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Abstract Data enrichment is a critical task in the data preparation process in
which a dataset is extended with additional information from various sources to
perform analyses or add meaningful context. Facilitating the enrichment process
design for data workers and supporting its execution on large datasets are only
supported to a limited extent by existing solutions. Harnessing semantics at scale
can be a crucial factor in effectively addressing this challenge. This chapter presents
a comprehensive approach covering both design- and run-time aspects of tabular
data enrichment and discusses our experience in making this process scalable. We
illustrate how data enrichment steps of a Big Data pipeline can be implemented via
tabular transformations exploiting semantic table annotation methods and discuss
techniques devised to support the enactment of the resulting process on large tabular
datasets. Furthermore, we present results from experimental evaluations in which we
tested the scalability and run-time efficiency of the proposed cloud-based approach,
enriching massive datasets with promising performance.

Keywords Big data processing · Data integration · Data enrichment · Data
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1 Introduction

Big Data and Business Analytics are among the main value-creating assets for
private companies and public institutions—estimates indicate yearly earnings in
the order of 274 billion dollars by 2022 [1]. This is made possible by theoretical
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Fig. 1 Infographic representing the main stages of a data project and the related stakeholders

and practical advancements for processing massive amounts of data and developing
highly accurate and effective decision-making processes via analytical models.
However, very different time frame and effort are required to commission each
phase of a data-driven project, which includes, as its primary stages, data acqui-
sition, extraction, cleaning, integration/enrichment, and data analysis and results
visualization [2]. Remarkably, the data preparation stage (which encompasses data
transformations that also cover cleaning and integration/enrichment) takes up to
80% of the time required by a project. Only the remaining 20% of the time is
spent on data analysis and exploration [3]. Such an imbalance (see Fig. 1) poses
a problem that gets increasingly more severe with the progressive growth of volume
and variability of the involved data [4]. This issue is now widely recognized and
needs appropriate tools and methodologies, especially to support the crucial step of
data enrichment.

Data enrichment is a specific data integration problem where a dataset that the
user (typically a data engineer/scientist) knows is extended with additional infor-
mation coming from external, possibly unknown, sources. Intuitively, enrichment
requires reconciliation between values in the main and the external sources to fetch
related data from the latter and extend the former. Data enrichment is often pivotal in
analytics projects where the model might benefit from features that are not present
in the main dataset, e.g., weather-based analysis of digital marketing campaign
performance [5]. In recent years, a number of proposals have been presented,
both academic and business related, to help data workers in the data preparation
phase and, more specifically, in data enrichment tasks; many proposals involve the
adoption of semantic techniques.

Semantics play an increasingly important role in Big Data, and, more specifically,
in Big Data enrichment, as also acknowledged by the European Big Data Value
Strategic Research and Innovation Agenda [2], and dedicated special issues in
scientific journals [6–8]. A semantic paradigm that has gained popularity is based
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on Knowledge Graphs (KGs), which provide graph structures where entities are
interconnected and classified. Semantic web technologies support the publication of
KGs with standards and shared vocabularies that facilitate access and manipulation
of knowledge via web protocols. Several approaches have been proposed to integrate
data in different Knowledge Graphs, e.g., using entity reconciliation techniques [6].
However, in most data analytics problems, the user starts with some source legacy
dataset that is not structured as a KG. Therefore, approaches have been proposed
to transform legacy datasets by giving them a graph structure enriched with shared
vocabularies, and, possibly, with background knowledge already available in a graph
structure [9]. Such a transformation process is a complex task that can be (partly)
sustained by semantic table interpretation [10] and annotation approaches. These
approaches aim at mapping an initial relational table to the schema of a reference
KG and finally linking values in the source table to entities in the KG [11, 12]. In
this case, the focus of the interpretation algorithm is to automatically provide an
annotation that enables the fusion of the source table with information in the target
KG (e.g., a large and cross-domain information source like Wikidata), aiming at
delivering an enriched KG. DAGOBAH [13] is an example of such an algorithm.

In this work, we leverage and take existing work on semantic table interpretation
a step forward. We argue that semantic table annotation can provide a valuable
paradigm to support data enrichment, modularly and at scale, in a much wider
number of scenarios, including when the final objective is to enrich datasets, and
not to their transformation into Knowledge Graphs. With modularly, we mean that
the paradigm can be implemented by an ecosystem of services that provide access to
different Knowledge Graphs to support automatic entity linking and data extensions.
Automation is a key factor for managing large volumes of data and reaching the at
scale dimension under certain assumptions that we discuss in this chapter.

We propose a comprehensive approach and a scalable solution to provide data
workers with suitable tools to (1) interactively design transformation pipelines on
datasets in tabular format, including semantic enrichment using curated knowledge
bases (general purpose or domain specific), and (2) deploy and run such pipelines
against massive datasets taking full advantage of the potential of scalability offered
by modern Cloud services. Most of the related work in this field tackles the problem
of automatically inferring the annotations that encode the semantics of a table.
However, the primary contribution of this work consists of addressing the issue of
implementing reconciliation and extension mechanisms to support both interactive
data enrichment on small-size tabular datasets and automatic execution on massive
workloads. To this end, we devised a two-phase approach and a service-oriented
architecture to support it, whose engine consists of a collection of reconciliation and
extension microservices implementing an open interface that can easily be scaled up
to manage larger datasets.

To demonstrate the suitability of the proposed approach, we created both general-
purpose services for linked data and specialized ones (for instance, for geographical
toponyms, weather, and events), which support industry-driven analytic projects
that motivated our work and guided a rigorous activity of requirements elicitation
[14]. We used these services and business datasets to evaluate the efficiency of
the proposed methods, achieving promising results (namely, linear scalability and



22 M. Ciavotta et al.

a performance boost ranging from 4× to 770× over a baseline). Finally, we
discuss the current limitations, which point to open issues in making semantic table
enrichment approaches applicable at the Big Data scale. In this context, this chapter
contributes to a better understanding of the role and challenges of semantics in
supporting data enrichment, provides an approach and the corresponding implemen-
tation for semantic enrichment of tabular data at scale (thus, contributing to the Data
Management and Data Processing Architectures horizontal concerns of the BDV
Technical Reference Model [2] and to the Knowledge and Learning cross-sectorial
technology enablers of the AI, Data and Robotics Strategic Research, Innovation
and Deployment Agenda [15]), reports on the lessons learned in developing the
solution, and presents the open problems for future research in the field of scalable
semantic enrichment.

Ultimately, the proposed solution aims at filling an existing gap between
technologies available today to support data enrichment at scale. This is a process
where a natively semantic task like entity reconciliation plays a crucial role and
semantics (especially KGs) are a facilitator of the enrichment process. Indeed, some
tools provide users with user-friendly functionalities for data preparation, but few
offer semantic support. The few solutions that offer such support (e.g., OpenRefine)1

essentially cover the needs of the exploratory phases of a project by supporting
manual transformation and enrichment of datasets. However, they neglect the life-
cycle management needed to implement and run production-ready data pipelines
and ensure scalability for large volumes of data. On the other hand, tools that
provide support for running pipelines on large volumes of data are designed for
users who are familiar with programming and process definition and are, therefore,
unsuitable for use by data scientists [16]. Furthermore, these solutions, while often
offering a wide variety of configurable components to create data pipelines, are
poorly designed to incorporate user-specific knowledge, which is often essential to
perform data reconciliation tasks effectively.

The rest of the chapter is structured as follows. Section 2 provides a discussion
of the main design principles that have driven the definition of the architecture. The
components of the platform and the workflow are discussed in Sect. 3. Section 4
illustrates experiments with datasets of different sizes. Finally, a review of the state
of the art is reported in Sect. 5, and Sect. 6 concludes the chapter.

2 A Two-Phase Approach

Before discussing the proposed solution for data manipulation and enrichment
at scale, we introduce a real-life analytics use case consisting of different data
manipulation and enrichment tasks to motivate the principles that guided the
formulation of the approach.

1 http://openrefine.org

http://openrefine.org


Supporting Semantic Data Enrichment at Scale 23

2.1 Scenario: Weather-Based Digital Marketing Analytics

The JOT Internet Media (JOT)2 company is analyzing the performance of its digital
marketing campaigns using reports from Google AdWords (GAW), and needs to
aggregate data on performance (e.g., impressions and clicks) by city, region, or
country. Furthermore, JOT, seeking to boost the effectiveness of future advertising
campaigns, is interested in investigating the effect of weather on the performance of
its campaigns at a regional level, and in training a machine learning model able to
predict the most suitable moment to launch a campaign. To train the model and run
the analytics, JOT aims to use 3 years of historical data concerning the performance
of keywords used in previous campaigns.

The first step might be to enrich the GAW report (the white columns in Table 1)
directly with weather data. In this scenario, JOT would access the European Centre
for Medium-Range Weather Forecasts (ECMWF)3 service that provides current
forecasts, queryable using geographic bounding boxes and ISO 8601 formatted
dates. Since both properties are missing in the original dataset, JOT has to first add
them to the dataset. The ISO-formatted date can be easily obtained by applying a
data transformation function to the date column (and adding the rightmost column
in Table 1). Thus, the next step will be to extend the dataset with GeoNames (GN)
identifiers for all mentioned locations. This operation requires to match the region
labels adopted by GAW (Google GeoTargets labels) with GN identifiers, which are
used in turn to geolocate the regions. Henceforth, this process is referred to as data
reconciliation and represents a fundamental stage in the enrichment pipeline. Once
the working dataset locations have been reconciled against GN (adding the fifth
column in Table 1), it is possible to perform the extension step where the ECMWF
is queried to collect the desired weather-related information (and add the sixth and
seventh columns in Table 1). The reconciled and extended data are now suitable for
performing the desired analysis.

Table 1 JOT dataset enriched with data from GN and ECMWF

Keyword ID Clicks City Region Region

ID (GN)

Temp.

(WS)

Prec.

(WS)

Date Date
(ISO)

194906 64Altenburg Thuringia 2822542 287.70 0.08 06/09/2017 2017-09-06

517827 50Ingolstadt Bavaria 2951839 288.18 0.02 06/09/2017 2017-09-06

459143 42Berlin Berlin 2950157 290.48 0.00 06/09/2017 2017-09-06

891139 36Munich Bavaria 2951839 288.18 0.02 06/09/2017 2017-09-06

459143 30Nuremberg Bavaria 2951839 288.18 0.02 06/09/2017 2017-09-06
Colored columns are appended by different functions: transformation (Date), reconciliation
(Region ID), and extension (Temp., Prec.)

2 https://www.jot-im.com
3 https://www.ecmwf.int

https://www.jot-im.com
https://www.ecmwf.int
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Fig. 2 Semantics for data enrichment

2.2 Semantics as the Enrichment Enabler

As demonstrated by the above scenario, data enrichment plays a critical role in
the preparation phase of many analytics pipelines, since it can add contextual
information to the original dataset to build more effective models.

In the integration of relational datasets, traditional approaches (e.g., record
linkage) have proven to be appropriate when the entity values of the involved
schemas are compatible (e.g., they feature the same date format). In a more general
scenario, however, the user is interested in enriching a dataset (known to the user)
by fetching additional information from external datasets (possibly unknown to the
user) that only relate semantically with the working dataset. This means that, in
general, the terms of the schema and the values of the entities belong to different
(possibly implicit) vocabularies or Knowledge Bases (KBs). The role of semantic
approaches in such a process is to lift the latent semantics of records and metadata
to support the integration of otherwise incompatible data sources.

In our use case, a semantic approach allows JOT to link the company dataset to
the ECMWF data source by using a system of identifiers provided by a reference KB
(i.e., GN). In this specific example, the reconciliation is performed directly against
GN (see Fig. 2). In a more general case, it can happen that the data sources involved
refer to different KBs; therefore, the KBs exploited for reconciliation need to be
interlinked (e.g., using the sameAs predicate) to enable integration.

2.3 Challenges

Three main challenges emerge from the above scenario; indeed, the JOT data
scientists have to: (1) investigate how to reconcile locations to GN, i.e., they need
to look for a service that meets this requirement (suitable for users familiar with
programming languages), or to check out the Knowledge Base (KB) that describes
GN and build an ad hoc reconciliation service (suitable for users experienced in



Supporting Semantic Data Enrichment at Scale 25

semantics and the geospatial domain); (2) query a ECMWF endpoint, i.e., they
must look for the API documentation (usually geared towards users familiar with
programming languages, less applicable to data scientists and domain experts);
(3) come up with a scalable architectural solution able to manage and efficiently
enrich the whole dataset, meeting possible time constraints. Specifically, since the
enrichment process would unavoidably lead to querying external services, efficiency
constraints require an effective solution to network latency issues that represent a
bottleneck when a large number of API requests have to be issued.

In summary, the key features required to support the design and execution of
enrichment-based data transformation at scale can be summarized as follows:

• Column values reconciliation against a reference KB, e.g., matching the spatial
references adopted in the source dataset against the system of spatial identifiers
adopted by the weather service.

• Data extension based on the reconciliation results, which represents the bridge
between the dataset at hand and a reference KB. The extension could add one or
more columns to the original dataset.

• An approach that supports the development of a user-friendly environment to
design the reconciliation/extension process, and a scalable platform to execute it
on massive input datasets.

2.4 Approach Overview

The approach we propose in this work is mainly based on a small-scale design/full-
scale execution principle, harnessing semantics to support the reconciliation tasks
in data enrichment. A high-level description of the approach is sketched in Fig. 3.
The driving principle is to separate the transformation process into two phases: the
design phase, where the user defines the transformation pipeline by working on a
sample and produces a transformation model (i.e., an executable representation of
the transformation pipeline), and the processing phase, where the model is executed
against the original dataset to obtain an enriched version of it to feed the analytical
activities. Both phases rely on external data sources (e.g., GN and ECMWF) to
support reconciliation and extension activities.

A fully automated approach is unsuitable from a user perspective since it would
entirely remove the operator control over the process and results. In processes
where the matching phase is performed based on semantics, the contribution of the
knowledge and experience of a domain expert can impact the final dataset quality.
Therefore, complete automation would entail a substantial risk of generating low-
quality results and, consequently, be of little use. For this reason, the approach gives
full control over the definition of the transformations to the user while automating
the enactment of the resulting process. The role of the human in the design phase is
to define the pipeline steps over a smaller dataset so that she can control the resulting
quality (e.g., they can avoid misinterpretations). In this scenario, the approach
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Fig. 3 Summary of design/processing approach

envisions computer-aided support tools offered as a service (the reader is referred to
Sect. 3 for more details on the proposed solution) to guide the user in the pipeline
composition, facilitating the process and reducing the need for strong programming
skills. Once the transformation process has been defined, a full-scale processing
phase, where the choices of the operator are packed within an executable artifact
and run in batch mode over a different (possibly larger) dataset (Fig. 3), takes place.

As for the design phase, the approach proposes a reference implementation
for the pipeline execution environment (see Sect. 3 for more details). Notice
that featuring independent design and execution improves the efficiency of data
management while mitigating confidentiality issues. Since the design phase exploits
only a sample, the limited quantity of data to be transferred and manipulated
simplifies the support system from an architectural and operational point of view (in
practice, data would be handled by browsers on regular hardware) and reduces the
risk of leakage of confidential information that might arise whenever full datasets
are exposed. The full-scale execution phase can be performed on-premise, thus
exploiting corporate infrastructure and tools, without the need for moving the data.
Further details on the two phases are summarized as follows.

Design Phase In the design phase, the operator designing the pipeline performs
three iterative steps on the working dataset: (1) the enrichment design, where the
user designs each transformation step for enriching the working table employing
a graphical interface that facilitates and automates interactions with reconciliation
and extension services; (2) the pipeline execution (small-size processing), where
each step of the enrichment process is performed over the current dataset; and
(3) attaining quality insights, i.e., a handful of statistics to enable a general
understanding of the overall quality of the result (e.g., the number of missing
values). This interactive process is executed every time the user edits the pipeline
definition (e.g., adding a new step in the pipeline). The outputs of the design phase
are (1) the enriched dataset and (2) an executable transformation model, packaged
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in an executable that encompasses the steps of the pipeline. It is worth noting that if
the user needs to enrich tables with a few thousand rows sporadically, the enriched
table produced in the design phase concludes the process. If the user is required to
enrich large volumes of data (or at least too large to be interactively managed), our
approach assumes that the user carries out the design phase using a representative
sample of the original dataset. In that case, the executable with the transformation
model can be downloaded and used as the primary step in the processing phase
(referred to as Data Flow), presented and discussed in the next section.

Processing Phase This phase aims to execute the transformation pipeline, which
has been designed and tested on a smaller (loadable in memory) sample during
the previous phase, on a large dataset. As in the previous phase, three steps are
implied: (1) data flow definition (stack configuration) to support the execution of
the enrichment pipeline; (2) batch execution (possibly in parallel) of the pipeline;
and, finally, (3) quality assessment to evaluate the resulting dataset. If the result
does not achieve an acceptable quality level (e.g., the number of reconciliation
mismatches is above a given threshold), the user could go back to the design phase
and modify the pipeline on an updated sample dataset. The new sample could be
populated according to an analysis of the log files (e.g., adding a set of rows with
values that could not be matched). The goal is to converge after a few iterations and
be able to manage the dataset evolution. The stack configuration phase defines the
pre- and post-processing actions to execute the enrichment pipeline on the dataset.
It is composed of standard steps that can be customized according to the project
requirements. To serve as an example, the reference data flow that supports the
JOT scenario features the following steps: (1) decompress the input dataset and
store it in a distributed file system; (2) split data in chunks for parallel processing;
(3) execute the pipeline (which includes invoking enrichment services); (4) export
the enriched data. The choice of relying on external services implementing the
reconciliation and extension functionalities is supported by most available platforms
and derives from precise design requirements (not least the requisites of modularity,
extensibility, and flexibility). Consequently, the need to perform service invocations
to get access to data for enrichment constitutes a fundamental scalability limitation
of the entire enrichment process, which is much better performing and predictable
for transformations that can be encapsulated within the executable transformation
model. In the next section, the issue is discussed in detail.

Finally, on the one hand, these phases have different time requirements—i.e., in
the design phase, the system has to be responsive in real time so that the user can
provide feedback interactively, while the processing phase can last several hours.
On the other hand, the phases deal with datasets of different sizes—the design phase
processes only a sample of a dataset, while the processing phase must handle the full
data. Therefore, we built an architecture where two main logical components share
a set of back-end services to manage these phases. In the following, we provide
details about the implementation of those components.
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3 Achieving Semantic Enrichment of Tabular Data at Scale

This section outlines the different measures we took to ensure an adequate level
of scalability for the enrichment process. The service architecture supporting the
described approach is presented in Sect. 3.1. In Sect. 3.2 we discuss the design
decisions, strategies, and lessons learned while designing for scalability in this
domain, and examine the limitations of the proposed solution as well as possible
improvements.

3.1 The Architectural View

The architecture underpinning the execution of our open-source solution, named
ASIA (Assisted Semantic Interpretation and Annotation of tabular data) [17] (see
Fig. 4), has been designed for modularity and loose coupling resulting in the
components specified below:

ASIA User Interface The ASIA front-end is a single-page web application meant
to interact with the final user exposing all the services required to support the
enrichment. This application is fully integrated within Grafterizer [16] (part of
DataGraft [18]), a tool that provides the pipeline abstraction, support for data
cleaning and ETL data transformations, a tabular-to-Linked-data generator, and a
compiler to produce portable and repeatable data manipulation pipelines. ASIA
inherits and extends those features by providing functionalities to streamline the

Fig. 4 Detailed architecture of ASIA
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mapping between the columns of the working dataset and semantic types and
properties (i.e., the schema annotation). This is done by analyzing the table headers
and matching them with schema patterns and statistics provided by ABSTAT
(Linked Data Summarization with ABstraction and STATistics) [19], an ontology-
driven linked data profiling service. Moreover, ASIA UI provides widgets for
semantic matching of column values against a shared system of identifiers.

ASIA Back-end This ecosystem consists of an orchestrator (API gateway) and a
set of services4 that are grouped in three categories: Conciliators, Mapping Services,
and Extension Services.

– API Gateway. This service provides a unified view of the ASIA back-end
ecosystem services by isolating the architectural details and relationships of these
modules in the background. Moreover, it provides high-level functionalities by
orchestrating the execution of the underlying services.

– Conciliators. Services for reconciling entity labels to a specific KB. They provide
a REST interface compliant with the OpenRefine Reconciliation and Extension
APIs.5 In Fig. 4, conciliator blocks represent reconciliation services, while the
GeoNames block also supports KB-based extensions, i.e., the possibility to
extend the table with information from the reference KB.

– Mapping Services. Services in charge of linking KBs to each other, enabling the
user to translate seamlessly between different Shared System of Identifiers (SSIs)
by identifying URIs that provide suitable inputs to the extension services. The
current implementation provides links between GeoTargets (location identifiers
used in Google Analytics services) and GeoNames, plus additional sameAs links
retrieved from DBpedia and Wikidata.

– Extension Services. Services for extending the input dataset with information
coming from external data sources by using the URIs returned by conciliators
and mapping services as inputs. In the JOT use case, we address weather
and event datasets. The current implementation relies on data regularly being
downloaded and curated (fetched from the ECMWF and EventRegistry6 services,
respectively). This is done to overcome network latency issues.

It is important to note that the ASIA back-end provides functionality to both the
front-end (for the definition of the enrichment steps) and the Big Data Environment
(presented below). The substantial difference is that in the first case its deployment
is designed to provide multi-tenant support in Software-as-a-Service mode,7 while
in the second case, it is deployed in a dedicated way (and often replicating some
services) to ensure scalability and efficiency.

4 https://github.com/UNIMIBInside/asia-backend
5 github.com/OpenRefine/OpenRefine/wiki/Documentation-For-Developers
6 eventregistry.org
7 A DataGraft deployment that includes ASIA module is available online at https://datagraft.io

https://github.com/UNIMIBInside/asia-backend
http://github.com/OpenRefine/OpenRefine/wiki/Documentation-For-Developers
http://eventregistry.org
https://datagraft.io
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The Big Data Environment This macro-component is mainly responsible for the
orchestration and execution of enrichment operations at scale. It provides a high-
level interface to configure, process, and monitor data flows. In particular, to handle
the scale of data, this component distributes the different replicas of the pipeline
steps over a cluster of computational resources (physical machines). For this reason,
the operator establishes an appropriate deployment in terms of resources and service
replicas to support the parallel execution of each step and leaves the system with
the burden of configuring, deploying, and running the flow. More details about this
component can be found in the following section.

3.2 Achieving Scalability

The purpose of this section is to present the techniques and strategies employed to
achieve a system capable of providing scalable enrichment functionalities.

Stateless, Shared-Nothing Processing The ecosystem of the ASIA back-end is
made up of various services and databases capable of serving a number of
concurrent invocations. In essence, ASIA services receive a label (in the case
of reconciliation) or a URI (in the case of extension) and return one or more
corresponding values. They are built to be stateless and thus enable the creation of a
platform in which the enrichment pipeline is executed in parallel on non-overlapping
segments of the working table (shared-nothing approach [20]).

Distribution and Parallelization The Big Data Environment (Fig. 5) is the com-
ponent in charge of fostering parallelism and is implemented as a private cloud
consisting of a cluster of bare-metal servers running the Docker engine,8 connected
via Gigabit Ethernet and sharing a distributed file system (i.e., GlusterFS).9 In this
environment, data flows are compiled into a chain of Docker containers that are, in
turn, deployed and managed by a container Orchestration system (i.e., Rancher).10

Each of the steps consists of containers working independently and in parallel and
scalable on-demand. The communication between two consecutive steps of the
chain, i.e., the handover of the partial results, occurs through writing and reading
from the file system. For details on the approach for setting up the Big Data
Environment, see [21]. The implementation of this container-based solution has
several benefits: it makes the data flow deployment independent from the particular
stakeholder’s hardware infrastructure, also working in heterogeneous distributed
environments; it guarantees a flexible deployment, better resource utilization, and
seamless horizontal scalability. The GlusterFS distributed file system is fast (as it

8 https://www.docker.com
9 https://www.gluster.org
10 https://rancher.com

https://www.docker.com
https://www.gluster.org
https://rancher.com
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Fig. 5 An overview of the proposed Big Data Environment

lacks a central repository for metadata), linearly scalable, and, therefore, able to
support massive amounts of data.

Data and Service Locality One of the primary issues to be addressed for achieving
scalability for the enrichment process is the use of remote services. The use of
services accessible over the Internet is certainly incompatible with datasets featuring
more than a few thousand rows due to the network latency and the high number
of invocations. The use of remote, multi-tenant services is generally acceptable in
the design phase due to the limited size of managed datasets. However, when large
datasets need to be processed, it is imperative to address the issue by making the life-
cycle of enrichment data local. In the scenario we adopt, the weather information is
downloaded daily from the provider and is treated to enable access using geospatial
SSIs. This solution is suitable for datasets that change at a known rate and are thus
stable. In the general case, refresh frequency depends on the application domain
and the nature of data. The local management of these KBs has the advantage of
rightsizing the resources allocated against the incoming workload; moreover, the
control over the local network enables reduced and stable round-trip delay times
(RDT). Similar considerations have led to deploying the reconciliation services of
the ASIA back-end as close as possible (in network terms) to both the reference
KBs and the agents (containers) performing the reconciliation pipeline steps.

Scaling up the Enrichment Services In order to manage the workload caused by
the simultaneous invocation of reconciliation and extension functions (by the step
executing the reconciliation pipeline), the ASIA ecosystem has been implemented
to be easily replicable to achieve horizontal scalability of performance. This is
achievable as the knowledge bases are used in read-only mode; accordingly, they
can be duplicated without consistency issues. A load balancer is used for dispatching
requests across the various replicas of ASIA.
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Hierarchical Caching Lastly, it should be noted that the same request for reconcil-
iation or extension can be made multiple times by the agents because columns in
the processed data can contain repeating values. This, if not mitigated, generates a
high number of identical requests. To address this, we implemented a hierarchical
caching system in which each agent directly manages the first level of the hierarchy,
while the other levels are managed by the stack of ASIA services and databases.

3.3 Discussion on the Limitations

In this section, we discuss the current limitations and aspects that could be improved
to bring significant enhancements to the performance of the entire process.

Data Locality In this initial implementation of the Big Data Environment, the data
locality principles, intended as one of the chief scalability enablers, are only partially
implemented and exploited. Data locality is limited to the life-cycle management
of the knowledge bases used by the enrichment services, which are physically
brought to the Big Data Enrichment platform to reduce service access times.
At the same time, the agents that perform the transformation pipeline may be
physically separated from the working dataset they are processing (due to the use
of a distributed file system). By deploying the enrichment services in the Big Data
Enrichment platform, the speed of the functionalities relying on enrichment services
increases dramatically. Similarly, the working dataset is stored in a distributed file
system and accessible through the local network. This architectural choice, which
enables uniform access times to data, has the disadvantage of raising the average
read/write times of a quantity equal to twice the network latency (each agent reads
a data chunk and writes a larger one). Nonetheless, by moving the data as close
as possible to the agents that have to process it, we can improve the reading and
writing performances and affect the whole process positively. This can be done
by onboarding partitions of the working dataset on the machines that execute the
containers of the agents instead of using the network to transmit partitions.

Distributed Caching The hierarchical caching system that was implemented can be
further optimized, mainly because each ASIA replicated deployment has its local
memory. Moreover, due to the presence of a load balancer running a round-robin
dispatching policy (thus caching unaware), identical requests can be assigned to
different replicas of ASIA causing preventable cache misses. The cache used at the
agent level is also private, which results in generating much more requests than
are strictly necessary. An improved solution to the problem of duplicated requests
to the enrichment services can be done through the use of a distributed cache
shared among the various instances of ASIA and among the agents that carry out
the pipeline in parallel. Such a service (e.g., Ehcache [22]), once deployed on the
machines that configure the cluster of the big data environment, would guarantee
rapid synchronization of the local caches and would reduce the number of cache
misses.
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Efficient API Interaction The enrichment service API is another component that
may be optimized to provide significant improvement to execution times. In the
current implementation, for both the design and processing phases, reconciliation
and extension are invoked for each row of the working table. This means that
for each line the agent running the pipeline must wait a time equal to the RTD,
forcing the system to wait a time roughly equal to twice the network latency at
every invocation. A considerable improvement would be obtained by throttling the
invocations to the service. The processing times of the input dataset could be further
improved if light network protocols (such as Websocket [23]) were used together
with improved message serialization (such as Google Protobuf [24]).

4 Evaluation of the Approach

To test the flexibility and scalability of the proposed solution, we performed three
experiments of increasing scale involving real datasets. The experiments make use
of two enrichment services: the geospatial reconciliation and extension service GN,
and the weather extension service W, which is used to enrich the input dataset with
weather information. GN takes only one attribute as input (e.g., a toponym), and
creates one (reconciliation) or more (extension) columns; W takes two attributes as
input—location and date—and appends as many columns as the number of desired
weather features.

First, we designed a small-scale experiment reproducing the scenario where a
data scientist executes the enrichment pipeline on a commodity machine (the whole
cloud-native platform has been installed on a multi-tenant machine with 4 CPUs
Intel Xeon Silver 4114 2.20 GHz, and 125GB RAM). The main objective was to
assess the performance boost attributable to the introduction different caching levels.
We started by testing the reconciliation performance with no caching strategy: 200 K
rows (21 columns) from a real company dataset featuring 2227 different toponyms
(from Germany and Spain) have been extracted and a pipeline featuring only
reconciliation has been created. The measured average time per row was 12.927 ms.
The same test was then repeated, enabling the caching level implemented at the
reconciliation service level. The cache system improved performance achieving an
average processing time of 2.558 ms per row (5 times faster over the baseline).
Finally, we enabled the first cache layer, which is implemented locally on the
level of the executable of the enrichment pipeline. The objective was to avoid the
network latency whenever possible, which is substantial even in a local setup (via
the loopback interface). The pipeline, in this case, ran ∼770 times faster than the
baseline (0.0168 ms/row on average).

To analyze the behavior of the cache over time, a second experiment was
designed, extending the first one as follows: a more complex pipeline (referred
to as full-pipeline) was implemented. It reconciles city toponyms to GN, extends
reconciled entities with the corresponding first-level administrative division from
GN (i.e., regions). After that, it fetches weather information about regions, using the
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Fig. 6 Request execution time in milliseconds for the second experiment without duplicates

Fig. 7 Request execution time in milliseconds for the second experiment with four duplicates

reconciled administrative level and the date column (i.e., temperature for a specific
date and the following one) generating a new dataset with 25 columns. This pipeline
was used to enrich a dataset derived from the one used in the first experiment,
filtering out duplicates in the reconciliation target column (i.e., each value occurs
at most once), resulting in 2227 unique cities (and rows). The outcomes of this
experiment, where the cache did not significantly improve the performance (as it
was built but never used), are depicted in Fig. 6.11 Afterwards, a synthetic dataset
was built where each line from the previous one is replicated four times to exploit the
local cache. As reported in Fig. 7, spikes are still visible due to cache building, but
the cache reuse speeds up the process progressively (4× on average), considerably
reducing the execution time (which tends to be purely cache access time).

11 Initial spikes are due to the system startup (e.g., database connectors initialization).
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Fig. 8 Total execution time (in seconds) and linear regression curve, for different dataset sizes and
two experimental setups

The final experiment was devoted to investigating the system scalability. Firstly,
a single physical machine with a single instance of ASIA back-end was used. The
full-pipeline was ran to enrich datasets of different sizes: 100MB, 1GB, 5GB,
and 10GB. The dataset was split in 10 chunks of equal size and assigned to
10 agents. Performance results (in blue), reported in Fig. 8, measure the total
pipeline completion time for different dataset sizes. The implementation achieves
a linear trend, which highlights the scalability of the proposed solution. Finally, the
enrichment of a ~100GB dataset (~500 million rows, 21 columns) was performed;
the pipeline was run on the Big Data Environment deployed on a private cloud
infrastructure featuring an 8-node cluster of heterogeneous hosts. Five of the nodes
have 4-core CPUs and 15.4GB RAM and three nodes with 12-core CPUs, 64GB
RAM, with six 3 TB HDDs holding a GlusterFS distributed file system (shared
across the whole cluster). The enrichment agents were deployed on the three 12-
core servers.

The transformation accessed a load-balanced (using round-robin load balancing)
set of 10 replicas of ASIA back-end services deployed on the same stack.

The linear trend with R2 = 0.998 (please notice Fig. 8 uses a base-10 log scale for
the axes) is maintained also for the data point pertaining to the 100GB experiment,
despite the different context in which the experiments have been carried out. This is
mainly due to similar access and reconciliation times between the two experimental
configurations.

5 Related Work

During the past decade, a number of tools devoted to tabular data transformation,
reconciliation, and extension have been proposed. Probably the most popular is
OpenRefine, an open-source solution that provides reconciliation services (with a
focus on Wikidata) to semantic experts. It is a generic tool that cannot be easily
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customized to use third-party services. OpenRefine provides an interactive user
interface with spreadsheet-style interaction in a similar way as Grafterizer does,
hence they both encounter memory limitations to handle datasets. We refer the
reader to [25] for a detailed discussion on data anomalies in tabular data together
with an introduction to the table manipulation approach that was adopted in our
work. OpenRefine was designed as a web application without support for batch
execution of pipelines, hence the size of data that can be processed is constrained by
the available memory. More recently, tools for extending OpenRefine with support
to large data processing have been proposed, for example, OpenRefine-HD,12 which
extends OpenRefine to use Hadoop MapReduce jobs on HDFS. One of the few
works on transformations of Big Data is discussed in [26], where the authors
address how to exploit Apache Spark as a processing engine for iterative data
preparation processes. However, all the above proposals require manual preparation
of the executions, while in our approach we foresee an automatic deployment of the
pipelines. An issue with all such tools is the lack of documentation that explains how
the proposed solutions have been implemented, and how they can support scalability
when working with distributed workloads, e.g., involving external services.

Semantic table annotation approaches have been proposed for reconciling values
in tables; however, most of them cover only schema-level annotations. Approaches,
such as [10, 27], are sophisticated and are targeted at Web tables, which are very
small (a few hundred rows) and still require considerable computation time, making
them inapplicable in Big Data environments. Karma [9] is a tool that provides an
interface and a collection of algorithms to interpret tables, maps their schema to
an ontology, and learns data transformations. However, Karma does not support
external services for value-level reconciliation and data extension. The tool has been
used in projects where these processing steps have been applied, but without explicit
support by the tool itself [28]. Karma supports the execution of domain-specific
scripts for data manipulations, i.e., to implement data cleaning tasks.

One of the commercial tools that are relevant to this work is Trifacta Wrangler,13

which is a commercial suite of web applications for the exploration and preparation
of raw datasets. The toolkit aims to provide data workers with specific smart tools
to prepare datasets for different analysis types. Advanced techniques of machine
learning, parallel processing, and human–machine interaction are also provided. The
suite consists of three software solutions with increasingly advanced features. Large
volumes of data can be handled by exploiting Cloud data warehouse deployments.
KNIME14 is a free software for analytics with a modular platform for building and
executing workflows using predefined components called nodes. Knime core func-
tionalities are used for standard data mining, analysis, and manipulation, and these
features and functionalities can be extended through extensions from various groups
and vendors. Big Data extensions allow the user to deploy workflows on Apache

12 https://github.com/rmalla1/OpenRefine-HD
13 https://www.trifacta.com
14 https://www.knime.com

https://github.com/rmalla1/OpenRefine-HD
https://www.trifacta.com
https://www.knime.com
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Spark and Hadoop clusters. Talend15 is an Eclipse-based visual programming editor.
Similar to KNIME, Talend uses predefined components (called nodes) to set up a
pipeline, which can be compiled into executable Java code. Talend also provides
an open-source data integration platform with Big Data extensions. None of these
tools offer specific functionality for semantic enrichment. However, it is possible,
using ad hoc methods (such as downloading data sources locally or using SPARQL
queries), to approximate the functionality offered by ASIA. This result, however,
can only be obtained by expert users and through specific code implementation. An
extensive comparison of these tools with ASIA/DataGraft, where several factors are
compared, including the number of correct, incorrect, and missing reconciliations,
as well as the number of ambiguous toponyms correctly recognized, is available in
[29], where the advantages of our solution in the reconciliation task are discussed in
further detail.

6 Conclusions

In this work, we outlined and discussed an approach that addresses the efficient
enrichment of massive datasets. The approach was developed as a result of the
experience gained by closely working with business partners. We linked it to the
practice by identifying the main challenges in the data science field, where actors
need to integrate large datasets but often have limited programming expertise. More-
over, we proposed an open-source solution that features several enrichment services,
which makes KBs accessible to non-expert users, supporting data enrichment both
at the design and run time. Furthermore, repeatability is addressed by packaging
the human expert actions within executable models, which can also be exploited to
run the user-designed enrichment at a larger scale. The first implementation of our
solution was deployed and tested in a real-world scenario. Preliminary experiments
highlighted promising performance in terms of scalability; indeed, the prototype
system was used to successfully execute a data flow to enrich data in the magnitude
of hundreds of GBs continuously. In terms of future work, we plan to further
improve the overall performance by addressing the limitations discussed in Sect.
3.2. We also plan to investigate more sophisticated solutions for entity linking in
tabular data, which is particularly challenging in large tables [30]. To this end, we
plan to develop approaches combining the feedback of possibly more than one users
as proposed for analogous tasks [31].
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