes be ignored or mishandled. For example, height that should
be entered in centimeters but a user may enter the reading in meters, e.g., 1.7 m
instead of the 170 cm.

• Sensor errors: With the complexity and multitude of monitors, leads, and
machines that a patient can be on at any given time, the sensors can sometimes
fail or miss a reading. Sensors can be disconnected for a period of time to deliver
medicines or for imaging tests. Patients’ movements in the bed can cause a
sensor error or unexpected result. These errors will present as outliers in the
data and should be dealt with accordingly as to not throw off any predictive
modeling.

• Bias in the data: AI methodologies are only as good as the data of which
they are trained on. If this data contains, e.g., racial or gender biases, the
algorithm will learn from this and produce similar results such as women not
being given the same number of tests as men. Similarly, statistical biases can
be present due to small sample numbers from underrepresented groups, for
instance, an algorithm only being trained with White patients may not pick up
the same diagnosis when presented with Hispanic patients [13]. Furthermore,
selection biases exist when the selection of study participants is not a true
representation of the true population, resulting in both cultural and social
differences.

• Bias in the study: Studies can also contain information bias. These include
measurement errors for continuous variables and misclassification for categor-
ical variables. For example, a tumor stage being misdiagnosed would lead to
algorithms being trained on incorrect data [14].
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We must ensure to implement appropriate techniques such as imputation,
smoothing and oversampling to prevent errors in our data and build trust with
the user.

3.1.2 Alert Fatigue

When building decision support tools, it is crucial to ensure the integrity of alerts
raised. Too many can result in alert fatigue, leading to alarms being switched off
or ignored. Research has shown that there is on average 10.6 alarms per hour, too
many for a single person to handle amidst their already busy work schedule [15].

In addition, 16% of health care professionals will switch off an alarm and 40.4%
will ignore or silence the alarm [16].

This influx of alarms resulting in the monitoring system being turned off will
lead to vital physiological problems being missed. We need to be confident that our
systems are only producing true alerts and that false alerts generated are minimized.

It has further been highlighted that reducing the number of alerts repeated per
patient will help reduce override rates and fatigue [17].

3.1.3 Bringing AI Systems to Clinical Trials

While we know these AI models, derived from Big Data-driven predictive analytics,
can provide value to the healthcare industry, we must be able to test them in real time
in order for them to be implemented and used throughout the world. This requires a
clinical trial to be carried out using the system on patients in real time. While there
exist the SPRIRT 2013 and CONSORT 2010 checklists for clinical trials, covering
checklists for what you intended to do and what you actually did, respectively,
neither of these include steps for AI implementation [18].

With the rise of AI, these guidelines have been extended in 2020 to include
steps for reporting the quality of data, errors, clinical context, intended use, and
any human interactions involved. These additional steps allow reviewers to better
evaluate and compare the quality of research and thus systems created in the future
[19, 20]. Other authors are further expanding these checklists to include reporting
for diagnostic accuracies and prediction models [21, 22].

Researchers have analyzed the current work that has been published in this area
[23]. With 93% of papers exploring model development to demonstrate potential for
such systems, and only 5% validating these models with data from other centers. A
further 1% of the work currently published reports on models that have actually
been implemented and tested in real-time hospital systems and the final 1% of
research have integrated their models in routine clinical practice which has proven to
work. This summary highlights the large potential for the future of AI in healthcare
systems, with huge opportunities for bringing forward accurate models to real-world
clinical trials.
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3.2 AI Methodology

Machine Learning methodologies are commonly used to enable machines to become
‘intelligent’ and can be classified as being supervised, predicting using a labeled
dataset, i.e., a known output or target, or unsupervised, i.e., finding patterns or
groupings in unlabeled data [24]. Common methodologies are utilized across the
board for predictive and analytical purposes. This chapter focuses on commonly
used supervised learning techniques; however, unsupervised methods can further
be used to understand data. We can categorize supervised learning techniques into
regression and classification models. Regression techniques aim to find relationships
between one dependent variable and a series of other independent variables, e.g., a
time series as previously discussed is common in physiological data. Classification
techniques on the other hand attempt to label outcomes and draw conclusions from
observed values, e.g., if patient has disease or not.

The question of whether the numerical models that are generated can actually
be understood by humans has become a hot research topic. In the United States,
DARPA has conducted significant investigative research in this field [25]. Other
research teams have begun to define the concept of explainable AI with respect
to several problem domains. They identify three classifications: opaque systems
that offer no insight; interpretable systems where mathematical analysis of the
algorithm is viable; and comprehensible systems that emit symbols enabling user-
driven explanations of how a conclusion is reached [26].

We know from previous research that utilizing Big Data within the ICU can lead
to many benefits to both patient and hospital. We can not only greatly improve
the care given and thus patient outcomes, see Table 1, but also reduce hospital
costs [5] and the stress levels of care givers [27]. McGregor and colleagues have
demonstrated the viability of monitoring physiological parameters to detect sleep
apnea in neo-natal ICU leading to the software architecture of the IBM InfoSphere
product, which has now been extended into a Cloud environment (the Artemis
project) making the functionality available at remote hospital sites [28, 29].

Patient deterioration can often be missed due to the multitude of and complicated
relational links between physiological parameters. AI-driven multivariate analysis
has the potential to ameliorate the work load of ICU staff. Multiple studies have
shown AI to be comparable to routine clinical decision making, including ECG
analysis, delirium detection, sedation, and identification of septic patients [28, 37–
39].

AI-driven predictive analytics within healthcare most commonly uses supervised
learning approaches, due to which we aim to base algorithms and decisions on
previous examples and train our models with accurate outcomes, in particular
regression analysis is used for time series data.

Below we review the more widely adopted Machine Learning methodologies
developed [31], and examples are highlighted in Table 1, where these have been
used in previous research.
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3.2.1 Expert Systems

In a rule-based expert system, also known as a knowledge-based clinical decision
support system, knowledge is represented by a series of IF-THEN rules that
are created by knowledge acquisition, which involves observing and interviewing
human experts and finalizing rules in format ‘IF X happens THEN do Y’. These
rules cannot be changed, learnt from or adapted to different environments, meaning
the human experts must manually monitor and modify the knowledge base through
careful management of the rules. Expert systems allow us to view and understand
each of the rules applied by the system.

The systems can take over some mundane decision tasks and discussions of
health care professionals, saving vital time and money. An example expert system
was created for Diabetes patients to provide decision support for insulin adjustment
based on simple rules depending on the regimen that patients were placed on [32].

3.2.2 Decision Trees

A decision tree can be used to visually represent a series of decisions used to reach a
certain conclusion, useful when exploring medical reasons behind decisions made.
The tree starts at the root, asking a specific question to split the data by the given
condition. The tree then splits into branches and edges at each node representing the
input variables, continually splitting by conditions until the final decision is achieved
at the leaf node or the output variable.

They can also be referred to as Classification and Regression Trees (CART) as
they can solve both classification and regression problems. A classification tree
will arrive at a binary condition, leaf node, i.e., patient survives or not, whereas
the regression trees will predict a certain continuous value, i.e., the heart rate of a
patient.

The tree will not only explore the conditions used to split the data at each decision
but also the features used and which features are the most significant at splitting
the data, added as top-level nodes. Researchers have utilized simple decision tree
models for the classification of patients with diabetes, among other disease states.
Features include age, BMI, and both systolic and diastolic blood pressure of the
patient to arrive at a decision whether the patient has diabetes or is healthy. Figure 1
shows how the features are split and decisions are made, in this circumstance [33].

When building decision tree models it is important to monitor the maximum
depth of the tree to avoid overfitting and lengthy training times.

3.2.3 Ensemble Methods

To achieve the greatest predictive performance when working with complex prob-
lems, ensembles can be created. The decision trees are combined in different ways
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Fig. 1 Decision tree for the classification of diabetes [20]

Fig. 2 Decision trees and ensemble methods

depending on the methodology used. The methods can be categorized as bagging or
boosting (Fig. 2).

Boosting methods build the trees in a sequential way; for each predicted
value multiple models or decision trees are made using different features and
combinations of features, then weights are given to these models based on their
error so that the final prediction is the most accurate. AdaBoost is an example of
this method where very short trees are produced and higher weights are given to
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more difficult decisions. GradientBoosting further combines boosting with gradient
descent, allowing for the optimization of loss functions.

In contrast, for bagging methods, each model is given equal weights, they are
combined in parallel and all of the predictions are averaged to get a final, most
accurate decision, examples include Bagging and Extra Trees. Bagging can be
extended to the RandomForest algorithm by randomly selecting the features used,
and decision trees are built to have as many layers as possible.

3.2.4 Neural Networks

A neural network saves a lot of time when working with large amounts of data
by combining variables, figuring out which are important and finding patterns
that humans might not ever see. The neural network is represented as a set of
interconnected nodes, connected by neurons.

They feed the weighted sum of the input values through an activation function,
which takes the value and transforms it before returning an output. These activation
functions in turn improve the way the neural network learns and allows for more
flexibility to model complex relationships between the input and output (Fig. 3).

The neural network can be described as ‘Deep Learning’ when it has multiple
hidden layers between the input and output layers. The neural network learns by

Fig. 3 Neural network structure
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figuring out what it got wrong and working backwards to determine what values
and connections made the prediction incorrect.

Additionally, there are different types of neural networks, and the list continues
to expand as researchers propose new types. There are feedforward neural networks,
where all the nodes only feed into the next layer from initial inputs to the output.
Recurrent neural networks (RNN) make it possible to feed the output of a node
back into the model as an input the next time you run it. Nodes in one layer can
be connected to each other and even themselves. Furthermore, they work well with
sequential data as they remember previous outputs. The long short-term memory
form of the RNN enables the model to store information over longer periods of time,
ideal for modeling time series data. Additionally, there are convolutional neural
networks (CNN) which look at windows of variables rather than one at a time.
Convolution applies a filter, or transformation, to the windows to create features.
When working with large databases, pooling is a technique that takes a huge number
of variables to create a smaller number of features. The neural network will then use
the features generated by convolution and pooling to give its output.

The key parameters to distinguish neural networks are the number of layers and
the shape of the input and the output layers.

Researchers have utilized many different formats of neural networks for predic-
tion problems. A medical decision support tool for patient extubation was developed
using a multilayer perception artificial neural network, a class of feedforward neural
networks. The input layer consisted of 8 input parameters, defining 17 perceptions,
and 2 perceptions in the output layer for prediction output. Perceptions can be
described as a classifying decision. They explored the change in performance based
on the number of perceptions in the hidden layer: 19 producing highly accurate
results [34]. Other studies have shown that RNNs produce accurate results for the
prediction of kidney failure [35] and CNNs have shown promise in the prediction of
atrial fibrillation in ECG analysis [36],

However, it is difficult to explain predictions from neural networks to healthcare
professionals due to having to understand a particular weight as a discrete piece of
knowledge, although work is being done in the area [37].

With common limitations reoccurring, such as generalization, dataset size, noisy
and unbalanced data, we highlight the importance of continuing research and
building of larger datasets, across multiple centers, and further the exploration of
methodologies to smooth noisy data in order to advance the work of producing
accurate systems that can be implemented in real-world healthcare settings.

Imaging and waveforms are a further, huge division of physiological monitoring.
Machines such as X-rays and CTs can produce images of internal organs to provide
a greater insight into patient state. In addition, ECG waveforms and brain waves
can be analyzed for diagnoses. Thus, signal processing is an integral part of
understanding physiological data and getting the full picture of patient state.

Furthermore, Machine Learning methodologies can be used for natural language
processing to analyze lab notes and patient charts in order to summarize and detect
common words and phrases used by care givers, in turn automating the process of
flipping through hundreds of pages of records and saving vital time.
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4 Use Case: Prediction of Tidal Volume to Promote Lung
Protective Ventilation

Around 44.5% of patients in ICU are placed on mechanical ventilation to support
respiratory function at any given hour [52]. However, the delivery of high tidal
volume values can often lead to lung injury. Tidal volume being the amount of air
delivered to the lungs; it is common knowledge amongst critical care providers that
tidal volume values should be no greater than 8 ml per kg of ideal body weight. In
our recent work we explored regressors for ensemble methods and the long short-
term memory (LSTM) form of neural networks to predict tidal volume values to aid
in lung protective ventilation [53].

Data acquisition took place at the Regional Intensive Care Unit (RICU), Royal
Victoria Hospital, Belfast, over a 3-year period and the VILIAlert system was
introduced [54]. The data streams were monitored against the thresholds for lung
protective ventilation and if thresholds were breached continuously, an alert was
raised. We then turned our attention to predicting these alerts with the aim of
preventing violations and protecting the patient’s lungs. The VILIAlert system ran
for nearly 3 years, recording minutely tidal volume values for almost a thousand
patients.

As discussed, noisy signals are common in ICU data. Time series often needs
to be filtered to remove noise in the data and produce smooth signals. Methods
such as moving average and exponential smoothing can be applied to the data to
extract true signals, such as the work we carried out to extract true tidal volume
trends [53]. Figure 4 shows how smoothing the time series, shown in blue, removes
anomaly in the data, the large jumps, and extracts the true patient trend as shown
in red. This work is related to the efforts of the international project known as
the Virtual Physiological Human (http://www.vph-institute.org), which seeks to use
individualized physiology-based computer simulations in all aspects of prevention,
diagnosis, and treatment of diseases [55]. This computational approach has provided
immediate insight into the COVID-19 pandemic [56].

We compare multiple regressor ensemble methods for initially predicting 15 min
ahead. For each patient, we use the tsfresh toolkit to extract features to use as input
into the regressor models in order to predict one time bin ahead and report the RMSE
between the true observed values and the predicted values from our models. Table 2
reports RMSE calculated for 8 of the patients using each of the ensemble methods.
In all models the maximum number of trees is set to 10. We can compare the
depth of the bagging method trees: RandomForest being 32 ± 5, ExtraTrees being
37 ± 4, and Bagging being 33 ± 5. In contrast, the boosting methods: AdaBoost
and GradientBoosting, set trees of depth four by default. As expected, increasing
the number of trees decreases the RMSE.

It is important to take computational time into consideration when choosing
algorithms to make predictions in real time. From our experiments we found
AdaBoost to give the best trade-off between RMSE and computation time.

http://www.vph-institute.org
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Fig. 4 Time series of a patient’s tidal volume profile. Raw minutely values in blue, 15-min
averaged bins in red

Table 2 Comparison of regressor ensemble models performance for the prediction of patient’s
tidal volume one time step ahead

AdaBoost RandomForest Bagging ExtraTrees GradientBoosting
Patient No. data points RMSE RMSE RMSE RMSE RMSE

1 517 0.69 0.68 0.70 0.68 0.84
2 150 1.05 1.03 1.03 1.05 1.23
3 1358 0.38 0.38 0.38 0.36 0.39
4 40 1.05 0.99 1.02 1.00 0.95
5 162 0.34 0.32 0.32 0.34 0.41
6 178 1.38 1.28 1.35 1.39 1.32
7 1153 0.62 0.63 0.62 0.62 0.61
8 1245 0.83 0.84 0.84 0.84 0.91

One might expect that predicting further ahead in time would lead to larger
RMSE values, however, the change in RMSE is small. We therefore explore using
AdaBoost regression for the prediction of tidal volume values up to 1 h ahead,
finding very little increase in RMSE values across patients.

As described in this chapter, a benefit of using ensemble models made from
decision trees is that we can visualize the features and decisions used to make
decisions. Figure 5 is one of the decision trees created when using the AdaBoost
method.

The features were extracted by tsfresh as the most significant features for this
problem. It is interesting here to discuss what these features can mean for our



Applying AI to Manage Acute and Chronic Clinical Condition 217

F
ig
.5

O
ne

of
th

e
te

n
tr

ee
s

cr
ea

te
d

by
th

e
A

da
B

oo
st

m
et

ho
d

fo
r

pa
ti

en
t1

pr
ed

ic
ti

on
s



218 R. Hagan et al.

problem domain. The Ricker Wavelet is used to describe properties of a viscoelastic
homogeneous media and the Friedrich coefficient aims at describing the random
movement of a particle in a fluid. We can hypothesize from this finding that the
amount of fluid in the lungs would be an impacting factor in how a patient’s tidal
volume can change over time.

A comparison is then made applying long short-term memory neural networks
to the same problem: predicting tidal volume 1 h ahead. Two models are created:
ModelA has one hidden layer and ModelB has three hidden layers, with a 20%
dropout layer between the second and third layers to avoid overfitting. In contrast
to the regressor models that work with features extracted from the time series, the
LSTM models use the time series values directly; requiring 70% of the time series
to train the models. Each layer in our LSTM models has 50 nodes and both models
use 20 input points to predict 4 ahead.

The RMSE values for our LSTM models are significantly greater than the
AdaBoost method for predicting 1 h ahead, so we deem AdaBoost the better method
of the two for this problem.

The VILIAlert system alerted when four consecutive bins were greater than the
8 ml/kg tidal volume threshold. These alert times were stored in the database. We
can thus work out the accuracy of our models to predict these alerts, showcasing
the possibility of preventing threshold breaches and preventing injury. Table 3
highlights the predictive accuracy of the AdaBoost model for the 8 patients. Total
Alerts being the total number of alerts recorded by the VILIAlert system, TP being
the true positives: the alerts that would have been predicted by the model, and FN
being false negatives: the alerts that would not have been predicted. The accuracy is
then calculated using:

Accuracy = TP

TP + FN.

For the 84 alerts that were generated for patient 1, 81 would have been predicted
using our models and thus those threshold breaches could have been prevented.
These results showcase how Machine Learning algorithms, when paired with big

Table 3 Prediction accuracy
of alerts using AdaBoost

Patient Total alerts TP FN Accuracy

1 84 81 3 0.96
2 25 23 2 0.92
3 0 0 0 1.00
4 2 1 1 0.50
5 3 2 1 0.67
6 11 3 8 0.27
7 0 0 0 1.00
8 167 142 25 0.85
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data, can provide value in preventing lung injury during mechanical ventilation of
intensive care patients.

4.1 The ATTITUDE Study

The ATTITUDE study operated by Queen’s University, Belfast, and funded by The
Health Foundation UK, aims to develop a clinical decision support tool to improve
weaning protocols commonly used in clinical practice, and further understand the
barriers in implementing evidence-based care from these tools tested in a proof-of-
concept study carried out at the Royal Victoria Hospital ICU, Belfast. Improving
patient care, outcomes, and mortality by reducing the duration of weaning can lead
to reduced hospital stays and costs, and this study aims to find out if the use of
clinical decision support tools can improve the quality of critical care practices.

5 Future of ML and AI in ICU

The methodology discussed in this chapter can, and must be, explored with various
and extensive types and volumes of data, to investigate more disease states and
clinical conditions. This data is currently being recorded worldwide in what are
known as Electronic Health Records and these hold valuable insights which must
be utilized to improve healthcare going forward.

From the European Big Data Value Strategic Research and Innovation Agenda
[1] we understand the importance of Big Data and utilizing it to benefit both
the economy and society. By exploring the already available EHRs we can
provide societal benefit by improving patient outcomes and saving lives, and
further economic benefits of saving millions in hospital costs, through shorter
lengths of stays and disease prediction, among others. Healthcare, being one of
the most important and largest sectors, can greatly impact the agenda of a data-
driven economy across Europe. Data-driven predictive analytics, built using the
methodologies discussed in the chapter, can produce clinical decision support tools,
allowing for advanced decision making or automation of procedures. The Machine
Learning methodologies can further provide greater insights into patient states and
inform healthcare professionals with new information or possible reasoning that
would not have been caught by a human. These new insights result in further
research questions that can be explored.

This chapter can be aligned with the Big Data Reference model in various
ways. The data recorded in ICU is extensive and in various different formats, from
structured data and time series to imaging and text inputs. Advanced visualization
tools can be used to add value to data by presenting it in user-friendly ways. Data
analytics and Machine Learning can be applied for prediction and reasoning of
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disease states. There exist further protocols and guidelines for the handling of patient
information, ensuring efficient data protection and management.

The new AI, data and robotics partnership highlights the value opportunities
that exist when transforming the healthcare sector by applying AI to produce
value-based and patient-centric care in areas such as pandemic response, disease
prevention, diagnosis decision support, and treatment [2].

High-performance computing is an integral part in deploying real-time predictive
analytic models in intensive care. We must ensure our machines can process the data
efficiently and quickly. Utilizing parallelism will provide speed up data processing
and model predictions.

This chapter has explored the use of Big Data-driven analytics for acute and
chronic clinical conditions to provide value to healthcare services. While there exists
vast research carried out in certain disease states, such as Sepsis [30, 40–42], work
is needed to provide greater in-depth analysis and insights into patients’ complex
physiologic state while in such critical conditions. Recent developments have led to
a greater acceptance and excitement in this field, resulting in updated guidelines for
testing AI models in real-life clinical trials to promote worldwide acceptance of the
use of AI in healthcare.

Acknowledgments Rachael Hagan acknowledges funding for a PhD studentship from the
Department for the Economy, Northern Ireland, and Dr. Murali Shyamsundar is an NIHR Clinical
Scientist fellow.

References

1. Zillner, S., Curry, E., Metzger, A., et al. (2017). European big data value strategic research &
innovation agenda. Big Data Value Association.

2. Zillner, S., Bisset, D., Milano, M., Curry, E., García Robles, A., Hahn, T., Irgens, M., Lafrenz,
R., Liepert, B., O’Sullivan, B., & Smeulders, A. (Eds.). (2020). Strategic research, innovation
and deployment agenda – AI, data and robotics partnership. Third release. Brussels. BDVA,
euRobotics, ELLIS, EurAI and CLAIRE.

3. Ridley, S., & Morris, S. (2007). Cost effectiveness of adult intensive care in the UK.
Anaesthesia, 62, 547–554. https://doi.org/10.1111/j.1365-2044.2007.04997.x

4. Teno, J. M., Fisher, E., & Hamel, B. (2000). Decision-making and outcomes of prolonged ICU
stays in seriously ill patients. Journal of the American Geriatrics Society, 48, 70–74.

5. Bates, D. W., Saria, S., Ohno-Machado, L., et al. (2014). Big data in health care: Using
analytics to identify and manage high-risk and high-cost patients. Health Affairs, 33, 1123–
1131. https://doi.org/10.1377/hlthaff.2014.0041

6. Cavanillas, J. M., Curry, E., & Wahlster, W. (2016). New horizons for a data-driven economy: A
roadmap for usage and exploitation of big data in Europe (pp. 1–303). https://doi.org/10.1007/
978-3-319-21569-3

7. Bhutkar, G., Deshmukh, S., & Detection, D. (2015). Vital medical devices in intensive care
unit. https://doi.org/10.13140/RG.2.1.4671.6247

8. Christ, M., Braun, N., Neuffer, J., & Kempa-Liehr, A. W. (2018). Time series FeatuRe
extraction on basis of scalable hypothesis tests (tsfresh – A Python package). Neurocomputing,
307, 72–77. https://doi.org/10.1016/j.neucom.2018.03.067

http://dx.doi.org/10.1111/j.1365-2044.2007.04997.x
http://dx.doi.org/10.1377/hlthaff.2014.0041
http://dx.doi.org/10.1007/978-3-319-21569-3
http://dx.doi.org/10.13140/RG.2.1.4671.6247
http://dx.doi.org/10.1016/j.neucom.2018.03.067


Applying AI to Manage Acute and Chronic Clinical Condition 221

9. Drews, F. A. (2008). Patient monitors in critical care: Lessons for improvement. In Advances in
patient safety: New directions and alternative approaches (pp. 1–13). Rockville, MD: Agency
for Healthcare Research and Quality. https://doi.org/NBK43684 [bookaccession].

10. Johnson, A., Pollard, T., Shen, L., et al. (2016). MIMIC-III, a freely accessible critical care
database. Scientific Data.

11. Goldberger, A. L., Amaral, L. G., et al. (2000). Physiobank, physiotoolkit, and physionet
components of a new research resource for complex physiologic signals. Circulation, 101,
215–220.

12. Fayyad, U., Piatetsky-shapiro, G., & Smyth, P. (1996). From data mining to knowledge
discovery in databases. American Association for Artificial Intelligence, 17, 37–54.

13. Parikh, R. B., Teeple, S., & Navathe, A. S. (2019). Addressing bias in artificial intelligence in
health care. JAMA, 322, 2377–2378. https://doi.org/10.1001/jama.2019.18058

14. Hammer, G. P., Du Prel, J. B., & Blettner, M. (2009). Avoiding Bias in observational studies.
Dtsch Arztebl, 106, 664–668. https://doi.org/10.3238/arztebl.2009.0664

15. Bridi, A. C., Louro, T. Q., & Da Silva, R. C. L. (2014). Clinical alarms in intensive
care: Implications of alarm fatigue for the safety of patients. Revista Latino-Americana de
Enfermagem, 22, 1034–1040. https://doi.org/10.1590/0104-1169.3488.2513

16. Thangavelu, S., Yunus, J., Ifeachor, E., et al. (2015). Responding to clinical alarms: A challenge
to users in ICU/CCU. In Proceedings – International Conference on Intelligent Systems,
Modelling and Simulation, ISMS (pp. 88–92).

17. Ancker, J. S., Edwards, A., Nosal, S., et al. (2017). Effects of workload, work complexity, and
repeated alerts on alert fatigue in a clinical decision support system. BMC Medical Informatics
and Decision Making, 17, 1–9. https://doi.org/10.1186/s12911-017-0430-8

18. Wicks, P., Liu, X., & Denniston, A. K. (2020). Going on up to the SPIRIT in AI: Will new
reporting guidelines for clinical trials of AI interventions improve their rigour? BMC Medicine,
18, 4–6. https://doi.org/10.1186/s12916-020-01754-z

19. Statement, C. (2020). The SPIRIT-AI extension. 26. https://doi.org/10.1038/s41591-020-1037-
7

20. (2020). Reporting guidelines for clinical trial reports for interventions involving artificial
intelligence: The CONSORT-AI extension. 26.

21. Sounderajah, V., Ashrafian, H., Aggarwal, R., et al. (2020). Developing specific reporting
guidelines for diagnostic accuracy studies assessing AI interventions: The STARD-AI steering
group. Nature Medicine, 26, 807. https://doi.org/10.1038/s41591-020-0941-1

22. Collins, G. S., & Moons, K. G. M. (2019). Reporting of artificial intelligence prediction
models. Lancet, 393, 1577–1579. https://doi.org/10.1016/S0140-6736(19)30037-6

23. Fleuren, L. M., Thoral, P., Shillan, D., et al. (2020). Machine learning in intensive care
medicine: Ready for take – off? Intensive Care Medicine, 46, 1486–1488. https://doi.org/
10.1007/s00134-020-06045-y

24. Deo, R. C. (2015). Basic science for clinicians. Circulation, 132, 1920–1930. https://doi.org/
10.1161/CIRCULATIONAHA.115.001593

25. Turek, M. (2020). DARPA Project Explainable Artificial Intelligence (XAI). Accessed Novem-
ber 5, 2020, from https://www.darpa.mil/program/explainable-artificial-intelligence%0A

26. Doran, C., Does, T. R. W., & Ai, E. (2018). What does explainable AI really mean? A new
conceptualization of perspectives. In CEUR Workshop Proceedings, 2071.

27. Bannach-Brown, A., Przybyła, P., Thomas, J., et al. (2019). Machine learning algorithms for
systematic review: Reducing workload in a preclinical review of animal studies and reducing
human screening error. Systematic Reviews, 8, 1–12. https://doi.org/10.1186/s13643-019-0942-
7

28. Thommandram, A., Pugh, J. E., Eklund, J. M., et al. (2013). Classifying neonatal spells using
real-time temporal analysis of physiological data streams: Algorithm development. In IEEE
EMBS Special Topics Conferenec on Point-of-Care Healthcare Technologies Synerg Towar
Better Glob Heal PHT 2013 (pp. 240–243). https://doi.org/10.1109/PHT.2013.6461329

29. Blount, M., Ebling, M., Eklund, J. M., et al. (2010). Real-time analysis for intensive care. IEEE
Engineering in Medicine and Biology Magazine, 29(2), 110–118.

https://doi.org/NBK43684
http://dx.doi.org/10.1001/jama.2019.18058
http://dx.doi.org/10.3238/arztebl.2009.0664
http://dx.doi.org/10.1590/0104-1169.3488.2513
http://dx.doi.org/10.1186/s12911-017-0430-8
http://dx.doi.org/10.1186/s12916-020-01754-z
http://dx.doi.org/10.1038/s41591-020-1037-7
http://dx.doi.org/10.1038/s41591-020-0941-1
http://dx.doi.org/10.1016/S0140-6736(19)30037-6
http://dx.doi.org/10.1007/s00134-020-06045-y
http://dx.doi.org/10.1161/CIRCULATIONAHA.115.001593
https://www.darpa.mil/program/explainable-artificial-intelligence%0A
http://dx.doi.org/10.1186/s13643-019-0942-7
http://dx.doi.org/10.1109/PHT.2013.6461329


222 R. Hagan et al.

30. Nemati, S., Holder, A., Razmi, F., et al. (2018). An interpretable machine learning model for
accurate prediction of Sepsis in the ICU. Critical Care Medicine, 46, 547–553. https://doi.org/
10.1097/CCM.0000000000002936

31. Kubat, M. (2017). An introduction to machine learning (2nd ed.). Springer.
32. Ambrosiadou, B. V., Goulis, D. G., & Pappasa, C. (1996). Clinical evaluation of the

DIABETES expert system for decision support by multiple regimen insulin dose adjustment.
Computer Methods and Programs in Biomedicine, 49, 105–115.

33. Sayadi, M., Zibaeenezhad, M., Mohammad, S., & Ayatollahi, T. (2017). Simple prediction of
type 2 diabetes mellitus via decision tree modeling. International Cardiovascular Research
Journal, 11, 71–76.

34. Kuo, H. J., Chiu, H. W., Lee, C. N., et al. (2015). Improvement in the prediction of ventilator
weaning outcomes by an artificial neural network in a medical ICU. Respiratory Care, 60,
1560–1569. https://doi.org/10.4187/respcare.03648

35. Tomašev, N., Glorot, X., Rae, J. W., et al. (2019). A clinically applicable approach to
continuous prediction of future acute kidney injury. Nature, 572, 116–119. https://doi.org/
10.1038/s41586-019-1390-1.A

36. Attia, Z. I., Noseworthy, P. A., Lopez-Jimenez, F., et al. (2019). An artificial intelligence-
enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus
rhythm: A retrospective analysis of outcome prediction. Lancet, 394, 861–867. https://doi.org/
10.1016/S0140-6736(19)31721-0

37. Montavon, G., Samek, W., & Müller, K. (2018). Methods for interpreting and under-
standing deep neural networks. Digital Signal Processing, 73, 1–15. https://doi.org/10.1016/
j.dsp.2017.10.011

38. Fritz, B. A., Cui, Z., Zhang, M., et al. (2019). Deep-learning model for predicting 30-day
postoperative mortality. British Journal of Anaesthesia, 123, 688–695. https://doi.org/10.1016/
j.bja.2019.07.025

39. Higgins, T., Freeseman-freeman, L., & Henson, K. (2019). Mews ++: Predicting clinical dete-
rioration in admitted patients using a novel inpatient deterioration: Can artificial intelligence
predict who will be transferred to the ICU? 48:2019.

40. Li, X., Xu, X., Xie, F., et al. (2020). A time-phased machine learning model for real-time
prediction of sepsis in critical care. Critical Care Medicine, E884–E888. https://doi.org/
10.1097/CCM.0000000000004494

41. Ginestra, J. C., Giannini, H. M., Schweickert, W. D., et al. (2019). Clinician percep-
tion of a machine learning-based early warning system designed to predict severe Sep-
sis and septic shock. Critical Care Medicine, 47, 1477–1484. https://doi.org/10.1097/
CCM.0000000000003803

42. Komorowski, M., Celi, L. A., Badawi, O., & Gordon, A. C. (2018). The artificial intelligence
clinician learns optimal treatment strategies for sepsis in intensive care. Nature Medicine, 24.
https://doi.org/10.1038/s41591-018-0213-5

43. Eslami, S., de Keizer, N. F., Abu-Hanna, A., et al. (2009). Effect of a clinical decision support
system on adherence to a lower tidal volume mechanical ventilation strategy. Journal of
Critical Care, 24, 523–529. https://doi.org/10.1016/j.jcrc.2008.11.006

44. Jalali, A., Bender, D., Rehman, M., et al. (2016). Advanced analytics for outcome prediction
in intensive care units. In Proceedings of Annual International Conference of the IEEE
Engineering in Medicine and Biology Society EMBS (pp. 2520–2524). https://doi.org/10.1109/
EMBC.2016.7591243

45. Che, Z., Purushotham, S., Khemani, R., & Liu, Y. (2016). Interpretable deep models for ICU
outcome prediction. In AMIA. Annual Symposium proceedings AMIA Symposium 2016 (pp.
371–380).

46. Boverman, G., & Genc, S. (2014). Prediction of mortality from respiratory distress among
long-term mechanically ventilated patients. In 2014 36th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society EMBC 2014 (pp. 3464–3467). https://
doi.org/10.1109/EMBC.2014.6944368

http://dx.doi.org/10.1097/CCM.0000000000002936
http://dx.doi.org/10.4187/respcare.03648
http://dx.doi.org/10.1038/s41586-019-1390-1.A
http://dx.doi.org/10.1016/S0140-6736(19)31721-0
http://dx.doi.org/10.1016/j.dsp.2017.10.011
http://dx.doi.org/10.1016/j.bja.2019.07.025
http://dx.doi.org/10.1097/CCM.0000000000004494
http://dx.doi.org/10.1097/CCM.0000000000003803
http://dx.doi.org/10.1038/s41591-018-0213-5
http://dx.doi.org/10.1016/j.jcrc.2008.11.006
http://dx.doi.org/10.1109/EMBC.2016.7591243
http://dx.doi.org/10.1109/EMBC.2014.6944368


Applying AI to Manage Acute and Chronic Clinical Condition 223

47. Emanet, N., Öz, H. R., Bayram, N., & Delen, D. (2014). A comparative analysis of machine
learning methods for classification type decision problems in healthcare. Decision Analysis, 1,
1–20. https://doi.org/10.1186/2193-8636-1-6

48. Florence, S., Amma, N. G. B., Annapoorani, G., & Malathi, K. (2014). Predicting the risk
of heart attacks using neural network and decision tree. International Journal of Innovative
Research in Computer and Communication Engineering, 2, 7025–7030.

49. Parreco, J., Hidalgo, A., Parks, J. J., et al. (2018). Using artificial intelligence to predict
prolonged mechanical ventilation and tracheostomy placement. The Journal of Surgical
Research, 228, 179–187. https://doi.org/10.1016/j.jss.2018.03.028

50. Hyland, S. L., Faltys, M., Hüser, M., et al. (2019). Machine learning for early prediction of
circulatory failure in the intensive care unit. Nature Medicine, 26. https://doi.org/10.1038/
s41591-020-0789-4

51. Meyer, A., Zverinski, D., Pfahringer, B., et al. (2018). Machine learning for real-time prediction
of complications in critical care: A retrospective study. The Lancet Respiratory Medicine, 6,
905–914. https://doi.org/10.1016/S2213-2600(18)30300-X

52. Harrsion, D. (2014). ICNARC. Number of mechanically ventilated patients during 2012.
53. Hagan, R., Gillan, C. J., Spence, I., et al. (2020). Comparing regression and neural network

techniques for personalized predictive analytics to promote lung protective ventilation in
intensive care units. Computers in Biology and Medicine, 126, 104030. https://doi.org/10.1016/
j.compbiomed.2020.104030

54. Gillan, C. J., Novakovic, A., Marshall, A. H., et al. (2018). Expediting assessments of database
performance for streams of respiratory parameters. Computers in Biology and Medicine, 100,
186–195. https://doi.org/10.1016/j.compbiomed.2018.05.028

55. Viceconti, M., & Hunter, P. (2016). The virtual physiological human: Ten years after. Annual
Review of Biomedical.

56. Das, A., Saffaran, S., Chikhani, M., et al. (2020). In silico modeling of coronavirus
disease 2019 acute respiratory distress syndrome: Pathophysiologic insights and potential
management implications. Critical Care Explorations, 2, e0202. https://doi.org/10.1097/
cce.0000000000000202

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://dx.doi.org/10.1186/2193-8636-1-6
http://dx.doi.org/10.1016/j.jss.2018.03.028
http://dx.doi.org/10.1038/s41591-020-0789-4
http://dx.doi.org/10.1016/S2213-2600(18)30300-X
http://dx.doi.org/10.1016/j.compbiomed.2020.104030
http://dx.doi.org/10.1016/j.compbiomed.2018.05.028
http://dx.doi.org/10.1097/cce.0000000000000202
http://creativecommons.org/licenses/by/4.0/

	Applying AI to Manage Acute and Chronic Clinical Condition
	1 Overview
	2 Intensive Care Medicine and Physiological Data
	2.1 Physiological Data Acquisition
	2.1.1 Time Series Data
	2.1.2 Publicly Available Datasets


	3 Artificial Intelligence in ICU
	3.1 Challenges
	3.1.1 Data Integrity
	3.1.2 Alert Fatigue
	3.1.3 Bringing AI Systems to Clinical Trials

	3.2 AI Methodology
	3.2.1 Expert Systems
	3.2.2 Decision Trees
	3.2.3 Ensemble Methods
	3.2.4 Neural Networks


	4 Use Case: Prediction of Tidal Volume to Promote Lung Protective Ventilation
	4.1 The ATTITUDE Study

	5 Future of ML and AI in ICU
	References


