
Processing Big Data in Motion: Core
Components and System Architectures
with Applications to the Maritime
Domain

Nikos Giatrakos, Antonios Deligiannakis, Konstantina Bereta, Marios Vodas,
Dimitris Zissis, Elias Alevizos, Charilaos Akasiadis, and Alexander Artikis

Abstract Rapidly extracting business value out of Big Data that stream in corporate
data centres requires continuous analysis of massive, high-speed data while they are
still in motion. So challenging a goal entails that analytics should be performed
in memory with a single pass over these data. In this chapter, we outline the
challenges of Big streaming Data analysis for deriving real-time, online answers to
application inquiries. We review approaches, architectures and systems designed to
address these challenges and report on our own progress within the scope of the EU
H2020 project INFORE. We showcase INFORE into a real-world use case from the
maritime domain and further discuss future research and development directions.

Keywords Big Data · Cross-platform optimisation · Data streams · Data
synopses · Online machine learning · Complex event forecasting · Maritime
situation awareness

N. Giatrakos (�) · A. Deligiannakis
Athena Research Center, Athens, Greece
e-mail: ngiatrakos@athenarc.gr; adeli@athenarc.gr

K. Bereta · M. Vodas · D. Zissis
MarineTraffic, Athens, Greece
e-mail: konstantina.bereta@marinetraffic.com; marios.vodas@marinetraffic.com;
dzissis@marinetraffic.com

E. Alevizos · C. Akasiadis · A. Artikis
NCSR Demokritos, Institute of Informatics and Telecommunications, Athens, Greece
e-mail: alevizos.elias@iit.demokritos.gr; cakasiadis@iit.demokritos.gr;
a.artikis@iit.demokritos.gr

© The Author(s) 2022
E. Curry et al. (eds.), Technologies and Applications for Big Data Value,
https://doi.org/10.1007/978-3-030-78307-5_22

497

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78307-5_22&domain=pdf
mailto:ngiatrakos@athenarc.gr
mailto:adeli@athenarc.gr
mailto:konstantina.bereta@marinetraffic.com
mailto:marios.vodas@marinetraffic.com
mailto:dzissis@marinetraffic.com
mailto:alevizos.elias@iit.demokritos.gr
mailto:cakasiadis@iit.demokritos.gr
mailto:a.artikis@iit.demokritos.gr
https://doi.org/10.1007/978-3-030-78307-5_22

498 N. Giatrakos et al.

1 Challenges of Big Streaming Data

Today, organisations and businesses have the ability to collect, store and analyse as
much data as they need, exploiting powerful computing machines in corporate data
centres or the cloud. To extract value out of the raw Big Data that are accumulated,
application workflows are designed and executed over these infrastructures engag-
ing simpler (such as grouping and aggregations) or more complex (data mining and
machine learning) analytics tasks. These tasks may involve data at rest or data in
motion.

Data at rest are historic data stored on disks, getting retrieved and loaded for
processing by some analytics workflow. Analytics tasks participating in such a
workflow perform computations on massive amounts of data, lasting for hours or
days. They finally deliver useful outcomes. Using a running example from the
maritime domain, historic vessel position data are used to extract Patterns-of-Life
(PoL) information. These are essentially collections of geometries representing
normal navigational routes of vessels in various sea areas [78], used as the basis
for judging anomalies.

Data in motion involve Big streaming Data which are unbounded, high-speed
streams of data that need to get continuously analysed in an online, real-time
fashion. Storing the data in permanent storage is not an option, since the I/O latency
would prevent the real-time delivery of the analytics output. Application workflows
get a single look on the streaming data tuples, which are kept in memory for a
short period of time and are soon stored or discarded to process newly received data
tuples.

At an increasing rate, numerous industrial and scientific institutions face such
business requirements for real-time, online analytics so as to derive actionable
items and timely support decision-making procedures. For instance, in the maritime
domain, to pinpoint potentially illegal activities at sea [54] and allow the authorities
to timely act, position streams of thousands of vessels need to be analysed online.

To handle the volume and velocity of Big streaming Data, Big Data platforms
such as Apache Flink [2], Spark [5] or toolkits like Akka [1] have been designed to
facilitate scaling-out, i.e., parallelising, the computation of streaming analytics tasks
horizontally to a number of Virtual Machines (VM) available in corporate computer
clusters or the cloud. Thus, multiple VMs simultaneously execute analytics on
portions of the streaming data undertaking part of the processing load, and therefore
throughput, i.e., number of tuples being processed per time unit, is increased. This
aids in transforming raw data in motion to useful results delivered in real time.
Big Data platforms also offer APIs with basic stream transformation operators such
as filter, join, attribute selection, among others, to program and execute streaming
workflows. However useful these facilities may be, they only focus on a narrow part
of the challenges that business workflows need to encounter in streaming settings.

First, Big Data platforms currently provide none or suboptimal support for
advanced streaming analytics tasks engaging Machine Learning (ML) or Data
Mining (DM) operators. The major dedicated ML/DM APIs they provide, such as

Processing Big Data in Motion 499

MLlib [5] or FlinkML [2], do not focus on parallel implementations of streaming
algorithms.

Second, Big Data platforms by design focus only on horizontal scalability as
described above, while there are two additional types of scalability that are of
essence in streaming settings. Vertical scalability, i.e., scaling the computation with
the number of processed streams, is also a necessity. Federated scalability, i.e.,
scaling the computation one step further out, to settings composed of multiple,
potentially geo-dispersed computer clusters, is another type of required scalability.
For instance, in maritime applications, vessels transmit their positions to satellite or
ground-based receivers. These data can be ingested in proximate data centres and
communicated only on demand upon executing global workflows, i.e., involving the
entire set of monitored vessels, over the fragmented set of streams.

Third, Big Data technologies are significantly fragmented. Delivering advanced
analytics requires optimising the execution of workflows over a variety of Big Data
platforms and tools located at a number of potentially geo-dispersed clusters or
clouds [30, 34, 36]. In such cases, the challenge is to automate the selection of
an optimal setup prescribing (a) which network cluster will execute each analytics
operator, (b) which Big Data platform available at this cluster, and (c) how to
distribute the computing resources of that cluster to the operators that are assigned
to it.

Connecting the above challenges to a real-world setting from the maritime
domain, on a typical day at MarineTraffic,1 100GB vessel position data and approx-
imately 750M messages (volume, velocity—horizontal scalability) are processed
online. This data is complemented by other data sources such as satellite image data
of tens of TBs [54]. At any given time, MarineTraffic is tracking over 200K vessels
in real-time (vertical scalability) over a network of approximately 5K stations
(federated scalability). Additionally, the analysis engages a variety of Big Data
platforms including Apache Spark, Flink, Akka and Kafka (details in Sect. 3).

Finally, applications often require an additional level of abstraction on the derived
analytics results. Consider a vessel that slows down, then makes a U-turn and then
starts speeding up. Such a behaviour may occur in case of an imminent piracy
event where a vessel attempts to run away from pirates. The application is not
interested in knowing the absolute speed, heading or direction information in the
raw stream. Instead, it wants to receive continuous reports directly on a series of
detected, simple events (slowing down, U-turn, speeding) and the higher
level, complex piracy event or to be able to forecast such events [79]. Complex
Event Processing (CEP) and Forecasting (CEF) encompass the ability to query for
business rules (patterns) that match incoming streams on the basis of their content
and some topological ordering on them (CEP) or to forecast the appearance of
patterns (CEF) [31, 33, 35].

In this chapter, we discuss core system components required to tackle these
challenges and the state of the art in their internal architectures. We further describe

1 https://www.marinetraffic.com.

https://www.marinetraffic.com

500 N. Giatrakos et al.

how we advance the state of the art within the scope of the EU H2020 project
INFORE. Finally, we showcase the INFORE approach into a real-world use case
from the maritime domain. We, however, stress that INFORE applies to any
application domain, and we refer the interested reader to [34] for more application
scenarios.

This chapter relates to the technical priorities (a) Data Management, (b) Data
Processing Architectures and (c) Data Analytics of the European Big Data Value
Strategic Research & Innovation Agenda [77]. It addresses the horizontal concerns
Cloud, HPC and Sensor/Actuator infrastructure of the BDV Technical Reference
Model and the vertical concern of Big Data Types and Semantics (Structured data,
Time series data, Geospatial data). Moreover, the chapter relates to (a) Knowledge
and Learning, (b) Reasoning and Decision Making, (c) Action and Interaction and
(d) Systems, Hardware, Methods and Tools, cross-sectorial technology enablers
of the AI, Data and Robotics Strategic Research, Innovation and Deployment
Agenda [76].

2 Core Components and System Architectures

2.1 The Case for Data Synopses

Motivation There is a wide consensus in the stream processing community [25,
26, 32] that approximate but rapid answers to analytics tasks, more often than not,
suffice. For instance, detecting a group of approximately 50 highly similar vessel tra-
jectories with sub-second latency is more important than knowing minutes later that
the group actually composes 55 such streams with a similarity value accurate to the
last decimal. In the latter case, some vessels may have been engaged in a collision.
Data synopses techniques such as samples, histograms and sketches constitute a
powerful arsenal of data summarisation tools useful across the challenges discussed
in the introduction of this chapter. Approximate, with tunable quality guarantees,
synopses operators including, but not limited to [25, 26, 32, 46], cardinality (FM
Sketches), frequency moment (CountMin, AMS Sketches, Sampling), correlation
(Fourier Transforms, Locality Sensitive Hashing [37]), set membership (Bloom
Filters) or quantile (GK Quantile) estimation, can replace respective exact operators
in application workflows to enable or enhance all three types of required scalability
as well as to reduce memory utilisation. More precisely, data summaries leave only
a footprint of the stream in memory and they also enhance horizontal scalability
since not only is the processing load distributed to a number of available VMs, but
also it is shed by letting each VM operate on compact data summaries. Moreover,
synopses enable federated scalability since only summaries, instead of the full (set
of) streams, can be communicated when needed. Finally, synopses provide vertical
scalability by enabling locality-aware hashing [37, 38, 46].

Processing Big Data in Motion 501

Related Work and State of the Art From a research viewpoint, there is a large
number of related works on data synopsis techniques. Such prominent techniques
are reviewed in [25, 26, 32] and have been implemented into real-world synopses
libraries, such as Yahoo!DataSketch [9], Stream-lib [8], SnappyData [57] and
Proteus [7]. Yahoo!DataSketch [9] and Stream-lib [8] are libraries of stochastic
streaming algorithms and summarisation techniques, correspondingly, but imple-
mentations are detached from parallelisation and distributed execution aspects
over streaming Big Data platforms. Apache Spark provides utilities for data
synopsis via sampling operators, CountMin sketches and Bloom Filters. Moreover,
SnappyData’s [57] stream processing is based on Spark and its synopses engine can
serve approximate, simple sum, count and average queries. Similarly, Proteus [7]
extends Flink with data summarisation utilities. Spark utilities, SnappyData and
Proteus combine the potential of data summarisation with horizontal scalability,
i.e., parallel processing over Big Data platforms, by providing libraries of parallel
versions of data synopsis techniques. However, they neither handle all types of
required scalability nor cross Big Data platform execution scenarios.

INFORE Contribution In the scope of the INFORE project, we have developed
a Synopses Data Engine (SDE) [46] that advances the state of the art by tackling
all three types of the required scalability and also accounting for sharing synopses
common to various running workflows and for cross-platform execution. INFORE
SDE goes far beyond the implementation of a library of data summarisation
techniques. Instead, it also implements an entire component with its own internal
architecture, employing a Synopses-as-a-Service (SDEaaS) paradigm. That is, the
SDE is a constantly running service (job) in one or more clusters (federated
scalability) that can accept on-the-fly requests for start maintaining, updating and
querying a parallel synopsis built on a single high-speed stream (e.g. vessel) of
massive data proportions (horizontal scalability) or on a collection of a large number
of streams (vertical scalability). The SDEaaS is customisable to specific application
needs by allowing dynamic loading of code for new synopses operators at runtime,
with zero downtime for the workflows that it serves.

The architecture of INFORE SDEaaS [46] is illustrated in Fig. 1a. INFORE’s
SDEaaS proof-of-concept implementation is based on Apache Kafka and Flink.
Nevertheless, the design is generic enough to remain equally applicable to other
Big Data platforms. For instance, an equally plausible alternative would be to
implement the whole SDE in Kafka leveraging the Kafka Streams API. Nonetheless,
Kafka Streams is simply a client library for developing micro-services, lack-
ing a master node for global cluster management and coordination. Following
Fig. 1a, when a request for maintaining a new synopsis is issued, it reaches the
RegisterRequest and RegisterSynopsisFlatMaps which produce keys
for workers (i.e., VM resources) which will handle this synopsis. Each of this pair of
FlatMaps uses these keys for a different purpose. RegisterRequest uses the
keys to direct queries to responsible workers, while RegisterSynopsis uses the
keys to update the synopses on new data arrivals (blue-coloured path). In particular,
when a new streaming data tuple is ingested, the HashData FlatMap looks up the

502 N. Giatrakos et al.

Da
ta

To

pi
c

Re
qu

es
t

To
pi

c

pa
rs

e

pa
rs

e
Re

gi
st

er

Re
qu

es
t

Re
gi

st
er

Sy

no
ps

is

Ha
sh

Da
ta

ad
d

es
�m

at
e

sp
li�

er

O
ut

pu
t

To
pi

c

m
er

ge

Co
Fl

at
M

ap

Fl
at

M
ap

Co
Fl

at
M

ap
OOOOOOOOOOOOOOOOOOO

ut
pu

t
OOO

t

it

Fl
at

M
ap

—
D

at
a

Pa
th

—
R

eq
ue

st
s

Pa
th

—
M

er
ge

ab
le

Sy

no
ps

is

Es
tim

at
io

n

—
Si

ng
le

-s
tre

am

Sy
no

ps
is

 E
st

im
at

io
n

M
ap

M
ap

Sp
lit

U
ni

on

To
pi

c
U

ni
U

i

fe
de

ra
to

r

U
ni

on

—
Fe

de
ra

te
d

Sy
no

ps
is

To
 g

eo
-

di
sp

er
se

d
U

ni
on

 To
pi

c

(a
) S

D
Ea

aS
 C

om
po

ne
nt

 (C
on

de
ns

ed
 V

ie
w

).

Le
ar

ne
r 2

Pa
ra

m
et

er

Se
rv

er

Lo
ca

l M
od

el
s o

n
lo

ca
l s

tr
ea

m
s

Gl
ob

al
 M

od
el

Le
ar

ne
r n

Le
ar

ne
r 1

…
Sy

nc
hr

on
iza

�o
n

(s
yn

c,
 a

sy
nc

, F
GM

)

Gl
ob

al

M
od

el

U
pd

at
es

Fe
ed

ba
ck

 L
oo

p

(b
) P

ar
am

et
er

 S
er

ve
r V

ie
w

.

St
a�

s�
cs O

p�
m

iza
�o

n
Al

go
rit

hm
s

M
an

ag
er

m

od
ul

e

Co
st

 E
s�

m
at

or

Be
nc

hm
ar

ki
ng

od
ul

e

on

m
s

(c
) O

pt
im

iz
er

 C
om

po
ne

nt
.

(d
) C

EF
 C

om
po

ne
nt

.

F
ig
.1

In
te

rn
al

ar
ch

it
ec

tu
re

of
ke

y
IN

FO
R

E
co

m
po

ne
nt

s

Processing Big Data in Motion 503

keys of RegisterSynopsis to see to which workers the tuple should be directed
to update the synopsis. This update is performed by the add FlatMap in the blue-
coloured path. The rest of the operators in Fig. 1a are used for merging partial
synopses results [11] maintained across workers or even across geo-distributed
computer clusters. Please refer to [46] for further details. In Sect. 3.2.3, we analyse
the functionality of a domain-specific synopsis building samples of vessel positions.

2.2 Distributed Online Machine Learning and Data Mining

Motivation As discussed in Sect. 1, ML/DM APIs such as Spark’s MLlib [5] or
FlinkML [2] are focused on analysing data at rest. Therefore, advanced analytics
tasks on data in motion call for filling the gap of a stream processing-oriented
ML/DM module. ML and DM algorithms that can meet the challenges discussed
in the introduction of this chapter are those that (1) are online, i.e., restricting
themselves on a single pass over the data instead of requiring multiple passes,
and (2) can run in a distributed fashion, i.e., they are parallelisable and thus the
load can be distributed to parallel learners and parallel predictors across a number
of VMs so as to provide the primitives for horizontal scalability over Big Data
platforms and computer clusters. There exists a variety of algorithms that satisfy
these preliminary requirements in diverse ML/DM categories, including [18, 34, 69]
classification (such as (Multiclass) Passive Aggressive Classifiers, Online Support
Vector Machines, Hoeffding Trees, Random Forests), clustering (BIRCH, Online k-
Means, StreamKM++) and regression (Passive Aggressive Regressor, Online Ridge
Regression, Polynomial Regression) tasks. These algorithms are designed or can be
adapted to get executed in an online, distributed setting. The primary focus, then, is
not on the algorithms themselves, but on the architecture an ML/DM module should
be built upon, so that various algorithms can be incorporated and also allow for
vertical scalability, federated scalability and cross-platform execution with reduced
memory utilisation.

Related Work and State of the Art Towards this direction, the two most
prominent approaches and modules that exist in the literature are StreamDM [19]
and Apache SAMOA [48]. StreamDM is a library of ML/DM algorithms designed
to be easily extensible with new algorithms, but dedicated to run on top of the Spark
Streaming API [5]. Thus, it does not cover cross-platform execution scenarios,
also lacking provisions for vertical and federated scalability. The only framework
with a clear commitment to the cross-platform execution goals is Apache SAMOA.
SAMOA is portable between Apache Flink, Storm [6] and Samza [4]. When it
comes to its model of computation, the architecture of SAMOA follows the Agent-
based pattern. In other words, an algorithm is a set of distributed processors
that communicate with streams of messages. Little more is provided, which is
intentional [48], claiming that a more structured model of computation reduces the
applicability of the framework.

504 N. Giatrakos et al.

The state of the art in distributed ML and DM architectures is the Parameter
Server (PS) distributed model [51] as illustrated in Fig. 1b, where a set of distributed
learners receive portions of the training streams and extract local models in parallel.
The local models are from time to time synchronised to extract a global model
at the PS side. The global model is then communicated back to learners via a
feedback loop (Fig. 1b). Consider for instance a set of learners each handling a
subset of vessel streams within the scope of a vessel type classification task. The
learners coordinate with the PS sending their locally trained classification models,
while the PS responds back with an up-to-date global model. The PS paradigm
enhances horizontal and federated scalability via the option of an asynchronous
(besides synchronous) synchronisation policy to reduce the effect of stragglers
and bandwidth consumption, respectively. In the synchronous policy, learners are
communicating with the PS in predefined rounds/batches, while in the asynchronous
case each learner decides individually as to when it should send updates to the PS.
Performance-wise, the synchronous policy does not encourage enhanced horizontal
scalability because when many learners are used, the total utilisation is usually low,
should only few stragglers exist. The asynchronous one is the policy of choice in
large-scale ML; the processing speed is much higher when many learners are used
and the training is more scalable.

The PS paradigm has been criticised for limited training speed due to potential
network congestion at the PS side and for severely getting affected by low-
speed links between the learners and the PS. Under these claims, a number of
decentralised ML/DM architectures have evolved which employ a more peer-to-
peer alike structure, where the training rationale is based on gossiping [42, 70]. The
drawback of these approaches, though, is that it is unclear how the continuously
updated, but decentralised, global model can be directly deployed for real-time
inference purposes. This is because knowing the network node holding the updated
global model at any given time requires extra communication. Hence, in case we
want to train and simultaneously deploy the updated global ML/DM models at
runtime, such a decentralised architecture does not seem to mitigate low-speed
issues but moves the problem to the prediction, instead of the training, stage.

INFORE Contribution In the scope of the INFORE project, we follow a PS
distributed model [51]. As is the case with the SDEaaS described in the previous sec-
tion, INFORE’s ML/DM module includes provisions for cross-platform execution
scenarios by receiving input and output streams in JSON formatted Kafka messages.
Moreover, the communication between learners and the PS is performed using a
lightweight middleware where a generic API for PS and learner (bidirectional)
communication is provided. In that, learners can be implemented over any Big
Data platform and run in any cluster, while still being able to participate in the
common ML/DM task. Besides learners, INFORE’s ML/DM module includes a
separate pipeline of parallel predictors that can communicate with the PS in order to
receive up-to-date global models continuously extracted during the training process
and directly deploy them for inference purposes.

Processing Big Data in Motion 505

INFORE’s ML/DM module accounts for vertical and boosts horizontal scala-
bility as well. This is achieved by using INFORE’s SDEaaS to partition streams
to learners or to allow learners to operate on compact stream summaries, corre-
spondingly. Remarkably, to effectively encounter congestions or low-speed links
and also allow to easily and effectively deploy/update the developed models,
instead of resorting to decentralised approaches [42, 70], we develop our own
synchronisation policy termed FGM [67] (Fig. 1b) that improves the employed
PS paradigm. The new synchronisation protocol strengthens horizontal (within a
cluster) and federated scalability by bridging the gap between synchronous and
asynchronous communication. Instead of having learners communicating in pre-
defined rounds/batches (synchronous) or when each one is updated (asynchronous),
FGM requires communication only when a concept drift (i.e., the global model has
significantly changed based on some criterion) is likely to have occurred. This is
determined based on conditions each learner can individually examine.

2.3 Distributed and Online CEF

Motivation Big Data analytics tools mine data views to extract patterns conveying
insights into what has happened, and then apply those patterns to make sense of
the fresh data that stream in. This only permits to react upon the detection of
such patterns, which is often inadequate. In order to allow for proactive decision-
making, predictive analytics tools that allow to forecast future events of interest
are required. Consider, for instance, the ability to forecast and proactively respond
to hazardous events, such as vessel collisions or groundings, in the maritime
domain. The ability to forecast, as early as possible, a good approximation to
the outcome of a time-consuming and resource-demanding computational task
allows to quickly identify possible outcomes and save valuable reaction time,
effort and computational resources. Diverse application domains possess different
characteristics. For example, monitoring of moving entities has a strong geospatial
component, whereas in stock data analysis this component is minimal. Domain-
specific solutions (e.g. trajectory prediction for moving objects) cannot thus be
universally applied. We need a more general Complex Event Forecasting (CEF)
framework.

Related Work and State of the Art Time-series forecasting is an area with some
similarities to CEF, with a significant history of contributions [56]. However, it is
not possible to directly apply techniques from time-series forecasting to CEF. Time-
series forecasting typically focuses on streams of (mostly) real-valued variables and
the goal is to forecast relatively simple patterns. On the contrary, in CEF we are
also interested in categorical values, related through complex patterns and involving
multiple variables. Another related field is that of prediction of discrete sequences
over finite alphabets and is closely related to the field of compression, as any com-
pression algorithm can be used for prediction and vice versa [17, 20, 24, 63, 64, 73].

506 N. Giatrakos et al.

The main problem with these approaches is that they focus exclusively on next
symbol prediction, i.e., they try to forecast the next symbol(s) in a stream/string
of discrete symbols. This is a serious limitation for CEF. An additional limitation
is that they work on single-variable discrete sequences of symbols, whereas CEF
systems consume streams of events, i.e., streams of tuples with multiple variables,
both numerical and categorical. Forecasting methods have also appeared in the field
of temporal pattern mining [22, 50, 71, 75]. A common assumption in these methods
is that patterns are usually defined either as association rules [13] or as frequent
episodes [53]. From the perspective of CEF, the disadvantage of these methods is
that they usually target simple patterns, defined either as strictly sequential or as
sets of input events. Moreover, the input stream is composed of symbols from a
finite alphabet, as is the case with the compression methods mentioned previously.

INFORE Contribution In a nutshell, the current, state-of-the-art solutions for
forecasting, even when they are domain-independent, are not suitable for the kind
of challenges that INFORE attempts to address. In INFORE, the streaming input
can be constantly matched against a set of event patterns, i.e. arbitrarily complex
combinations of time-stamped pieces of information. An event pattern can either
be fully matched against the streaming data, in which case events are detected,
or partially matched, in which case events are forecast with various degrees of
certainty. The latter usually stems from stochastic models of future behaviour,
embedded into the event processing loop, which project into the future the sequence
of events that resulted to a partial event pattern match, to estimate the likelihood of
a full match, i.e. the actual occurrence of a particular complex event.

Given that INFORE’s input consists of a multitude of data streams, interesting
events may correlate sub-events across a large number of different streams, with
different attributes and different time granularities. For instance, in the maritime
domain relevant streams may originate from position signals of thousands of vessels
which may be fused with satellite image data [54] or even acoustic signals [40]. It
is necessary to allow for a highly expressive event pattern specification language,
capable of capturing complex relations between events. Moreover, the actual
patterns of what constitutes an interesting event are often not known in advance,
and even if they are, event patterns need to be frequently updated to cope with the
drifting nature of streaming data. Not only do we need an expressive formalism in
order to capture complex events in streams of data, but we also need to do so in a
distributed and online manner.

Towards this direction, the CEF module of INFORE uses a highly expressive,
declarative event pattern specification formalism, which combines logic, probability
theory and automata theory. This formalism has a number of key advantages:

• It is capable of expressing arbitrarily complex relations and constraints between
events. We are thus not limited to simple sequential patterns applied to streams
with only numerical or symbolic values.

• It can be used for event forecasting and offering support for robust temporal
reasoning. By converting a pattern into an automaton, we can then use historical

Processing Big Data in Motion 507

data to construct a probabilistic description of the automaton’s behaviour and
thus to estimate at any point in time its expected future behaviour.

• It offers direct connections to machine learning techniques for refining event
patterns, or learning them from scratch, via tools and methods from the field
of grammatical inference. In cases where we only have some historical data and
some labels, we must find a way to automatically learn the interesting patterns.
This is also the case when there is concept drift in the streaming data and the
patterns with which we started may eventually become stale. It is therefore
important to be able to infer the patterns in the data in an online manner.

INFORE’s CEF module is built on top of Apache Kafka and Flink and has the
ability to handle highly complex patterns in an online manner, constantly updating
its probabilistic models. Figure 1d shows one possible scheme (pattern-based) for
structuring multiple parallel CEF pipelines. As shown in the figure, each such
pipeline processes a different CEF query [33, 35]. It is composed of a training
process, which estimates the probabilities of a future event to occur, as well as a
CEF process that utilises these probabilities to actually forecast complex events.
Finally, one implementation detail is that each pipeline also receives a subset of the
patterns (part1 to partX in Fig. 1d). The role of these loops is similar to the feedback
loop of Fig. 1b. Remarkably, the CEF module can also act as a CEP one since it can
not only predict but also detect occurred events of interest [14].

2.4 Geo-distributed Cross-Platform Optimisation

Motivation All the aforementioned advanced stream processing techniques and
technologies will only serve their goal if they are properly used. Consider, for
instance, that we perfectly tune the execution of a synopsis, ML/DM or CEF
operator in a specific cluster, but we assign the execution of the downstream operator
of a broader workflow to a distant cluster. The execution speed up achieved for one
operator may be diminished by network latency of long network paths. Therefore,
developing algorithms for optimising the execution of streaming workflows (a)
over a network of many clusters located in various geographic areas, (b) across
a number of Big Data platforms available in each cluster and (c) simultaneously
elastically devoting VMs and resources (CPU, memory, etc.) is a prerequisite
to efficiently deliver in practice real-time analytics. Within a cluster, common
optimisation objectives include throughput maximisation, execution latency and
memory usage minimisation, while in multi-cluster settings communication cost,
bandwidth consumption and network latency are also accounted for. Quality-of-
Service (QoS) and computer cluster (CPU, memory, storage) capacity constraints
also apply to these objectives.

Related Work and State of the Art There are a number of works that assign
the execution of operators targeting at optimising network-related metrics, such
as communication cost and network latency, while executing global analytics

508 N. Giatrakos et al.

workflows across a number of networked machines or computer clusters. The
seminal work of SBON [59] seeks to optimise a quantity similar to network
usage (dataRate × latency), but with a squared latency, across multi-hop paths
followed by communicated data. An important limitation in SBON is that by
using such a blended metric, the optimisation process cannot support constrained
optimisation per metric (communication cost or latency). Due to that, also other
related techniques [49, 59, 62] which employ blended metrics cannot incorporate
resource or QoS constraints while determining operators’ assignment to clusters.
Although some [49, 62] claim to support latency constraints, this comes after having
determined where an operator will be executed. Finally, the approach of Geode [72]
purely focuses on minimising bandwidth consumption in the presence of regulatory
constraints, but it does not account for network latency.

A series of works aim at optimising the execution of analytics operators within
a single computer cluster. Such works focus on optimal assignment of operators
to VMs such that high performance (mainly, in terms of throughput) and load
balancing among VMs is achieved; subject to multiple function, resource and QoS
constraints. Related works mainly provide optimisations on load assignment and
distribution, load shedding, resource provisioning and scheduling policies inside
the cluster. In Medusa [16], Borealis [10], Flux [68] and Nexus [23], the focus is to
primarily balance the load, choose appropriate ways to partition data streams across
a number of machines and minimise the usage of available resources (CPU cycles,
bandwidth, memory, etc.) while maintaining high performance.

Another category of techniques examines the optimisation of network-wide
analytics, simultaneously scaling-out the computation of an operator to the VMs
of the cluster that undertakes its execution. JetStream [61] trades-off network
bandwidth minimisation with timely query answer and correctness, but while
exploring the cluster at which an operator will be executed, it restricts itself to
the MapReduce rationale (i.e. the operator is executed at the cluster where data
rests), nearest site of relevant data presence or a central location. Iridium [60],
basically targeting optimisation of analytics over data at rest, assumes control over
where relevant data are transferred and moves these data around clusters to optimise
query response latency. SQPR [45] and [21] propose more generic frameworks for
the constraint-aware optimal execution of global workflows across clusters, and
they also optimise resources devoted to each operator execution at each cluster.
However, [21, 45] do not account for cross-platform optimisation in the presence
of different Big Data technologies.

Systems such as Rheem [12], Ires [27], BigDawg [28] and Musketeer [39] are
designed towards cross-platform execution of workflows, but they can only optimise
the processing of data at rest,2 instead of data in motion. Furthermore, only Rheem
accounts for network-related optimisation parameters such as communication cost.

2 BigDawg supports stream processing over S-Store and Rheem supports JavaStreams, but no
alternatives are included to allow for optimising across different streaming platforms.

Processing Big Data in Motion 509

INFORE Contribution The INFORE Optimiser is the first complete solution for
streaming operators [30, 34]. INFORE’s Optimiser is not simply the only one which
can simultaneously instruct the streaming Big Data platform, cluster and computing
resources for each analytics operator, but also it does so for a wide variety of
diverse operator classes including (1) synopses, (2) ML/DM, (3) CEF and (4) stream
transformations. INFORE’s Optimiser incorporates the richest set of optimisation
criteria related to throughput, network and computational latency, communication
cost, memory consumption and accuracy of SDE operators, and it also accounts for
constraints per metric, fostering the notion of Pareto optimality [30, 34].

The internals of INFORE Optimiser are illustrated in Fig. 1c. We use a statistics
collector to derive performance measurements from each executed workflow.
Statistics are collected via JMX or Slurm3 and are ingested in an ELK stack4

while monitoring jobs. A Benchmarking submodule automates the acquisition of
performance metrics for SDE, OMLDM and CEF/CEP operators run in different
Big Data platforms. The Benchmarking submodule utilises statistics and builds
performance (cost) models. Cost models are derived via a Bayesian Optimisation
approach inspired by CherryPick [15]. The cost models are utilised by the optimi-
sation algorithms [30, 34] to prescribe preferable physical execution plans.

3 Real-Life Application to a Maritime Use Case

3.1 Background on Maritime Situation Awareness (MSA)

According to the US National Concept of Operations for Maritime Domain Aware-
ness,5 “Global Maritime Intelligence is the product of legacy, as well as changing
intelligence capabilities, policies and operational relationships used to integrate all
available data, information, and intelligence in order to identify, locate, and track
potential maritime threats. Global MSA results from the persistent monitoring of
maritime activities in such a way that trends and anomalies can be identified”.

Maritime reporting systems are distinguished into two broad categories: cooper-
ative and non-cooperative. An example of a cooperative maritime reporting system
is the Automatic Identification System (AIS) [43]. All commercial vessels above
300 gross tonnage are obliged to bear AIS transponders. AIS forms the basis of
a lot of MSA applications, such as the MarineTraffic vessel tracking platform.
Other cooperative, but not public, maritime reporting systems are the Long Range
Identification and Tracking system (LRIT) [44], as well as the Vessel Monitoring

3 https://docs.oracle.com/javase/tutorial/jmx/overview/, https://slurm.schedmd.com/.
4 https://www.elastic.co/what-is/elk-stack.
5 https://web.archive.org/web/20111004213300/http://www.gmsa.gov/twiki/bin/view/Main/
MDAConOps.

https://docs.oracle.com/javase/tutorial/jmx/overview/
https://slurm.schedmd.com/
https://www.elastic.co/what-is/elk-stack
https://web.archive.org/web/20111004213300/http://www.gmsa.gov/twiki/bin/view/Main/MDAConOps
https://web.archive.org/web/20111004213300/http://www.gmsa.gov/twiki/bin/view/Main/MDAConOps

510 N. Giatrakos et al.

System (VMS) [29] for fishing vessels. Radar on-board or ashore installations can
be used as maritime surveillance systems, such as the ones installed by default in
a vessel’s bridge, as well as in ports. Thermal cameras and satellite imagery can
also be used as additional monitoring systems for vessels. Due to the time elapsed
between the actual image acquisition from a satellite and its availability on the
satellite repository that can be several hours, satellite imagery data do not offer real-
time snapshots of the maritime domain but can be used combined with other sources
such as AIS to “fill in the gaps” of AIS coverage (e.g., identify the whereabouts of
a vessel while its transponder was switched off).

Global and continuous monitoring of the maritime domain as well as the
identification of trends and anomalies require to address the challenges pointed
out throughout this chapter as well as the following generic Big Data challenges
described in the scope of the maritime domain:

• Volume, the number of available surveillance systems and sensors increases.
• Velocity, applications rely on continuous monitoring (e.g., vessel tracking) and

need to process high velocity streaming data in real time.
• Variety, data from heterogeneous surveillance systems should be combined.
• Veracity, most of the maritime data sources are heavily prone to noise requiring

data cleaning and analysis tasks to filter out unnecessary or invalid information.
• Value, as the availability of more sources of maritime data as well as the advanced

Big Data processing, ML and AI technologies that are now available can help to
maximise the derived knowledge that can be inferred from maritime data.

3.2 Building Blocks of MSA Workflows in the Big Data Era

Figure 2b shows an example of a generic workflow, implemented in the Maritime
Use Case of the INFORE project, for MSA purposes. Different applications may
include a subset of operators of Fig. 2b or implement different steps. In the

Batch Layer

Real-Time Layer

Sensors

AIS Historical
AIS Data

Static
Datasets

Ground
Truth Classification

Models

Patterns
of Life

Akka SystemKafka System

Shared
Memory

Kafka Stream

Kafka Stream

Kafka Stream

(a)Anomaly Detection at MarineTraffic.

AIS

Imagery Object
detection

Acoustic
processing
and Object
detection

Fusion SDE

positions tracks

Turn
Acceleration
Route
deviation
Shallow
waters
Proximity
AIS off
simplified tracks

Simple
events

Complex
events

STS
Bankering
Fishing

tiAcouA

(b)MSA workflow for maritime applications.

Fig. 2 MSA infrastructure and workflow

Processing Big Data in Motion 511

following, we describe the functionality of the workflow operators of Fig. 2b which
serve as the building blocks of modern MSA applications.

3.2.1 Maritime Data Sources

The kinds of data sources that are provided as input in a typical MSA application
(Fig. 2b) are the following:

• Vessel positions. Data about vessel positions derive from vessel reporting
systems, the most popular of which is AIS. AIS forms the ground of a wide
variety of MSA applications. AIS relies on VHF communication: Vessels send
AIS messages that contain dynamic information (e.g., information about the
current voyage, such as vessel position, speed, heading, etc.) as well as static
information (e.g., vessel identifier, dimensions, etc.). For real-time applications,
positional data arrive in streaming fashion to the data consumers.

• Data from other sensors. Some applications do not rely only on one source of
information. For example, AIS data can be combined with acoustic data, thermal
camera data and satellite data. Vessel detection algorithms are applied on this
data to extract the positions of vessels. For example, AI techniques are applied
on satellite imagery to extract the vessel positions which is important in the cases
when a vessel is out of AIS coverage [54].

• Other datasets describing assets and activities in the maritime domain. These
are datasets that describe ports, harbours, lighthouses, the boundaries of areas
of interest, bathymetry datasets (e.g., for shallow waters estimation), datasets
containing vessel schedules, weather data, etc. These datasets are often combined
with other data (e.g., vessel positions) in order to enrich the information
displayed to the end-users (e.g., the different layers of the MarineTraffic Live
Map).

Kafka [3] is used at the data ingestion layer, as a fast, scalable and fault-tolerant
messaging system for large data (at rest or in motion) portions.

3.2.2 Maritime Data Fusion

Data from multiple sources besides AIS, such as radars and cameras, are available
in real time though in order to be used in MSA modules they must be fused
together with AIS and create a unified map. This essentially translates to a need
for tracking algorithms that can monitor moving objects globally and in real time
using overlapping detections from multiple sensors. The Fusion operator in Fig. 2b
is a custom operator with distributed implementations in order to achieve this goal.
Trackers are comprised of three main components [65, 66]: (a) a method for the
assignment of detections to tracks, (b) the prediction of a target’s movement and (c)
the architecture of the tracker that coordinates how the detections are processed.

512 N. Giatrakos et al.

A detection arriving to the tracker can be assigned to a track using three
strategies, and each tracker implementation is based on one of them. The first way
is to simply choose the track that is closest to the detection, which has the lowest
computational complexity but it is not accurate in cases where two objects move
very close to each other. The second method focuses on improving the accuracy in
cases where a detection is close to multiple tracks by deferring the final assignment
until more detections arrive, thus making a more informed decision but at the cost of
significantly increasing the complexity and decreasing the responsiveness (i.e., real-
time challenge). The third approach stands between the two methods and allows that
a detection is assigned to multiple tracks as soon as it arrives, thus increasing the
accuracy satisfactorily without increasing complexity.

Each moving object is characterised by certain physical parameters and con-
straints according to which several kinematic models can predict its movement
under different conditions. A simple option is to choose one model, such as constant
velocity that assumes the object maintains the last speed, but this affects the
accuracy when an object manoeuvres. A better option is to use multiple models,
such as constant turn and acceleration, at the same time so that the tracker is able to
successfully detect a manoeuvring target.

3.2.3 SDE Operator For Trajectory Simplification

The plethora of incoming data from multiple overlapping sources poses a challenge
for data processing workflows. A data synopsis technique with which this challenge
can be tackled is trajectory simplification, i.e., reducing the amount of data
(positions) so that the computational effort required is reduced as well. The ideal
goal is to keep only those positions that are adequate in order to recreate the
trajectory with minimal losses in the accuracy of the data processing workflow.

For that, we use INFORE’s SDEaaS (Sect. 2.1) which includes an application-
specific synopses, namely STSampler. The STSampler scheme resembles the
concept of threshold-guided sampling in [58] but executes the sampling process in a
more simplistic, yet effective in practice, way. More precisely, the sampling process
is executed in a per stream fashion, i.e., for the currently monitored trajectory of
each vessel separately. The core concept is that if the velocity and the direction
of the movement of the vessel do not change significantly, the corresponding AIS
message is not sampled. The last two reported trajectory positions are cached in
the add FlatMap of Fig. 1a. When an AIS message holding information about
the current status of the vessel streams in via HashData, the add FlatMap
computes the change in the velocity between the lastly cached and the new AIS
report, i.e., Δvel = |vel(prev) − vel(now)|, and compares this value to a velocity
threshold Tvel . Using the previously cached points, the vector describing the lastly
reported direction of the vessel dir(prev) is computed, while using the last cached
and the newly reported positions we also compute dir(now). Then, we compare
Δdir = |dir(prev) − dir(now)| against a direction threshold Tdir . If at least one
of these deltas does not exceed the corresponding threshold, the newly received

Processing Big Data in Motion 513

AIS message is not included in the sample by the add FlatMap. This holds,
provided that a couple of additional spatiotemporal constraints are satisfied: (a) the
time difference between the newly received AIS message and the last one that was
included in the sample does not exceed a given time interval threshold Ttdiff and
(b) the distance among the most recently sampled and the current position of the
vessel does not surpass a distance threshold Tdist . SDEaaS is implemented in Flink
instead of Kafka, for the reasons explained in Sect. 2.1.

3.2.4 Complex Maritime Event Processing

A very important module of the modern MSA applications is the Maritime Event
Detection module. This is essentially a CEP module tailored to the maritime domain.
For now, our analysis concentrates on distributed and online CEP, i.e., detecting
complex events, while future work will also exploit the potential of CEF (Sect. 2.3).
A description of some of the most common vessel events that can occur in the
maritime domain is provided below:

• Turn: A vessel turns to a different direction.
• Acceleration: A vessel accelerates.
• Route Deviation: The course of a vessel deviates from “common” routes.
• Shallow waters: A vessel navigates in shallow waters.
• Proximity: A vessel is in close distance to another vessel.
• Out of coverage. A vessel is out of coverage with respect to one or more vessel

monitoring systems such as AIS [47].

The events described above are simple events, i.e., they can be computed without
depending on other events. Complex events, on the other hand, are events composed
from other events. Below we provide examples of complex events:

• Ship-to-ship: Transfer of cargo between vessels.
• Bunkering: One vessel provides fuel to another vessel.
• Tugging: A smaller vessel (a tug) is tugging another vessel.
• Piloting: A smaller vessel (pilot vessel) approaches a bigger vessel so that the

pilot of the vessel boards the bigger vessel in order to help it navigate into a port
where special local conditions apply.

• Fishing: A vessel is engaged in fishing activities.

For distributed processing of streaming data in the CEP context, the Akka
framework is used [1]. Akka adopts an Actor-based architecture based on message-
passing communication, and it is preferred due to the fact that it is more customis-
able than Spark and Flink. Each Actor, run in parallel instances, is responsible for
detecting a simple or complex event as those described above (Fig. 2a and b).

514 N. Giatrakos et al.

3.2.5 ML-Based Anomaly Detection

The ML algorithms that are relevant to the MSA workflow relate to Deep Neural
Network techniques for classifying vessels according to their type (such as cargo,
fishing vessel) [54]. Moreover, we are investigating ML-based techniques such as
Random Forests for classifying vessel trajectories and recognise simple or complex
events in them. This effort is also aided by advanced ML-based operators we have
developed to extract the common routes followed by the majority of vessels for
every voyage, defined as a pair of origin and destination ports [78]. At the moment,
these ML tasks are performed in an offline fashion mostly using Spark’s MLlib [5],
which we also use to estimate sea-port area regions in [55]. The outcomes of this
process performed at the batch layer of Fig. 2a can then be used as added value
knowledge to the event detection or the Fusion operator of Fig. 2b. Our ongoing
work focuses on incorporating INFORE’s module (Sect. 2.2) to materialise ML/DM
analytics in an online, real-time fashion, where possible (see restrictions on satellite
images in Sect. 3.1).

3.2.6 MSA Workflow Optimisation

Across the workflow of Fig. 2b, the INFORE Optimiser is responsible for prescrib-
ing the parallelisation degree, and the provisioned resources for the maintained
trajectory synopses (Sect. 3.2.3) determine the computer cluster and the number of
Akka Actors devoted to MSA-related CEP tasks (Sect. 3.2.4). The Optimiser can
also do the same for ML-based anomaly detection tasks (Sect. 3.2.5). An initial
workflow execution plan can be re-optimised and adjusted at runtime to adapt
(e.g., by increasing/decreasing the number of Akka Actors) to changing data stream
distributions or to a load of concurrently executed maritime workflows. Moreover,
the ongoing integration of the INFORE CEF module will allow the Optimiser to
prescribe the most efficient implementation among Akka (Sect. 3.2.4) and Flink
(Sect. 2.3) options for event processing tasks.

4 Future Research and Development Directions

Future research and development directions mainly lie in the synergies of ML/DM,
Synopses, CEP/CEF and optimisation technologies discussed in this chapter.

Resource-Constrained ML/DM Resource-Constrained ML/DM goes beyond
data processing over distributed, but computationally powerful infrastructures such
as computer clusters or the cloud. The objective in resource constrained ML/DM is
to bridge the gap between the very high computation and communication demands
of state-of-the-art ML algorithms, such as Deep Neural Nets and Kernel Support
Vector Machines, and the goal of running such algorithms (e.g. various classifiers)

Processing Big Data in Motion 515

on a large, heavily distributed system of resource-constrained devices. Resource-
constrained devices, such as sensors, pose limitations to the power supply, memory,
computation and communication capacity. Fast and efficient classifiers requiring
reduced power and memory should be developed, along with novel algorithms to
train, apply and update the classifiers. Synergies between synopses and distributed,
online ML/DM utilities are critical for such tasks.

Optimisation over Internet of Things (IoT) Platforms Optimisation over Inter-
net of Things (IoT) platforms, since existing optimisation frameworks, should be
extended to allow for planning the execution of workflows taking into consideration
the whole set IoT features including: (a) resource scarcity, (b) hardware hetero-
geneity, (c) data heterogeneity, (d) dynamic population of devices, (e) mobility
of devices, (f) security aspects over massively distributed architectures, and (g)
resilience and accuracy of analytics in the presence of device failures.

CEP/CEF-Oriented Synopses CEP/CEF-Oriented Synopses techniques tailored
for CEP/CEF are becoming a necessity. The work in [41] was the first to point out
that load shedding schemes tailored for CEP are missing and that shedding the load
in CEP significantly differentiates itself from doing so in conventional streaming
settings. A few more approaches emerged since then [52, 74], but still little attention
has been paid on the distributed environments and the mergeability properties of
such techniques [11].

Acknowledgments This work has received funding from the EU Horizon 2020 research and
innovation program INFORE under grant agreement No. 825070.

References

1. Akka v. 2.5.32. https://akka.io/. Accessed 15 September 2020.
2. Apache Flink v. 1.12. https://flink.apache.org/. Accessed 15 September 2020.
3. Apache Kafka v. 2.3. https://kafka.apache.org/. Accessed 15 September 2020.
4. Apache Samza v. 1.5.1. http://samza.apache.org/. Accessed 15 September 2020.
5. Apache Spark v. 2.4.4. https://spark.apache.org/. Accessed 15 September 2020.
6. Apache Storm v. 2.1. https://storm.apache.org/. Accessed 15 September 2020.
7. Proteus project. https://github.com/proteus-h2020/. Accessed 15 September 2020.
8. Stream-lib. https://github.com/addthis/stream-lib/. Accessed 15 September 2020.
9. Yahoo datasketch. https://datasketches.github.io/ Accessed 15 September 2020.

10. Abadi, D. J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J. H., Lindner,
W., Maskey, A. S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S. (2005). The design
of the borealis stream processing engine. In CIDR.

11. Agarwal, P. K., Cormode, G., Huang, Z., Phillips, J. M., Wei, Z., & Yi, K. (2013). Mergeable
summaries. ACM Transactions on Database Systems, 38(4), 26:1–26:28.

12. Agrawal, D., Chawla, S., Rojas, B., et al. (2018). RHEEM: enabling cross-platform data
processing - may the big data be with you! Proceedings of the VLDB Endowment, 11(11),
1414.

13. Agrawal, R., Imielinski, T., & Swami, A. N. (1993). Mining association rules between sets of
items in large databases. In SIGMOD.

https://akka.io/
https://flink.apache.org/
https://kafka.apache.org/
http://samza.apache.org/
https://spark.apache.org/
https://storm.apache.org/
https://github.com/proteus-h2020/
https://github.com/addthis/stream-lib/
https://datasketches.github.io/

516 N. Giatrakos et al.

14. Alevizos, E., Artikis, A., Paliouras, G. (2018). Wayeb: a tool for complex event forecasting. In
LPAR.

15. Alipourfard, O., Liu, H., Chen, J., Venkataraman, S., Yu, M., & Zhang, M. (2017). Cherrypick:
Adaptively unearthing the best cloud configurations for big data analytics. In NSDI.

16. Balazinska, M., Balakrishnan, H., Stonebraker, M. (2004). Contract-based load management
in federated distributed systems. In NSDI.

17. Begleiter, R., El-Yaniv, R., & Yona, G. (2004). On prediction using variable order Markov
models. Journal of Artificial Intelligence Research, 22, 385–421.

18. Benczúr, A., Kocsis, L., & Pálovics, R. (2018). Online machine learning in big data streams.
arXiv: 1802.05872.

19. Bifet, A., Maniu, S., Qian, J., Tian, G., He, C., & Fan, W. (2015). Streamdm: Advanced data
mining in spark streaming. In ICDMW.

20. Bühlmann, P., Wyner, A. J., et al. (1999). Variable length Markov chains. The Annals of
Statistics, 27(2), 480–513.

21. Cardellini, V., Grassi, V., Lo Presti, F., & Nardelli, M. (2016). Optimal operator placement for
distributed stream processing applications. In DEBS.

22. Cho, C., Wu, Y., Yen, S., Zheng, Y., & Chen, A. L. P. (2011). On-line rule matching for event
prediction. VLDB Journal, 20(3), 303–334.

23. Cipriani, N., Eissele, M., Brodt, A., Grossmann, M., & Mitschang, B. (2009). Nexusds: a
flexible and extensible middleware for distributed stream processing. In IDEAS.

24. Cleary, J. G., & Witten, I. H. (1984). Data compression using adaptive coding and partial string
matching. IEEE Transactions on Communications, 32(4), 396–402.

25. Cormode, G., Garofalakis, M. N., Haas, P. J., & Jermaine, C. (2012). Synopses for massive
data: Samples, histograms, wavelets, sketches. Foundations and Trends Databases, 4(1–3),
1–294.

26. Cormode, G., & Yi, K. (2020). Small summaries for big data. Cambridge University Press.
https://doi.org/10.1017/9781108769938

27. Doka, K., Papailiou, N., Tsoumakos, D., Mantas, C., & Koziris, N. (2015). Ires: Intelligent,
multi-engine resource scheduler for big data analytics workflows. In SIGMOD.

28. Elmore, A. J., Duggan, J., Stonebraker, M., Balazinska, M., Çetintemel, U., Gadepally, V.,
Heer, J., Howe, B., Kepner, J., Kraska, T., Madden, S., Maier, D., Mattson, T. G., Papadopoulos,
S., Parkhurst, J., Tatbul, N., Vartak, M., Zdonik, S. (2015). A demonstration of the bigdawg
polystore system. Proceedings of the VLDB Endowment, 8(12), 1908.

29. FAO: VMS for fishery vessels. http://www.fao.org/fishery/topic/18103/en. Accessed 15 May
2019.

30. Flouris, I., Giatrakos, N., Deligiannakis, A., & Garofalakis, M. N. (2020). Network-wide
complex event processing over geographically distributed data sources. Information Systems,
88, 101442.

31. Flouris, I., Giatrakos, N., Garofalakis, M. N., & Deligiannakis, A. (2015). Issues in complex
event processing systems. In IEEE TrustCom/BigDataSE/ISPA (Vol. 2)

32. Garofalakis, M. N., Gehrke, J., & Rastogi, R. (Eds.). (2016). Data stream management -
processing high-speed data streams. Data-centric systems and applications. Springer. https://
doi.org/10.1007/978-3-540-28608-0

33. Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A., & Garofalakis, M. N. (2020).
Complex event recognition in the big data era: a survey. VLDB Journal, 29(1), 313–352.

34. Giatrakos, N., Arnu, D., Bitsakis, T., Deligiannakis, A., Garofalakis, M. N., Klinkenberg, R.,
Konidaris, A., Kontaxakis, A., Kotidis, Y., Samoladas, V., Simitsis, A., Stamatakis, G., Temme,
F., Torok, M., Yaqub, E., Montagud, A., Ponce, M., Arndt, H., Burkard, S. (2020). Infore:
Interactive cross-platform analytics for everyone. In CIKM.

35. Giatrakos, N., Artikis, A., Deligiannakis, A., & Garofalakis, M. N. (2017). Complex event
recognition in the big data era. Proceedings of the VLDB Endowment, 10(12), 1996.

36. Giatrakos, N., Artikis, A., Deligiannakis, A., & Garofalakis, M. N. (2019). Uncertainty-aware
event analytics over distributed settings. In DEBS.

https://doi.org/10.1017/9781108769938
http://www.fao.org/fishery/topic/18103/en
https://doi.org/10.1007/978-3-540-28608-0
https://doi.org/10.1007/978-3-540-28608-0

Processing Big Data in Motion 517

37. Giatrakos, N., Deligiannakis, A., Garofalakis, M. N., & Kotidis, Y. (2020). Omnibus outlier
detection in sensor networks using windowed locality sensitive hashing. Future Generation
Computer Systems, 110, 587–609.

38. Giatrakos, N., Kotidis, Y., & Deligiannakis, A. (2010). PAO: power-efficient attribution of
outliers in wireless sensor networks. In DMSN. https://doi.org/10.1145/1858158.1858168

39. Gog, I., Schwarzkopf, M., Crooks, N., Grosvenor, M. P., Clement, A., & Hand, S. (2015).
Musketeer: all for one, one for all in data processing systems. In EuroSys.

40. Goldhahn, R., Braca, P., Ferri, G., Munafo, A., & Lepage, K. (2014). Adaptive bayesian
behaviors for AUV surveillance networks. In UAC.

41. He, Y., Barman, S., & Naughton, J. F. (2014). On load shedding in complex event processing.
In ICDT.

42. Hegedüs, I., Danner, G., & Jelasity, M. (2019). Gossip learning as a decentralized alternative
to federated learning. In DAIS.

43. IMO. (2017). Technical characteristics for an automatic identification system using time
division multiple access in the VHF maritime mobile frequency band. Technical report, ITU.
https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.1371-5-201402-I!!PDF-E.pdf

44. IMO. (2018). Long-range identification and tracking system. Technical report, IMO. http://
www.imo.org/en/OurWork/Safety/Navigation/Documents/LRIT/1259-Rev-7.pdf

45. Kalyvianaki, E., Wiesemann, W., Vu, Q. H., Kuhn, D., & Pietzuch, P. (2011). Sqpr: Stream
query planning with reuse. In ICDE.

46. Kontaxakis, A., Giatrakos, N., & Deligiannakis, A. (2020). A synopses data engine for
interactive extreme-scale analytics. In CIKM.

47. Kontopoulos, I., Chatzikokolakis, K., Zissis, D., Tserpes, K., & Spiliopoulos, G. (2020). Real-
time maritime anomaly detection: detecting intentional AIS switch-off. International Journal
of Big Data Intelligence, 7(2), 85–96.

48. Kourtellis, N., Morales, G. D. F., & Bifet, A. (2018). Large-scale learning from data streams
with apache SAMOA. CoRR abs/1805.11477. http://arxiv.org/abs/1805.11477

49. Kumar, V., Cooper, B. F., & Schwan, K. (2005). Distributed stream management using utility-
driven self-adaptive middleware. In ICAC.

50. Laxman, S., Tankasali, V., & White, R. W. (2008). Stream prediction using a generative model
based on frequent episodes in event sequences. In KDD.

51. Li, M., Andersen, D., Park, J. W., et al. (2014). Scaling distributed machine learning with the
parameter server. In OSDI.

52. Li, Z., & Ge, T. (2016). History is a mirror to the future: Best-effort approximate complex event
matching with insufficient resources. Proceedings of the VLDB Endowment, 10(4), 85–96.

53. Mannila, H., Toivonen, H., & Verkamo, A. I. (1997). Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery, 1(3), 259–289.

54. Milios, A., Bereta, K., Chatzikokolakis, K., Zissis, D., & Matwin, S. (2019). Automatic fusion
of satellite imagery and AIS data for vessel detection. In FUSION.

55. Millefiori, L. M., Zissis, D., Cazzanti, L., & Arcieri, G. (2016). A distributed approach to
estimating sea port operational regions from lots of AIS data. In IEEE BigData.

56. Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to time series analysis
and forecasting. John Wiley & Sons.

57. Mozafari, B. (2019). Snappydata. In Encyclopedia of Big Data Technologies. Springer.
58. Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., & Theodoridis, Y. (2017).

Online event recognition from moving vessel trajectories. GeoInformatica, 21(2), 389–427.
59. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., & Seltzer, M. (2006).

Network-aware operator placement for stream-processing systems. In ICDE.
60. Pu, Q., Ananthanarayanan, G., Bodik, P., Kandula, S., Akella, A., Bahl, P., & Stoica, I. (2015).

Low latency geo-distributed data analytics. In SIGCOMM.
61. Rabkin, A., Arye, M., Sen, S., Pai, V. S., & Freedman, M. J. (2014). Aggregation and

degradation in jetstream: Streaming analytics in the wide area. In NSDI.
62. Rizou, S. (2013). Concepts and algorithms for efficient distributed processing of data streams.

University of Stuttgart. https://doi.org/10.18419/opus-3209

https://doi.org/10.1145/1858158.1858168
https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.1371-5-201402-I!!PDF-E.pdf
http://www.imo.org/en/OurWork/Safety/Navigation/Documents/LRIT/1259-Rev-7.pdf
http://www.imo.org/en/OurWork/Safety/Navigation/Documents/LRIT/1259-Rev-7.pdf
http://arxiv.org/abs/1805.11477
https://doi.org/10.18419/opus-3209

518 N. Giatrakos et al.

63. Ron, D., Singer, Y., & Tishby, N. (1993). The power of amnesia. In NIPS.
64. Ron, D., Singer, Y., & Tishby, N. (1996). The power of amnesia: Learning probabilistic

automata with variable memory length. Machine Learning, 25(2–3), 117–149.
65. Rong Li, X., & Jilkov, V. P. (2003). Survey of maneuvering target tracking. part i. dynamic

models. IEEE Transactions on Aerospace and Electronic Systems, 39(4), 1333–1364.
66. Rong Li, X., & Jilkov, V. P. (2005). Survey of maneuvering target tracking. part v. multiple-

model methods. IEEE Transactions on Aerospace and Electronic Systems, 41(4), 1255–1321.
67. Samoladas, V., & Garofalakis, M. N. (2019). Functional geometric monitoring for distributed

streams. In EDBT.
68. Shah, M. A., Hellerstein, J. M., Chandrasekaran, S., & Franklin, M. J. (2003). Flux: An

adaptive partitioning operator for continuous query systems. In ICDE.
69. Silva, J., Faria, E., Barros, R., Hruschka, E., Carvalho, A., Gama, J. (2013). Data stream

clustering: A survey. ACM Computing Surveys, 46(1), 1–31.
70. Tang, H., Lian, X., Yan, M., Zhang, C., Liu, J. (2018). D2: Decentralized training over

decentralized data. In ICML.
71. Vilalta, R., & Ma, S. (2002). Predicting rare events in temporal domains. In ICDM.
72. Vulimiri, A., Curino, C., Godfrey, P. B., Jungblut, T., Padhye, J., Varghese, G. (2015). Global

analytics in the face of bandwidth and regulatory constraints. In NSDI.
73. Willems, F. M. J., Shtarkov, Y. M., & Tjalkens, T. J. (1995). The context-tree weighting method:

basic properties. IEEE Transactions on Information Theory, 41(3), 653–664.
74. Zhao, B., Hung, N. Q. V., & Weidlich, M. (2020). Load shedding for complex event processing:

Input-based and state-based techniques. In: ICDE.
75. Zhou, C., Cule, B., & Goethals, B. (2015). A pattern based predictor for event streams. Expert

Systems with Applications, 42(23), 9294–9306.
76. Zillner, S., Bisset, D., Milano, M., Curry, E., Robles, A.G., Hahn, T., Irgens, M., Lafrenz,

R., Liepert, B., O’Sullivan, B., & Smeulders, A. (Eds.). (2020). Strategic research, innovation
and deployment agenda - AI, data and robotics partnership. Third Release. Brussels. BDVA,
euRobotics, ELLIS, EurAI and CLAIRE (September 2020).

77. Zillner, S., Curry, E., Metzger, A., Auer, S., & Seidl, R. (Eds.). (2017). European big data
value strategic research & innovation agenda. Big Data Value Association.

78. Zissis, D., Chatzikokolakis, K., Spiliopoulos, G., & Vodas, M. (2020). A distributed spatial
method for modeling maritime routes. IEEE Access, 8, 47556–47568.

79. Zissis, D., Chatzikokolakis, K., Vodas, M., Spiliopoulos, G., & Bereta, K.: A data driven
approach to maritime anomaly detection. In MSAW (2019).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Processing Big Data in Motion: Core Components and System Architectures with Applications to the Maritime Domain
	1 Challenges of Big Streaming Data
	2 Core Components and System Architectures
	2.1 The Case for Data Synopses
	2.2 Distributed Online Machine Learning and Data Mining
	2.3 Distributed and Online CEF
	2.4 Geo-distributed Cross-Platform Optimisation

	3 Real-Life Application to a Maritime Use Case
	3.1 Background on Maritime Situation Awareness (MSA)
	3.2 Building Blocks of MSA Workflows in the Big Data Era
	3.2.1 Maritime Data Sources
	3.2.2 Maritime Data Fusion
	3.2.3 SDE Operator For Trajectory Simplification
	3.2.4 Complex Maritime Event Processing
	3.2.5 ML-Based Anomaly Detection
	3.2.6 MSA Workflow Optimisation

	4 Future Research and Development Directions
	References

