
A Data Science Pipeline for Big Linked
Earth Observation Data

Manolis Koubarakis, Konstantina Bereta, Dimitris Bilidas,
Despina-Athanasia Pantazi, and George Stamoulis

Abstract The science of Earth observation uses satellites and other sensors to
monitor our planet, e.g., for mitigating the effects of climate change. Earth
observation data collected by satellites is a paradigmatic case of big data. Due to
programs such as Copernicus in Europe and Landsat in the United States, Earth
observation data is open and free today. Users that want to develop an application
using this data typically search within the relevant archives, discover the needed
data, process it to extract information and knowledge and integrate this information
and knowledge into their applications. In this chapter, we argue that if Earth
observation data, information and knowledge are published on the Web using the
linked data paradigm, then the data discovery, the information and knowledge
discovery, the data integration and the development of applications become much
easier. To demonstrate this, we present a data science pipeline that starts with data
in a satellite archive and ends up with a complete application using this data. We
show how to support the various stages of the data science pipeline using software
that has been developed in various FP7 and Horizon 2020 projects. As a concrete
example, our initial data comes from the Sentinel-2, Sentinel-3 and Sentinel-5P
satellite archives, and they are used in developing the Green City use case.
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1 Introduction

Earth observation (EO) is the science of using remote sensing technologies to
monitor our planet including its land, its marine environment (seas, rivers and lakes)
and its atmosphere. Satellite EO uses instruments mounted on satellite platforms
to gather imaging data capturing the characteristics of our planet. These satellite
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images are then processed to extract information and knowledge that can be used in
a variety of applications (e.g. in agriculture, insurance, emergency and security, or
the study of climate change).

Lots of EO data are available to users at no charge today, due to the imple-
mentation of international programs such as Copernicus in Europe and Landsat
in the United States. EO data is a paradigmatic case of big data bringing into
play the well-known challenges of volume, velocity, variety, veracity and value.
Regarding volume, according to the Copernicus Sentinel Data Access Annual
Report of 2019 [14], the Sentinel satellites have produced 17.23 PiBs of data
from the beginning of operations until the end of 2019. Regarding velocity, the
daily average volume of published data for the same satellites has been 18.47
TiBs for November 2019. Regarding variety, EO data become useful only when
analysed together with other sources of data (e.g. geospatial data or in situ data) and
turned into information and knowledge. This information and knowledge is also
big and similar big data challenges apply. For example, 1PB of Sentinel data may
consist of about 750,000 datasets which, when processed, about 450TB of content
information and knowledge (e.g. classes of objects detected) can be generated.
Regarding veracity, EO data sources are of varying quality, and the same holds for
the other data sources they are correlated with. Finally, the economic value of EO
data is great. The Copernicus Market Report of 2019 [15] estimates that the overall
investment of the European Union in the Copernicus program has been 8.2 billion
Euros for the years 2008–2020. For the same period, the cumulated economic value
of the program is estimated between 16.2 and 21.3 billion Euros.

Linked data is the data paradigm which studies how one can make RDF data (i.e.
data that follow the Resource Description Framework1) available on the Web and
interconnect it with other data with the aim of increasing its value. In the last few
years, linked geospatial data has received attention as researchers and practitioners
have started tapping the wealth of geospatial information available on the Web [19,
21]. As a result, the linked open data (LOD) cloud has been rapidly populated with
geospatial data, some of it describing EO products (e.g. CORINE Land Cover and
Urban Atlas published by project TELEIOS) [20]. The abundance of this data can
prove useful to the new missions (e.g. the Sentinels) as a means to increase the
usability of the millions of images and EO products that are expected to be produced
by these missions.

However, big open EO data that are currently made available by programs such
as Copernicus and Landsat are not easily accessible, as they are stored in different
data silos (e.g. the Copernicus Open Access Hub2), and in most cases users have
to access and combine data from these silos to get what they need. A solution to
this problem would be to use Semantic Web technologies in order to publish the
data contained in silos in RDF and provide semantic annotations and connections to
them so that they can be easily accessible by the users. By this way, the value of the

1 http://www.w3.org/TR/rdf-primer/.
2 https://scihub.copernicus.eu/.

http://www.w3.org/TR/rdf-primer/
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original data would be increased, encouraging the development of data processing
applications with great environmental and processing value even by users that are
not EO experts but are proficient in Semantic Web technologies.

The European project TELEIOS [20] was the first project internationally that has
introduced the linked data paradigm to the EO domain, and developed prototype
applications that are based on transforming EO products into RDF, and combining
them with linked geospatial data. The ideas of TELEIOS were adopted and extended
in the subsequent European projects LEO [8], MELODIES [7], BigDataEurope [2],
Copernicus App Lab [3] and ExtremeEarth [18].

In this chapter, we present a data science pipeline that starts with data in a satellite
archive and ends up with a complete application using this data. We show how to
support the various stages of the data science pipeline using software developed by
the above projects. As a concrete example, our initial data comes from the Sentinel-
1 and Sentinel-5 satellite archives, and the developed application is the Green City
use case we implemented in the context of project Copernicus App Lab[3].

The organization of the rest of the chapter is as follows. Section 2 introduces
the Green City use case which serves the context for our application. Section 3
gives a high level of the data science pipeline and describes its various stages. Then,
Sect. 4 describes how we have implemented the Green City use case using the linked
geospatial data software developed in the projects mentioned above. Finally, Sect. 5
summarizes the paper.

The chapter relates to the technical priority “Data Analytics” of the European Big
Data Value Strategic Research and Innovation Agenda. It addresses the horizontal
concern “Data Analytics” of the BDV Technical Reference Model. It addresses the
vertical concern “Standards”.

The chapter relates to the “Knowledge and Learning” and “Systems, Methodolo-
gies, Hardware and Tools”, cross-sectorial technology enablers of the AI, Data and
Robotics Strategic Research, Innovation and Deployment Agenda.

2 The Green City Use Case

Urban areas are the source of many of today’s environmental challenges – not
surprisingly, since two out of three Europeans live in towns and cities. Local
governments and authorities can provide the commitment and innovation needed to
tackle and resolve many of these problems. The European Commission’s European
Green Capital Award3 (EGCA), recognizes and rewards local efforts to improve the
environment, and thereby the economy and the quality of life in cities. The EGCA
is given each year to a city, which is leading the way in environmentally friendly
urban living. The award encourages cities to commit to ambitious goals for further
environmental improvement.

3 https://ec.europa.eu/environment/europeangreencapital/about-the-award/policy-guidance.

https://ec.europa.eu/environment/europeangreencapital/about-the-award/policy-guidance
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Fig. 1 A Green City map for Paris, France

Moreover, the Green City Accord4 is a movement of European mayors com-
mitted to making cities cleaner and healthier. It aims to improve the quality of life
of all Europeans and accelerate the implementation of relevant EU environmental
laws. By signing the Accord, cities commit to addressing five areas of environmental
management: air, water, nature and biodiversity, circular economy and waste, and
noise.

In order to define though how “green” a city is, one must combine various sources
of information that would allow us to measure and illustrate the greenness of each
city in Europe. In the context of the Copernicus App Lab project, we demonstrated
how one can interlink heterogeneous Earth Observation data sources and combine
this information with other geospatial data using Linked Data technologies to
produce Green City maps [3].

In Fig. 1 we show how to determine the greenness of Paris, France, by utilizing
Earth Observation data, crowd-sourced data and Linked Data technologies. To
produce this map, we combined air pollution data (NO2 concentration) with indices
that measure greenness (Leaf Area Index, OpenStreetMap Parks and CORINE Land
Cover-related classes). All sources were spatially interlinked using the geometries
of the administrative divisions of the city. Combining these diverse datasets using
Linked Data technologies allows us to produce GeoSPARQL queries that can be
visualized to construct such Green City maps for cities in Europe.

4 https://ec.europa.eu/environment/topics/urban-environment/green-city-accord_en.

https://ec.europa.eu/environment/topics/urban-environment/green-city-accord_en
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2.1 Data Sources

Sentinel data and Copernicus Services data that are currently available are not
following the linked data paradigm. They are stored in different data silos so users
might need to access and combine data from more than one source to satisfy
their user needs. Utilizing Semantic Web and Linked Data technologies to make
Copernicus Services data available as linked data increases their usability by EO
scientists but also application developers that might not be EO experts. Moreover,
the interlinking of Copernicus Services data with other relevant data sources (e.g.
GIS data, data from the European data portal, etc.) increases the value of this
data and encourages the development of applications with great environmental and
financial value.

2.2 Copernicus Sentinel Data

For the Green City use case, the most relevant Earth Observation data come from
the Land Monitoring service of Copernicus and air quality indices. To detect green
areas within a city, we used the Leaf Area Index (Sentinel-3) and the CORINE land
cover 2018 datasets (Sentinel-2 and Landsat-8). For air quality, we used the Nitrogen
Dioxide index (Sentinel-5P).

The Leaf Area Index (LAI) is defined as half the total area of green elements of
the canopy per unit horizontal ground area. The satellite-derived value corresponds
to the total green LAI of all the canopy layers, including the understory which may
represent a very significant contribution, particularly for forests. Practically, the LAI
quantifies the thickness of the vegetation cover. LAI is recognized as an Essential
Climate Variable by the Global Climate Observing System. The LAI dataset is
provided by the Copernicus Global Land Service5 and is distributed in Network
Common Data Form version 4 (netCDF4) file format.

The CORINE Land Cover (CLC) inventory was initiated in 1985 (reference year
1990). Updates have been produced in 2000, 2006, 2012 and 2018. This vector-
based dataset includes 44 land cover and land use classes. The time-series also
includes a land-change layer, highlighting changes in land cover and land use. The
high-resolution layers (HRL) are raster-based datasets which provide information
about different land cover characteristics and is complementary to land cover
mapping (e.g. CORINE) datasets. Five HRLs describe some of the main land cover
characteristics: impervious (sealed) surfaces (e.g. roads and built up areas), forest
areas, (semi-) natural grasslands, wetlands and permanent water bodies. The High-
Resolution Image Mosaic is a seamless pan-European ortho-rectified raster mosaic
based on satellite imagery covering 39 countries. The CLC dataset is provided by

5 https://land.copernicus.eu/global/products/lai.

https://land.copernicus.eu/global/products/lai
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the Copernicus Pan-European component of the Land Monitoring Service6 and is
distributed in Shapefile format.

Nitrogen dioxide (NO2) is a gaseous air pollutant composed of nitrogen and
oxygen. NO2 forms when fossil fuels such as coal, oil, gas or diesel are burned
at high temperatures. NO2 and other nitrogen oxides in the outdoor air contribute
to particle pollution and to the chemical reactions that make ozone, thus it is one
of six widespread air pollutants that have national air quality standards to limit
them in the outdoor air. The NO2 index is part of the Ozone Forecast dataset
provided by the LOTOS-EUROS team, consisting of the Netherlands Organisation
for Applied Scientific Research (TNO), the Environmental Assessment Agency of
the Dutch National Institute for Public Health and the Environment (RIVM/MNP)
and the Royal Netherlands Meteorological Institute (KNMI). The NO2 dataset was
distributed through the OPeNDAP protocol.

2.3 Other Geospatial Data

In addition to the above datasets, the Green City use case utilizes data from
OpenStreetMap and the global administrative divisions dataset GADM.

OpenStreetMap (OSM) is a collaborative project to create a free editable map of
the world. The geodata underlying the map is considered the primary output of the
project. The creation and growth of OSM has been motivated by restrictions on use
or availability of map data across much of the world, and the advent of inexpensive
portable satellite navigation devices. The project has a geographically diverse user-
base, due to emphasis of local knowledge and ground truth in the process of
data collection. Many early contributors were cyclists who survey with and for
bicyclists, charting cycleroutes and navigable trails. Others are GIS professionals
who contribute data with Esri tools. In this manner, OSM is an open and free map
of the whole world constructed by volunteers. It is available in vector format as
shapefiles from the German company Geofabrik.7 For our use case, information
about parks has been taken from this dataset.

The Global Administrative Areas (GADM) dataset is a high-resolution database
of country administrative areas, with a goal of “all countries, at all levels, at
any time period”.8 It is available in vector format as a shapefile, a geopackage
(for SQLlite3), a format for use with the programming language R, and KMZ
(compressed KML). GADM allows us to use the administrative boundaries of cities
and spatially interlink it with all the information we have from the other datasets.

6 https://land.copernicus.eu/pan-european/corine-land-cover.
7 http://download.geofabrik.de/.
8 https://gadm.org/.

https://land.copernicus.eu/pan-european/corine-land-cover
http://download.geofabrik.de/
https://gadm.org/
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3 The Data Science Pipeline

Developing a methodology and related software tools that support the complete life
cycle of linked open EO data has been studied by our group in project LEO [21]
following similar work for linked data, for example by project LOD2 and others
[1, 27]. Capturing the life cycle of open EO data and the associated entities, roles
and processes of public bodies and making available this data was the first step in
achieving LEO’s main objective of bringing the linked data paradigm to EO data
centres, and re-engineering the life cycle of open EO data based on this paradigm.
In this chapter we continue this work by presenting a data science pipeline for big
linked EO data and we apply it to the development of the Green City use case
presented in the previous section.

The life of EO data starts with its generation in the ground segment of a satellite
mission. The management of this so-called payload data is an important activity of
the ground segments of satellite missions. Figure 2 gives a high-level view of the
data science pipeline for big linked EO data as we envision it in our work. Each
phase of the pipeline and its associated software tools is discussed in more detail
below.

3.1 Ingestion, Processing, Cataloguing and Archiving

Raw data, often from multiple satellite missions, is ingested, processed, catalogued
and archived. Processing results in the creation of various standard products (Level
1, 2, etc., in EO jargon; raw data is Level 0) together with extensive metadata
describing them.

Fig. 2 The data science pipeline for big, linked EO data
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3.2 Dataset Discovery

Once data become available in an archive or on the Web, they can be accessed by
proprietary systems, traditional search engines or the Dataset Search service offered
by Google.9

For example, the Copernicus Open Access Hub currently stores products
from Sentinel-1, Sentinel-2, Sentinel-3 and Sentinel-5P missions10 and offers a
menu/map interface for searching for relevant data by date/time, area of interest,
mission, satellite platform, etc. Similar interfaces are offered by other EO data
centres hosting satellite data such as NASA11 and the German Aerospace Center
DLR.12

An interesting recent development in the area of dataset search is the devel-
opment of the service Dataset Search by Google. This service crawls the Web
retrieving metadata of datasets annotated using Schema.org vocabularies13 follow-
ing the guidelines of Google researchers.14 Schema.org was originally founded by
Google, Microsoft, Yahoo! and Yandex, and it has evolved into a community activity
developing vocabularies for annotating Web resources by an open community
process. Schema.org provides a unique structured data markup schema to annotate
a Web page with variety of tags that can be added to HTML pages as JSON-LD,
Microdata or RDFa markup. This markup allows search engines to index Web pages
more effectively.

Dataset Search also offers a keyword-based search interface for discovering these
datasets. For example, one can search for “CORINE land cover Copernicus App
Lab” to discover the CORINE land cover dataset in linked data form published on
datahub.io by our project Copernicus App Lab.15 CORINE land cover is a dataset
published by the European Environment Agency describing the land cover/land use
of geographical areas in 39 European countries.

3.3 Knowledge Discovery

In the knowledge discovery frameworks developed in project TELEIOS [12, 13],
traditional raw data processing has been augmented with content extractionmethods
that deal with the specificities of satellite images and derive image descriptors

9 https://datasetsearch.research.google.com/.
10 https://scihub.copernicus.eu/.
11 https://search.earthdata.nasa.gov/.
12 https://eoweb.dlr.de/egp/.
13 https://schema.org/.
14 https://support.google.com/webmasters/thread/1960710.
15 https://datahub.ckan.io/dataset/corine-land-cover12.

https://datasetsearch.research.google.com/
https://scihub.copernicus.eu/
https://search.earthdata.nasa.gov/
https://eoweb.dlr.de/egp/
https://schema.org/
https://support.google.com/webmasters/thread/1960710
https://datahub.ckan.io/dataset/corine-land-cover12
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(e.g. texture features, spectral characteristics of the image). Knowledge discovery
techniques combine image descriptors, image metadata and auxiliary data (e.g. GIS
data) to determine concepts from a domain ontology (e.g. park, forest, lake, etc.)
that characterize the content of an image.

Hierarchies of domain concepts are formalized using ontologies encoded in the
Web Ontology Language OWL2 and are used to annotate standard products. Anno-
tations are expressed in RDF and its geospatial extension stRDF/GeoSPARQL [23,
30] and are made available as linked data so that they can be easily combined
with other publicly available linked data sources (e.g. GeoNames, OpenStreetMap,
DBpedia) to allow for the expression of rich user queries.

3.4 Transformation into RDF

This phase transforms vector or raster EO data from their standard formats (e.g.
ESRI Shapefile or NetCDF) into RDF.

In FP7 project LEO we developed the tool GeoTriples for transforming EO data
and geospatial data into RDF [26]. GeoTriples is able to deal with vector data and
their metadata and to support natively many popular geospatial data formats (e.g.
shapefiles, spatially enabled DBMS, KML, GeoJSON, etc.) The mapping generator
of GeoTriples employs the mapping languages R2RML [10] and RML [11] to create
mappings that dictate the method of conversion of the raw data into RDF.

R2RML is a language for expressing mappings from relational data to RDF
terms, and RML is a more general language for expressing mappings from files
of different formats (e.g. CSV, XML, etc.) to RDF. The mappings are enriched with
subject and predicate object maps in order to properly deal with the specifics of
geospatial data and represent it using an appropriate ontology.

GeoTriples is an open-source tool16 that is distributed freely according to the
Mozilla Public License v2.0.

3.5 Interlinking

This is a very important phase in the linked EO data life cycle since a lot of the value
of linked data comes through connecting seemingly disparate data sources to each
other.

Starting in our project LEO, we have worked on interlinking of open EO data
by discovering geospatial or temporal semantic links. For example, in linked EO
datasets, it is often useful to discover links involving topological relationships, for
example A geo:sfContains F, where A is the area covered by a remotely

16 http://geotriples.di.uoa.gr/.

http://geotriples.di.uoa.gr/
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sensed multispectral image I, F is a geographical feature of interest (field, lake,
city, etc.) and geo:sfContains is a topological relationship from the topology
vocabulary extension of GeoSPARQL. The existence of this link might indicate that
I is an appropriate image for studying certain properties of F.

In LEO we have dealt with these issues by extending the well-known link
discovery tool Silk in order to be able to discover precise geospatial and temporal
links among RDF data published using the tool GeoTriples. The extension of Silk
that we developed is now included in the main version. Since then other tools
that carry out the same task more efficiently have been developed, for example
Radon [32]. A recent comparison of geospatial interlinking systems is presented
in [31].

3.6 Publishing

This phase makes linked EO data publicly available in the LOD cloud or in open
data platforms such as datahub.io using well-known data repository technologies
such as CKAN. In this way, others can discover and share this data and duplication
of effort is avoided.

3.7 Storage and Querying

This phase deals with storing all relevant EO data and metadata on persistent storage
so they can be readily available for querying in subsequent phases.

In our projects we have used our own spatiotemporal RDF store Strabon17 which
was developed especially for this purpose [24]. Strabon supports the data model
stRDF and the query language stSPARQL developed by our group.

stRDF is an extension of RDF that allows the representation of geospatial data
that changes over time [5, 25]. stRDF is accompanied by stSPARQL, an extension of
the query language SPARQL 1.1 for querying and updating stRDF data. stRDF and
stSPARQL use OGC standards (WKT and GML) for the representation of temporal
and geospatial data.

Strabon extends the well-known open-source RDF store Sesame 2.6.3 and uses
PostgreSQL or MonetDB as the backend spatially enabled DBMS. As shown by
our experiments in [5, 16, 17, 25], Strabon is currently the most functional and
performant geospatial and temporal RDF store available.

Strabon also supports the Open Geospatial Consortium (OGC) standard
GeoSPARQL [30] for querying geospatial data encoded in RDF. stSPARQL
and GeoSPARQL are very similar languages although they have been developed

17 http://strabon.di.uoa.gr.

http://strabon.di.uoa.gr
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independently. Strictly speaking, if we omit aggregate geospatial functions from
stSPARQL, the geospatial component of GeoSPARQL offers more expressive
power than the corresponding component of stSPARQL. However, GeoSPARQL
does not support a temporal dimension to capture the valid time of triples as
stSPARQL does.

In our work stRDF has been used to represent satellite image metadata (e.g. time
of acquisition, geographical coverage), knowledge extracted from satellite images
(e.g. a certain area is a park) and auxiliary geospatial data sets encoded as linked
data. One can then use stSPARQL to express in a single query an information
request such as the following: “Find an image taken by a Meteosat second
generation satellite on August 25, 2007, which covers the area of Peloponnese and
contains hotspots corresponding to forest fires located within 2 km from a major
archaeological site.” Encoding this information request today in a typical interface to
an EO data archive such as the ones discussed above is impossible, because domain-
specific concepts such as “forest fires” are not included in the archive metadata, thus
they cannot be used as search criteria.

With the techniques of knowledge discovery developed in our projects, we
can characterize satellite image regions with concepts from appropriate ontologies
(e.g. landcover ontologies with concepts such as waterbody, lake and forest, or
environmental monitoring ontologies with concepts such as forest fires and flood)
[13, 22]. These concepts are encoded in OWL2 ontologies and are used to annotate
EO products. Thus, we attempt to close the semantic gap that exists between user
requests and searchable information available explicitly in the archive.

But even if semantic information was included in the archived annotations, one
would need to join it with information obtained from auxiliary data sources to
answer the above query. Although such open sources of data are available to EO
data centres, they are not used currently to support sophisticated ways of end-
user querying in Web interfaces such as the ones discussed above under “Dataset
Discovery”. In our work, we have assumed that auxiliary data sources, especially
geospatial ones, are encoded in stRDF and are available as linked geospatial data,
thus stSPARQL can easily be used to express information requests such as the
above.

In some applications it might not be a good idea to transform existing geospatial
data into RDF and then store it in a triple store such as Strabon (e.g. when
such data get frequently updated and/or are very large or when the data owners
choose not to do so). For this case, we have developed the system Ontop-
spatial,18 which is a geospatial extension of the ontology-based data access (OBDA)
system Ontop [9]. Ontop performs on-the-fly SPARQL-to-SQL translation on
top of relational databases using ontologies and mappings. Ontop-spatial extends
Ontop by enabling on-the-fly GeoSPARQL-to-SQL translation on top of geospatial
databases [4, 6]. Ontop-spatial allows geospatial data to remain in their original

18 http://ontop-spatial.di.uoa.gr.

http://ontop-spatial.di.uoa.gr
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databases (e.g. PostGIS, SpatiaLite, Oracle Spatial and Graph) and enables them to
be queried effectively and efficiently using GeoSPARQL and the OBDA paradigm.

3.8 Search/Browse/Explore/Visualize

This phase enables users to find and explore the data they need and start developing
interesting applications.

In FP7 project LEO, we redesigned the tool Sextant [28] for such purposes and
also developed a mobile version that is distributed as an APK file for Android
OS. The new version of Sextant is a web-based and mobile-ready application for
exploring, interacting and visualizing time-evolving linked geospatial data.

Sextant was designed as an open-source application19 that is flexible, portable
and interoperable with other GIS tools. This allows us to use it as a core building
block for creating new web or mobile applications, utilizing the provided features.
The core feature of Sextant is the ability to create thematic maps by combining
geospatial and temporal information that exists in a number of heterogeneous data
sources ranging from standard SPARQL endpoints to SPARQL endpoints following
the standard GeoSPARQL defined by the OGC, or well-adopted geospatial file
formats, like KML, GML and GeoTIFF. In this manner we provide functionality
to domain experts from different fields in creating thematic maps, which emphasize
spatial variation of one or a small number of geographic distributions. Each thematic
map is represented using a map ontology that assists on modelling these maps in
RDF and allows for easy sharing, editing and search mechanisms over existing
maps.

4 Implementing the Green City Use Case Using Linked
Geospatial Data Software

In this section we present the implementation of the Green City use case using
the pipeline of the previous section and the relevant software for each stage of the
pipeline.

4.1 Ingestion

In Green City use case, access to Copernicus data and information was achieved
in two ways: (1) by downloading the data via the Copernicus Open Access Hub or

19 http://sextant.di.uoa.gr/.

http://sextant.di.uoa.gr/
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the Websites of individual Copernicus services, and (2) via the popular OPeNDAP
framework20 for accessing scientific data.

4.2 Dataset Discovery

The Copernicus Open Access Hub21 offers access to Sentinel data, using a simple
graphical interface that enables users to specify the extent of the geographical area
one is interested in. In the Green City use case though, we mainly used data from the
Land Monitoring service that processes Copernicus data and produces higher-level
products that are of importance in the corresponding thematic area. To detect green
areas within the cities, we used the Leaf Area Index dataset, produced by Sentinel-
3 data, and the CORINE land cover dataset for 2018, produced by Sentinel-2 and
Landsat-8 (gap filling) data. For air quality, we used the Nitrogen Dioxide index,
produced by Sentinel-5p data. Moreover, we used data from OpenStreetMap (OSM)
and the Database of Global Administrative Areas (GADM).

4.3 Knowledge Discovery

Although in the Green City use case this step of the pipeline was not needed, it is a
very crucial step that allows us to discover knowledge hidden in the EO images and
use ontologies to describe this knowledge. Such techniques were used in the context
of the projects TELEIOS and ExtremeEarth by our group in collaboration with
Remote Sensing scientists. In TELEIOS, colleagues from the National Observatory
of Athens developed algorithms to detect fires in SEVIRI images in the context of a
fire monitoring application [20]. In ExtremeEarth, colleagues from the University of
Trento perform the accurate crop type mapping needed the Food Security use case,
using a deep learning architecture for Sentinel-2 images [29].

4.4 Transformation into RDF

In this stage of the pipeline, the outputs of the previous two stages are transformed
into RDF, so that they can be combined with other interesting linked geospatial
data. In the Green City use case, RDF is used to represent Earth Observation
data produced by the Copernicus Land Monitoring service, air quality indices,

20 https://www.opendap.org/.
21 https://scihub.copernicus.eu/.

https://www.opendap.org/
https://scihub.copernicus.eu/
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OpenStreetMap data and data from the database of Global Administrative Areas,
as described in Sect. 4.2.

To transform the mentioned data into RDF, we developed INSPIRE-compliant
ontologies. In the process of constructing ontologies to model Copernicus and other
geospatial data, our aim is to provide standard-compliant, reusable and extensible
ontologies. In this direction, we opted to follow vocabularies that have been defined
in well-established standards, such as the INSPIRE directives and the OGC.

The INSPIRE directive aims to create an interoperable spatial data infrastructure
for the European Union, to enable the sharing of spatial information among public
sector organizations and better facilitate public access to spatial information across
Europe.22 INSPIRE-compliant ontologies are ontologies which conform to the
INSPIRE requirements and recommendations. Our initial approach was to reuse
existing INSPIRE-compliant ontologies, but since these efforts are not as close
to the INSPIRE specifications as we would like to, we decided to construct our
own INSPIRE-compliant versions, following the data specifications as closely as
possible. Our aim is to reuse these ontologies for other datasets that belong to
the same INSPIRE themes and also publish them so that others can reuse these
ontologies for their geospatial datasets as well.

The ontologies we constructed for the Green City use case are the following:

• The ontology for the global database of Leaf Area Index (LAI), as shown in the
link: http://pyravlos-vm5.di.uoa.gr/laiOntology.png.

• The CORINE Land Cover (CLC) ontology, included in the link http://pyravlos-
vm5.di.uoa.gr/corineLandCover.svg, shows the ontology constructed for the
CLC dataset. The ontology is a specialization of the general ontology that we
constructed to model the respective Land Cover theme of INSPIRE so that we
have the first INSPIRE-compliant ontology.

• The ontology for the Ozone Forecast dataset, including the NO2 index, as
described in this link:
http://pyravlos-vm5.di.uoa.gr/atmosphereTimeSeriesOntology.png.

• The OpenStreetMap (OSM) ontology, as shown in this figure: http://sites.
pyravlos.di.uoa.gr/dragonOSM.svg.

• The ontology for the Database of Global Administrative Areas (GADM),
included in this link: http://pyravlos-vm5.di.uoa.gr/gadmOntology.png.

Figure 3 provides the ontology we constructed for the GADM dataset. To
construct this ontology, we extended the GeoSPARQL ontology (namespaces sf
and geo). For the class and properties that we introduced we use the prefix gadm.23

The GADM ontology can be used so that a GADM dataset24 can be either converted
into RDF or queried on-the-fly.

22 https://inspire.ec.europa.eu.
23 The corresponding namespace is: http://www.app-lab.eu/gadm/.
24 https://gadm.org/data.html.

http://pyravlos-vm5.di.uoa.gr/laiOntology.png
http://pyravlos-vm5.di.uoa.gr/corineLandCover.svg
http://pyravlos-vm5.di.uoa.gr/corineLandCover.svg
http://pyravlos-vm5.di.uoa.gr/atmosphereTimeSeriesOntology.png
http://sites.pyravlos.di.uoa.gr/dragonOSM.svg
http://sites.pyravlos.di.uoa.gr/dragonOSM.svg
http://pyravlos-vm5.di.uoa.gr/gadmOntology.png
https://inspire.ec.europa.eu
http://www.app-lab.eu/gadm/
https://gadm.org/data.html
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For the transformation of the aforementioned datasets, we use the tool GeoTriples
that automatically produces RDF graphs according to a given ontology. Shapefiles
along with corresponding ontologies are provided as input to GeoTriples, which
automatically creates R2RML or RML mappings that dictate the method of
conversion of data into the RDF data model. Spatial information is mapped into
RDF according to the GeoSPARQL vocabulary. Since GeoTriples does not support
NetCDF files as input, in the case of the LAI dataset, the translation into RDF was
done by writing a custom Python script.

It is very important to make the above datasets available on the Web as linked
data, in order to increase their use, as, in this way, they can be made “interoperable”
and more valuable when they are linked together. To achieve this goal, we followed
Google Dataset Search guidelines and annotated all the datasets of the Green City
use case by using the markup format JSON-LD. All these datasets can be searched
and found using Google Dataset Search.

4.5 Storage/Querying

For storage and querying, we used the tools Strabon and Ontop-spatial. The
spatiotemporal RDF store Strabon and the query languages stSPARQL and
GeoSPARQL are used for storage and querying linked geospatial data originating
from transforming EO products into RDF.

Strabon was utilized to create the SPARQL endpoints for the GADM, CLC 2018
and OSM parks data sources that are originally distributed in vector formats and are
not updated frequently. For example, assuming appropriate PREFIX definitions, the
GeoSPARQL query shown in Listing 1 retrieves how many CORINE areas in Paris
belong to every land use category and projects the union of the geometries of these
areas per category.

Listing 1 CORINE areas in Paris for every land cover category and their geometries

SELECT DISTINCT ?landUse (strdf:union(?w3) as ?geo) (count(?c) as
?instances)

WHERE{
?adm rdf:type gadm:AdministrativeUnit .
?adm gadm:hasName ?name .
?adm gadm:belongsToAdm2 ?adm2 .
?adm2 gadm:hasName

"Paris"^^<http://www.w3.org/2001/XMLSchema#string> .
?adm geo:hasGeometry ?geo2 .
?geo2 geo:asWKT ?w2 .
?c corine:hasLandUse ?landUse .
?c geo:hasGeometry ?geo3 .
?geo3 geo:asWKT ?w3 .
FILTER(geof:sfIntersects(?w2,?w3))}

GROUP BY ?landUse
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For the rest of the data sources (LAI and NO2) that are updated regularly and
are distributed in raster formats, we chose to use Ontop-spatial. This solution does
not require the transformation of the source data into RDF and allows us to create
virtual RDF graphs on top of geospatial databases and data delivered through the
OPeNDAP protocol, so they can be readily available for querying. In this case, the
developer has to write R2RML mappings expressing the correspondence between
a data source and classes/properties in the corresponding ontology. An example of
such a mapping is provided in Listing 2, in the native mapping language of Ontop-
spatial which is less verbose than R2RML.

Listing 2 Example of mappings

mappingId opendap_mapping
target lai:{id} rdf:type lai:Observation .

lai:{id} lai:lai {LAI}^^xsd:float;
time:hasTime {ts}^^xsd:dateTime .

lai:{id} geo:hasGeometry _:g .
_:g geo:asWKT {loc}^^geo:wktLiteral .

source SELECT id, LAI, ts, loc
FROM (ordered opendap
url:https://analytics.ramani.ujuizi.com/
thredds/dodsC/Copernicus-Land-timeseries-
global-LAI%29/readdods/LAI/, 10)
WHERE LAI > 0

In the example mappings shown in Listing 2, the source is the LAI dataset
discussed above, while the target part of the mapping encodes how the relational
data is mapped into RDF terms. Given the mapping provided above, we can pose
the GeoSPARQL query provided in Listing 3 to retrieve the LAI values and the
geometries of the corresponding areas.

Listing 3 Query retrieving LAI values and locations

SELECT DISTINCT ?s ?wkt ?lai
WHERE { ?s lai:hasLai ?lai .

?s geo:hasGeometry ?g .
?g geo:asWKT ?wkt }

4.6 Publishing

Some of the RDF datasets that are used in the Green City use case have been
published in the datahub https://datahub.ckan.io/organization/app-lab.

https://datahub.ckan.io/organization/app-lab
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4.7 Interlinking

In the Green City use case, combining information from different geospatial sources
was crucial, as we needed to spatially interlink the administrative divisions of a
city with the EO data and OSM parks. We address this issue by employing the
geospatial and temporal component of the framework Silk,25 which is a component
that enables users to discover a wide variety of spatial and temporal relations, such
as intersects, contains, before, and during, between different sources of data.

To retrieve features for which a spatial relation holds (e.g., intersection and
containment), we ask Silk to search for these relations between two RDF data
sources given the relations’ definitions. The outcome contains all of the entities for
which the relations hold. For example, to interlink the CLC and the GADM datasets,
a CLC class that intersects an administrative division is interlinked with it with the
property geo:sfIntersects. The discovered relations are then materialized in the RDF
store, resulting in a more semantically informative dataset.

Interlinking with topological and temporal relations can be used to considerably
decrease the query response time by replacing the spatial and temporal functions
with the respective bindings. For example, we can pose a SPARQL query by
replacing the function geof:sfIntersects with the triple pattern ?clc geo:sfIntersects
?ad, as the geospatial features for which the relation geo:sfIntersects holds have
already been discovered, and the evaluation engine would simply have to retrieve
the respective bindings instead of calculating the spatial filter.

4.8 Exploration and Visualization

In order to visualize the Green City use case, we used the tool Sextant to create
a map for the city of Paris, France. We used Sextant to build a temporal map that
shows the “greenness” of Paris, using the datasets LAI, GADM, CLC 2018, NO2
and OSM. We show how the LAI values change over time in each administrative
area of Paris and correlate these readings with the land cover of each area taken
from the CORINE land cover dataset. This allows us to explain the differences in
LAI values over different areas. For example, Paris areas belonging to the CORINE
land cover class clc:greenUrbanAreas overlap with parks in OpenStreetMap and
show higher LAI values over time than industrial areas.

Sextant allows us to pose GeoSPARQL/stSPARQL queries to SPARQL end-
points and visualize the results as layers on the map. Utilizing this feature, we
created the thematic map for Paris26 shown in Fig. 4, which consists of six layers:

25 http://silk.wbsg.de.
26 http://test.strabon.di.uoa.gr/SextantOL3/?mapid=mpm2tf7ha6ai5f78_.

http://silk.wbsg.de
http://test.strabon.di.uoa.gr/SextantOL3/?mapid=mpm2tf7ha6ai5f78_
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• GADM Paris. This layer shows us the different divisions of Paris and how
“green” each part of the city is.

• Instances per CLC category. This layer shows us the different CLC classes that
spatially intersect with the divisions on the city.

• LAI. This temporal layer consists of the different mean LAI values for area of
Paris, for the months June–August 2017. The dots on the map are the centroids of
300×300 m areas that correspond to the pixel of the satellite image that contains
the observation.

• Mean LAI per Administrative Unit. This is a statistical visualization layer, that
shows us the mean LAI value for the time period of observation, for each division
of Paris.

• OSM Parks. This layer shows us the parks that spatially intersect with the
divisions of Paris.

• NO2. This layer consists of the NO2 mean concentration values for the area of
Paris, for the observed time period.

5 Summary

We presented a data science pipeline for big, linked and open EO data and showed
how this pipeline can be used to develop a Green City use case. The pipeline is
implemented using the software developed in five FP7 and Horizon 2020 projects
(TELEIOS, LEO, Melodies, Optique and Copernicus App Lab). The work presented
in this chapter is now continued in the Horizon 2020 project ExtremeEarth, where
we develop deep learning and big data techniques for Copernicus data in the context
of two use cases: Food Security and Polar.

Acknowledgments This work has been funded by the FP7 projects TELEIOS (257662), LEO
(611141), MELODIES (603525) and the H2020 project Copernicus App Lab (730124).
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