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Abstract This chapter describes a software architecture for processing big-data
analytics considering the complete compute continuum, from the edge to the
cloud. The new generation of smart systems requires processing a vast amount
of diverse information from distributed data sources. The software architecture
presented in this chapter addresses two main challenges. On the one hand, a new
elasticity concept enables smart systems to satisfy the performance requirements
of extreme-scale analytics workloads. By extending the elasticity concept (known
at cloud side) across the compute continuum in a fog computing environment,
combined with the usage of advanced heterogeneous hardware architectures at the
edge side, the capabilities of the extreme-scale analytics can significantly increase,
integrating both responsive data-in-motion and latent data-at-rest analytics into
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a single solution. On the other hand, the software architecture also focuses on
the fulfilment of the non-functional properties inherited from smart systems, such
as real-time, energy-efficiency, communication quality and security, that are of
paramount importance for many application domains such as smart cities, smart
mobility and smart manufacturing.

Keywords Smart mobility · Software architecture · Distributed big data
analytics · Compute continuum · Fog computing · Edge computing · Cloud
computing · Non-functional requirements · Cyber-security · Energy-efficiency ·
Communications

1 Introduction

The extreme-scale big data analytics challenge refers not only to the heterogeneity
and huge amount of data to be processed both on the fly and at rest but also to
the geographical dispersion of data sources and the necessity of fulfilling the non-
functional properties inherited from the system, such as real-time, energy efficiency,
communication quality or security. Examples of smart systems that can exploit
the benefits of extreme-scale analytics include production lines, fleets of public
transportation and even whole cities. Providing the required computing capacity for
absorbing extreme (and geographically dispersed) amounts of collected complex
data, while respecting system properties, is of paramount importance to allow
converting the data into few concise and relevant facts that can be then consumed
and be decided or acted upon.

In a typical smart system (e.g., a smart city), data is collected from (affordable)
sensors to gather large volumes of data from distributed sources using Internet
of Things (IoT) protocols. The data is then transformed, processed and analysed
through a range of hardware and software stages conforming the so-called compute
continuum, that is from the physical world sensors close to the source of data
(commonly referred to as edge computing) to the analytics backbone in the
data centres (commonly located in the cloud and therefore referred to as cloud
computing). Due to the computing complexity of executing analytics and the limited
computing capabilities of the edge side, current approaches forward most of the
collected data to the cloud side. There, big data analytics are applied upon large
datasets using high-performance computing (HPC) technologies. This complex and
heterogeneous layout presents two main challenges when facing extreme-scale big
data analytics.

The first challenge refers to the non-functional properties inherited from the
application domain:

• Real-time big data analytics is becoming a main pillar in industrial and societal
ecosystems. The combination of different data sources and prediction models
within real-time control loops will have an unprecedented impact in domains
such as smart city. Unfortunately, the use of remote cloud technologies makes
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infeasible to provide real-time guarantees due to the large and unpredictable
communication costs on cloud environments.

• Mobility shows increased trade-offs and technological difficulties. Mobile
devices are largely constrained by the access of energy, as well as suffering
from unstable communication, which may increase random communication
delays, unstable data throughput, loss of data and temporal unavailability.

• Security is a continuously growing priority for organization of all sizes, as
it affects data integrity, confidentiality and potentially impacting on safety.
However, strict security policy management may hinder the communication
among services and applications, shrinking overall performance and real-time
guarantees.

Overall, while processing time and energetic cost of computation is reduced
as data analytics is moved to the cloud, the end-to-end communication delay
and the performance of the system (in terms of latency) increases and becomes
unpredictable, making not possible to derive real-time guarantees. Moreover, as
computation is moved to the cloud, the required level of security increases to
minimize potential attacks, which may end up affecting the safety assurance levels,
hindering the execution and data exchange among edge and cloud resources.

The second challenge refers to the elasticity concept. In recent years, the
dramatic growth in both data generation and usage has resulted in the so-called
three V’s challenges of big data: volume (in terms of data size), variety (in terms
of different structure of data, or lack of structure), and velocity (in terms of the
time at which data need to be processed). These factors have contributed to the
development of the elasticity concept, in which cloud computing resources are
orchestrated to provide the right level of service (in terms of system throughput) to
big data workloads. The elasticity concept, however, does not match the computing
requirements when considering extreme-scale analytics workloads. On the one
side, elasticity does not take into account the computing resources located on the
edge. The advent of new highly parallel and energy-efficient embedded hardware
architectures featuring graphical processing units (GPUs), many-core fabrics or
FPGAs, have significantly increased the computing capabilities on the edge side.
On the other side, elasticity mainly focuses on system throughput, without taking
into account the non-functional properties inherited from the domain.

Addressing together these two important challenges along the compute contin-
uum, that is from the edge to the cloud, is of paramount importance to take full
benefit of extreme-scale big data analytics in industrial and societal environments
such as smart cities. This chapter describes an end-to-end solution applied along
the complete compute continuum to overcome these challenges. Concretely, the
ELASTIC project [1], funded by the European Union’s Horizon 2020 Programme,
faces these challenges and proposes a novel software platform that aims to satisfy
the performance requirements of extreme-scale big data analytics through a novel
elasticity concept that distributes workloads across the compute continuum. The
proposed software framework also considers the non-functional requirements of the
system, that is operation with real-time guarantees, enhanced energy efficiency, high
communication quality and security against vulnerabilities.
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The chapter relates to the technical priority “Data Processing Architectures”
of the European Big Data Value Strategic Research & Innovation Agenda [13].
Moreover, the chapter relates to the “Systems, Methodologies, Hardware and Tools”
cross-sectorial technology enablers of the AI, Data and Robotics Strategic Research,
Innovation & Deployment Agenda [14]. The rest of the chapter is organized as
follows: Sect. 2 describes the ELASTIC software architecture. Concretely, Sect. 2.1
motivates the use of such framework in the smart city domain, Sect. 2.2 provides an
overview of the layered software framework, and Sects. 2.3–2.6 describe each layer
in detail. Finally, Sect. 3 concludes the chapter.

2 Elastic Software Architecture

2.1 Applicability to the Smart City Domain

One of the domains in which extreme-scale big data analytics can have a significant
impact on people’s day-to-day life is Smart Cities. Big data is increasingly seen as
an effective technology capable of controlling the available (and distributed) city
resources in a safely, sustainably, and efficiently way to improve the economical
and societal outcomes. Cities generate a massive amount of data from heterogeneous
and geographically dispersed sources including citizens, public and private vehicles,
infrastructures, buildings, etc.

Smart cities can clearly benefit from the proposed software architecture, capable
of deploying federated/distributed, powerful and scalable big data systems to extract
valuable knowledge, while fulfilling the non-functional properties inherit from the
smart cities. This opens the door to a wide range of advanced urban mobility
services, including public transportation and traffic management. Therefore, the
proposed software architecture is being tested in the city of Florence (Italy),
to enhance the tramway public transportation services, as well as its interaction
with the private vehicle transportation. The new elasticity concept will enable the
efficient processing of multiple and heterogeneous streams of data collected from
an extensive deployment of Internet of Things (IoT) sensors, located on board the
tram vehicles, along the tramway lines, as well as on specific urban spots around the
tram stations (e.g. traffic lights).

Concretely, three specific applications have been carefully identified to assess
and highlight the benefits of ELASTIC technology for newly conceived mobility
solutions (more details can be found in the ELASTIC project website [1]):

• Next GenerationAutonomous Positioning (NGAP) and AdvancedDrivingAssis-
tant System (ADAS): NGAP enables the accurate and real-time detection of the
tram position through data collected and processed from on-board sensors. The
positioning information is then sent through a reliable connection to the tram
operation control system on the ground. This information also enables the devel-
opment of ADAS, for obstacle detection and collision avoidance functionalities



An Elastic Software Architecture for Extreme-Scale Big Data Analytics 93

based on an innovative data fusion algorithm combining the output of multiple
sensors (radars, cameras and LIDARs). Data from additional sources, such as
fixed sensors placed at strategic positions in the streets (e.g., road crossings), are
also integrated to increase the reliability of the system.

• Predictive maintenance: It monitors and profiles the rail track status in real time,
enabling the identification of changes in equipment behaviour that foreshadow
failure. Furthermore, through offline analytics, potential correlations between
unexpected detected obstacles (obtained through the NGAP/ADAS application)
and rail track damages are examined. The application also provides recom-
mendations, enabling maintenance teams to carry out remedial work before the
asset starts to fail. Finally, the power consumption profile is also monitored and
processed in real time, in order to potentially minimize consumption and have an
environmentally positive impact.

• Interaction between the public and private transport in the City of Florence:
ELASTIC uses the information from the city network of IoT sensors to enhance
the quality of the city traffic management, providing valuable outputs for both
users and operators that will enable them to: (1) Identify critical situations (e.g.
vehicles crossing the intersection with the tram line despite having a red traffic
light) (2) Optimize the local traffic regulation strategies (e.g. reduce the waiting
time of cars at tram crossings through improved light priority management, or
slow down trams to reduce a queue of waiting vehicles, etc.)

2.2 ELASTIC Layered Software Architecture: Overview

In any smart system, large volumes of data are collected from distributed sensors,
transformed, processed and analysed, through a range of hardware and software
stages conforming the so-called compute continuum, that is from the physical world
sensors (commonly referred to as edge computing), to the analytics back-bone in
the data centres (commonly referred to as cloud computing). The proposed software
architecture to efficiently manage and process this complex data processing scenario
is shown in Fig. 1, and it is composed of the following layers:

• Distributed Data Analytics Platform (DDAP): It provides the data accessibility
and storage solutions, and the APIs. The data solutions provide the set of
mechanisms needed to cope with all data-type variants: formats, syntax, at-
rest and in-motion, 3V’s (volume, velocity and variety), edge, cloud, etc. The
APIs allow to extract valuable knowledge from the connected data sources using
distributed and parallel programming models.

• Computation Orchestrator: It implements the elasticity concept in which the
computing resources will be properly orchestrated across the compute continuum
to provide the right level of service to big data analytics workloads. To do so, the
orchestrator does not only consider the overall system throughput but also the
fulfilment of non-functional properties inherited from the application domain.
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Fig. 1 Overview of the elastic software architecture

This layer supports the APIs exposed to the programmer to efficiently distribute
the execution of the analytics in a transparent way, while exploiting the inherent
parallelism of the system and abstracting the application from the underlying
distributed fog computing architecture.

• Non-functional Requirements (NFR) Tool: It provides the required support to
monitor and manage the behaviour of the system, in order to guarantee some
level of fulfilment of the non-functional requirements of the supported applica-
tions, that is real-time guarantees, energy efficiency, communication quality and
security properties.

• Hybrid Fog Computing Platform: It abstracts the multiple edge and cloud
computing resources spread across the compute continuum. To do so, this layer
deploys the application components, that is the computational units distributed
by the above layer, to virtual resources using container technologies, and
considering configuration and infrastructural requirements.
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Overall, the aim of the elastic software architecture is to enable the design,
implementation and efficient execution of extreme-scale big data analytics. To do
so, it incorporates a novel elasticity concept across the compute continuum, with
the objective of providing the level of performance needed to process the envisioned
volume and velocity of data from geographically dispersed sources at an affordable
development cost, while guaranteeing the fulfilment of the non-functional properties
inherited from the system domain. The following subsections provide a detail
description of each software architecture component.

2.3 Distributed Data Analytics Platform

The distributed data analytics platform is developed to cater for domain specific as
well as generic needs of analysing data across the compute continuum. Concretely,
this layer takes care of two important matters: (1) the actual development of data
analytics, providing APIs support (Sect. 2.3.1), and (2) the management, storage
and retrieval of data at the time it is needed and at the location where it is needed
(Sect. 2.3.2).

2.3.1 Application Programming Interfaces (APIs)

The software architecture provides support for the development of big data analytics
methods, capable of analysing all the data collected by IoT sensors and distributed
devices. As an example, Deep Neural Networks (DNNs) are used for image pro-
cessing and predictive modelling, and aggregation and learning methods (based on
unsupervised-learning strategies) are used for automatically detecting data patterns,
including ant-based clustering, formal concept analysis and frequent pattern mining.

This layer also provides an API to support distributed and parallel computation.
This enables the simultaneous use of multiple compute resources to execute
software applications. Concretely, the COMPSs [4] task-based programmingmodel
is supported to allow developers to simply specify the functions to be executed as
asynchronous parallel tasks. At runtime, the system exploits the concurrency of the
code, automatically detecting and enforcing the data dependencies between tasks
and deploying these tasks to the available resources, which can be edge devices or
nodes in a cluster. More details of this component are provided in Sect. 2.4.

One of the key competitive advantages of the DDAP is that these methods are
offered to the software developer in a unique development environment. Moreover,
big data analytics methods can be optimized to be executed at both, the edge and the
cloud side, providing the required flexibility needed to distribute the computation of
complex big data analytics workflows across the compute continuum.
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2.3.2 Data Accessibility and Storage

One of the main goals of the distributed data analytics platform (DDAP) is to ensure
data accessibility across the compute continuum, covering aspects such as data-
in-motion and data-at-rest, for data analytic applications. To do so, the DDAP is
currently composed of the following main components:

• dataClay [8], distributed at the edge/fog side, is responsible for managing the
information generated in real time, covering the data-in-motion needs. dataClay
is an active object store that can handle arbitrary data structures in the form of
objects and collections, as in object-oriented programming, which allows the
application programmer to manage data as if it was just in memory. It is highly
optimized for accessing and manipulating data at a fine granularity, and it can run
in heterogeneous devices, from the edge to the cloud.

• Druid [3], distributed across the fog/cloud side, is responsible for collecting
all information generated and shared across DDAP; it is a column-based data
warehouse tuned to ingest large amounts of time series data such as that generated
by a transport infrastructure. Druid is distributed by design and optimized for
visual analytics. It contains mechanisms for a fast and easy access to data
regardless of its location. This functionality makes Druid a complementing
element in DDAP suitable for covering data-at-rest needs.

• Kafka [2] is a well-known message queue for streaming data; it functions as a
transient message queue to transfer data from dataClay to Druid at each station.
In DDAP, Kafka can be seen as the boundary between data-in-motion and data-
at-rest.

The combination of dataClay, Druid, and Kafka makes DDAP suitable for
real-time and historical big data analytics at the same time, as these solutions
complement each other. In particular, Kafka helps enforce a unidirectional data flow
from dataClay to Druid, effectively making DDAP operate as a well-known Content
Delivery Network. In the latter, data is generated and processed at the edge for real-
time needs, then it is collected at the cloud from distributed locations, and finally the
content, that is historical big data analytics results, is delivered to interested users.

An example of the DDAP functionality can be seen in Fig. 2. The applications
executed in the tram provide different kinds of data, such as the objects detected
by its cameras and sensors, or the tram position. In the meantime, the applications
executed in the context of a tram stop, which includes the stop itself as well as
cabinets with cameras in surrounding intersections, also detect objects that may
fall out of the visibility scope of the tram. To provide real-time performance, these
applications use COMPSs to distribute the work between the different devices. Both
data sources are merged in the tram stop in order to predict possible collisions
between the objects detected according to their current trajectories. Simultaneously,
the objects detected and their positions at each point in time are pushed to Kafka so
that they can be ingested by Druid as they are created, thus immediately enabling
them to take part of historical analytics triggered from the cloud.
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Fig. 2 Example application of DDAP in a transport infrastructure

2.4 Computation Orchestrator

This layer provides the software component in charge of distributing the compu-
tation across available computing resources in the hybrid for computing platform.
Specifically, it implements the elasticity concept to properly orchestrate the comput-
ing resources across the compute continuum to provide the right level of service to
analytics workloads. Moreover, elasticity will not only consider the overall system
throughput but also the fulfilment of non-functional properties inherited from the
application domain.

The software component in charge of implementing these features is COMPSs
[4]. COMPSs is a distributed framework developed at the Barcelona Supercomput-
ing Center (BSC) mainly composed of a task-based programming model, which
aims to ease the development of parallel applications for distributed infrastructures,
such as Clusters, Clouds and containerized platforms, and a runtime system that
distributes workloads transparently across multiple computing nodes with regard
to the underlying infrastructure. In cloud and big data environments, COMPSs
provides scalability and elasticity features allowing the dynamic provision of
resources. More specifically, the COMPSs task-based model is offered in the
DDAP layer to implement big data analytics methods, and the COMPSs runtime
implements the scheduling techniques and deployment capabilities to interact with
hybrid resources in a transparent way for the programmer.

2.4.1 Task-based Programming Model

COMPSs offers a portable programming environment based on a task execution
model, whose main objective is to facilitate the parallelization of sequential source
code (written in Java, C/C++ or Python programming languages) in a distributed
and heterogeneous computing environment. One of the main benefits of COMPSs is
that the application is agnostic from the underlying distributed infrastructure. Hence,
the COMPSs programmer is only responsible for identifying the portions of code,
named COMPSs tasks, that can be distributed by simply annotating the sequential



98 M. A. Serrano et al.

Fig. 3 Video analytics
COMPSs example

1 @task ( camera = IN , returns = numpy . n d a r r a y )
2 def ge t _v i d eo_ f r ame ( cameraID ) :
3 re turn get_next_frame ( cameraID )

5 @task ( f rame = IN , returns = l i s t )
6 def v i d e o _ a n a l y t i c s ( f rame ) :
7 re turn p r o c e s s ( f rame )

9 @task ( l i s t _ r e s u l t s = IN )
10 def c o l l e c t _ a n d _ d i s p l a y ( l i s t _ r e s u l t s ) :
11 upda t e_da shboa r d ( l i s t _ r e s u l t s )

13 ### Main function ###
14 whi le ( t r u e ) :
15 f o r i , cam in enumerate ( c ame r a s _ s e t )
16 f rame [ i ] = get_video_frame ( cam )
17 r e s u l t s [ i ] = video_analytics ( f rame [ i ] )
18 collect_and_display ( r e s u l t s )

source code. Data dependencies and their directionality (i.e. in, out or inout)
are also identified. Upon them, the COMPSs runtime determines the order in which
COMPSs tasks are executed and also the data transfers across the distributed system.
A COMPSs task with an in or inout data dependency cannot start its execution
until the COMPSs task with an out or inout dependency over the same data
element is completed. At run-time, COMPSs tasks are spawned asynchronously
and executed in parallel (as soon as all its data dependencies are honoured) on a set
of distributed and interconnected computing resources. Moreover, the data elements
marked as in and inout are transferred to the compute resource in which the task
will execute if needed.

Figure 3 shows a basic example of a Python COMPSs application (PyCOMPSs
[12]) that performs video analytics. COMPSs tasks are identified with a standard
Python decorator @task, at lines 1, 5 and 9. The returns argument specifies
the data type of the value returned by the function (if any), and the IN argument
defines the data directionality of function parameters. The main code starts at line
14, where the application iterates to process video frames over the time. Then, at
line 15 a loop iterates over the available camera video feeds, and first it gets the next
frame by instantiating the COMPSs task defined at line 1. At line 17, the COMPSs
task that process the video frame (defined at line 5) is instantiated. Finally, all the
results are collected at line 18, instantiating the COMPSs task defined at line 9.

2.4.2 Runtime System

The task-based programming model of COMPSs is supported by its runtime
system, which manages several aspects of the application execution, keeping the
underlying infrastructure transparent to it. The two main aspects are the deployment
on the available infrastructure and the scheduling of tasks to available computing
resources.
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Deployment
One of the main features of COMPSs is that the model abstracts the application
from the underlying distributed infrastructure; hence, COMPSs programs do not
include any detail that could tie them to a particular platform boosting portability
among diverse infrastructures and enabling execution in a fog environment. Instead,
it is the COMPSs runtime that features the capabilities to set up the execution
environment. The COMPSs runtime is organized as a master-worker structure. The
Master is responsible for steering the distribution of the application, as well as
for implementing most of the features for initialising the execution environment,
processing tasks or data management. The Worker(s) are in charge of responding to
task execution requests coming from the Master.

The COMPSs runtime support various scenarios regarding deployment strategy
and interoperability between edge/cloud resources. Three different scenarios, com-
patible between them, are supported:

• Native Linux, monolithic: The big data analytics workload is natively executed
in a Linux-like environment. In this configuration, all the nodes available for the
execution of a COMPSs workflow require the native installation of COMPSs,
and the application.

• Containerized, Docker: A Docker COMPSs application image contains the
needed dependencies to launch a COMPSs worker and the user application. In
this case, there is no need for setting up the execution environment in advance in
all the nodes, but only Docker must be available. Docker image repositories, e.g.
Docker Hub, can make the image, and hence the application, available anytime
and anywhere. In this deployment, COMPSs takes care of making the image
available at the nodes and launching the containers.

• Cloud provider: A cloud infrastructure, in this context, refers to a data centre or
cluster with great computing capacity that can be accessed through an API and
that can lend some of that computational power, for example in the form of a
container. This is the case of a Docker Swarm or Kubernetes cluster. COMPSs
also supports the deployment of workers in these infrastructures, using the Nuvla
API (see Sect. 2.6).

Scheduling
One key aspect of the COMPSs runtime scheduler is that it maintains the inter-
nal representation of a COMPSs application as a Direct Acyclic Graph (DAG)
to express the parallelism. Each node corresponds to a COMPSs task instance
and edges represent data dependencies. As an example, Fig. 4 shows the DAG
representation for three iterations of the COMPSs application presented in Fig. 3,
when three camera video feeds are processed. Based on this DAG, the runtime can
automatically detect data dependencies between COMPSs tasks.

The COMPSs scheduler is in charge of distributing tasks among the available
computing resources and transferring the input parameters before starting the
execution, based on different properties of the system such as the non-functional
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Fig. 4 DAG representation of the COMPSs example in Fig. 3

requirements (real-time, energy, security and communications quality) analysed by
the NFR tool (see Sect. 2.5).

2.5 Non-functional Requirements Tool

The software architecture presented in this chapter addresses the challenge of
processing extreme-scale analytics, considering the necessity of fulfilling the non-
functional properties inherited from the system and its application domain (e.g.
smart manufacturing, automotive, smart cities, avionics), such as real time, energy
efficiency, communication quality or security.

This task is led by the Non-functional Requirements (NFR) Tool layer (see
Fig. 1), in collaboration with the Orchestrator layer, and the Hybrid Fog Computing
Platform. The NFR tool continuously monitors and evaluates the extent to which
non-functional properties’ required levels are guaranteed in the fog computing
platform. Moreover, this tool identifies and implements the appropriate mechanisms
to deal with the NFRs, monitoring system behaviour and helping taking decisions
(such as offloading or reducing performance). Runtime monitoring of system status
is used to detect NFR violations, while a Global Resource Manager guides the
evolution towards configurations that are guaranteed to satisfy the system’s NFRs.

The NFR monitoring is conceptually constituted by probes, i.e. the system tools
that provide monitoring data. The probes are in charge of interfacing with the
underlying fog platform (OS and/or hardware), to collect the required information,
which is used to detect NFR violations. The NFR Monitors are per-property-
specific components, which, based on the information from the probes, and the
application information, determines if some requirement is not being met. This
information is shared with the Orchestrator that may (re)configure the scheduling of
a given application to meet its requirements. The Global Resource Manager is the
component that considers a holistic approach, providing decisions based on a global
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Fig. 5 NFR tool architecture and synergies within the elastic software architecture

view of the system (composed of distributed computing nodes), and considering
simultaneously all non-functional properties. This decision is also shared with the
Orchestrator to (re)configure the applications accordingly. Figure 5 shows the NFR
tool internal structure and the synergies with the Fog platform (see Sect. 2.6) and
the Orchestrator layer (see Sect. 2.4).

Next subsections describe the concrete NFR metrics analysis.

2.5.1 Real Time

Coping with real-time computing across the compute continuum requires the ability
to specify and manage different timing perspectives. Two main challenges arise:
tasks deployed at the edge (e.g. on board the connected car) need to guarantee
“hard real-time” responses (e.g. very low latency), while those deployed at the
cloud need to guarantee certain QoS levels regarding time: right-time or “soft real-
time” guarantees. Closer to the environment, at the edge, tight timing mapping
and scheduling approaches can be used, while at the cloud, time is measured in
terms of average statistical performance with Quality of Service (QoS) constraints.
These perspectives complement each other, and the elastic software architecture
provides solutions that try to guarantee the required response time to applications
while optimizing energy and communication costs.

To do so, it is necessary to monitor different timing properties, in all nodes of the
distributed fog infrastructure. This ranges from monitoring actual CPU utilization
and execution time of applications to detection of deadline violations or memory
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accesses.1 This monitoring allows to dynamically adjust the system resources to
which the application is mapped, depending on the actual load of the system.

2.5.2 Energy

The NFR tool augments the system “introspection” capabilities in terms of power
consumption, by means of energy-aware execution models, from the hardware
platform to the holistic system. This allows to propagate workload-specific mon-
itoring information from the run-time to the decision-making module, which can be
exploited to better adapt to the requirements, as well as to the time predictability
and security optimization levels. Furthermore, a richer knowledge of applications’
requirements and concurrency structure, coupled with precise energy models for
the underlying hardware, combined with the possibility of dynamically switching
between edge and cloud deployments, constitutes an enabling factor towards larger
energy savings.

Concretely, the NFR tool monitors the power consumption of the different
hardware components on edge devices (e.g. System on Chip (SoC), CPU, GPU,
etc.). This allows to develop energy-aware execution models and efficiency tune
power consumption over the complete continuum.

2.5.3 Security

Verifying that applications correctly comply with security mechanisms and do not
contain vulnerabilities is essential. This implies much more than an online analysis
and monitoring, e.g. GDPR [6] regulation compliance, secure communication
protocols, the use of device certificates and mutual authentication (server and
client), etc. Besides these design decisions, in order to guard against security
threats, the NFR tool continuously monitors the systems and applications deployed
and incorporates security upgrades to software and deploy updates to existing
configurations.

The security monitoring component is based on OpenSCAP [9], an open-source
tool that simply implements the Security Content Automation Protocol (SCAP),
as a vulnerability scanner. OpenSCAP can easily handle the SCAP standards and
generate neat, HTML-based reports. The NFR monitor tool and the global resource
manager take simple decisions concerning security: The security status of the
computing nodes is monitored, providing a security score for each of them. Then,
the list of available (secure) nodes is updated for each application, based on its
particular requirements.

1 Memory accesses can be used to provide information on contention accessing shared memory,
providing a more accurate timing analysis for hard real-time applications.
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2.5.4 Communications Quality

In the context of wireless communications, and especially LTE networks, several
performance parameters need to be considered to characterize system behaviour.
Different types of service prioritize different figures of merit due to the nature of the
information to be transmitted and/or received. For instance, packet loss rate plays a
paramount role in VoIP services, whereas high throughput is not strictly required,
given that VoIP does not generate high volumes of data. On the contrary, video
streaming and file transfer services demand a much higher throughput.

The NFR tool considers the following communication monitoring metrics to
evaluate the communications quality of the system: active network interfaces,
transmitted/received data volume, average throughput, roundtrip time (RTT), packet
loss rate (PLR). These metrics provide information that is considered both at
the orchestrator, to take fine-grained scheduling decisions (see Sect. 2.4), and at
the global resource manager to consider communications quality in the holistic
approach.

2.6 Hybrid Fog Computing Platform

Fog computing encompasses the benefits of edge and cloud computing: on the
one hand, devices have increased computer capability, on the other hand, Cloud
Computing has matured strongly. The main focus of the elastic software architecture
is to obtain the best from both approaches (edge and cloud) into fog architecture.
While fog computing has recently led to great interest by the research community
and industry, it is still a conceptual approach [2]. The elastic software architecture
presented in this chapter considers two main concepts for its hybrid fog architecture:
(1) a software stack that can be run in (almost) any computing device and (2) the
coordination between edge and cloud components to efficiently support elasticity
across the compute continuum.

The proposed hybrid fog-computing platform is based on standard open-source
reusable components. It follows a microservice-based design, thus decoupling the
composing components, which makes the overall solution generic and capable of
coping with a wide range of smart edge devices and clouds. The hybrid architecture
(see Fig. 6) allows the use of dynamic applications in the form of microservices
(containers) or native applications (monolithic). Predictability (native) and flexibil-
ity (microservices) can be achieved with this approach. The platform is compatible
with both systems offering a high level of flexibility for the use case.

Next subsections provide an overview of each component.
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Fig. 6 Hybrid Fog Architecture

2.6.1 Cloud: Nuvla

Nuvla [10] acts both as the orchestration support and deployment engine for all
micro-service-based workloads being submitted into both cloud infrastructures and
edge devices. As an open-source software stack, Nuvla can be run anywhere. In
particular, the elastic software architecture profits from its existing SaaS offering
running in the Exoscale cloud,2 at https://nuvla.io/. Nuvla offers the following
services:

• Application Registration: users can register Docker Swarm and Kubernetes
applications in Nuvla.

• Infrastructure Registration: users can register new Docker Swarm and Kuber-
netes infrastructures in Nuvla (be those at the cloud or at the edge).

• NuvlaBox Registration: users can create new NuvlaBoxes via Nuvla. Nuvla will
provide users with a “plug-and-play” installation mechanism that can be executed
on any Docker compatible device.

• Resource Sharing: users can share their Nuvla resources (applications, infras-
tructures, etc.) with other users.

2 https://www.exoscale.com/.

https://nuvla.io/
https://www.exoscale.com/
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• Application deployment: users can launch their applications into any of their
Nuvla infrastructures.

• Application Monitoring: all the deployed applications are monitored fromNuvla,
giving users an overall view of the deployment status.

• Edge Monitoring: all NuvlaBoxes can be monitored and managed from Nuvla.
Resource consumption, external peripheral, and lifecycle management options
are provided to users from Nuvla.

• RESTful API: a standardized and language-agnostic API is available to all Nuvla
users, providing full resource management capabilities, plus a comprehensive
querying and filtering grammar.

2.6.2 Edge: KonnektBox and NuvlaBox

Two commercial edge solutions are being used as the ground foundation for the
edge infrastructure in the elastic software architecture: the KonnektBox [7] and the
NuvlaBox [11].

The IKERLAN KonnektBox is an industry-oriented digitization solution built
over EdgeXFoundry [5], an open-source project backed by Linux Foundation which
provides basic edge building blocks. KonnektBox uses a mix between vanilla
EdgeXFoundry components and custom services tailored for Industry 4.0 use cases.

The NuvlaBox is a secured plug-and-play edge to cloud solution, capable of
transforming any Docker compatible device into an edge device. This software
solution has been developed by SixSq and is tightly coupled with the application
management platform, Nuvla.

2.6.3 Fog Components

As the officially adopted edge software appliances for ELASTIC, both the Konnek-
tBox and NuvlaBox provide their own implementation for each of ELASTIC’s Fog
Architecture building blocks:

Docker-Compatible OS

In order to comply with the reconfiguration and dynamic fog-cloud service exe-
cution requirements of the project, a micro services architecture is required.
Docker is the standard open-source micro services software. Docker allows the
execution of micro services in the form of Docker containers. Each one of the
containers runs in an isolated environment and interfaces with other services via
network communications (REST APIs, message brokers, etc.). Docker allows the
configuration of priorities and limits for each container. For example, the maximum
CPU usage by each container, number of CPUs to use, CPU quota, maximumRAM,
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etc. If a Linux kernel with the real-time extension is used, the priority of each
container can also be defined.

Microservices Manager

The dynamic services refer to the different applications that the platform will
run. The applications range from industrial protocol drivers to AI inference, DB
manager, etc. These applications shall be independent from one another, and the
communication between them should be established via some predefined APIs
defined in the data router. The NuvlaBox self-generates TLS credentials to be used
on a secure and dedicated endpoint which relays the Docker API via HTTPS, for
external orchestration platforms, like Nuvla, to speak with.

Monolithic Native Services Manager

The native services manager is the module in charge of controlling the monolithic
native applications run in the system. The NuvlaBox provides the execution of
remotely issued operations, via a secured and dedicated HTTPS endpoint, exposing
a RESTful API. Such operations include the generation of user-specific SSH keypair
for executing Native workflows via SSH. The KonnektBox supports the remote
deployment of services via a secured MQTT-over-TLS cloud connection.

Local Storage

The local/distributed storage of the system will be implemented as a software mid-
dleware. BSC component dataClay platform will be used as the base component for
structured data. The KonnektBox provides an additional local database using Redis
and Consul. Apart from the local system storage (in the form of Docker volumes),
the NuvlaBox does not provide any dedicated storage for user applications. Such
functionality is left entirely to the user’s preferences. The selected storage element
for ELASTIC (dataClay) is supported, as an additional module, by the NuvlaBox.

Fog Manager

The system manager is the application in charge of starting up the whole fog
platform, monitor it and manage it. The system manager will run as a standalone
Linux application. This service will send telemetry and statistics data to the cloud in
order to update the NFR analysis (QoS, security, etc.). It will implement a watchdog
service in order to control that all the microservices are running correctly and the
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health of the system is good. The manager can stop, start and update each micro
service. A local configuration UI can be deployed to allow the local configuration
of the platform. Both the NuvlaBox and KonnektBox include several microservices
which are responsible for discovering external peripherals, collecting telemetry data,
categorizing the host environment and performing regular performance and security
scans. All of this information is periodically sent (on a configurable frequency) both
to Nuvla and to a local edge dashboard running on the hosting edge device.

Communications

The communications service offers an abstraction layer between platform services
and multiple communication protocols. This service allows the platform user to
define rules to select automatically the appropriate communication protocol to be
used in different use cases or environments. All the protocols would be secured
with TLS1.2 (or DTLS1.2 for UDP-based protocols). The KonnektBox uses MQTT-
over-TLS for all the connections with the cloud. The NuvlaBox exposes secure and
dedicated HTTPS endpoints for configuration application management (separately).

Data Router

The data router abstracts the communication between micro services and serves as a
central point for all data communication. A decision algorithm can be implemented
to decide where to send the data (other local micro service, the cloud, the edge, etc.).
The NuvlaBox together with the Fog Manager’s peripheral discovery functionality
provides an MQTT-based messaging system, which not only brokers internal
application messages but also automatically consumes and serves sensor data from
the existing peripherals, to any subscribing user applications.

Security

The security module handles the security credentials of the platform and it
checks the device data and binaries for unintended manipulation. All the critical
applications of the system should be signed to only allow the execution of trusted
and original applications. If the security module detects some anomalies, the device
will be restored to factory defaults. The KonnektBox is integrated with OpenSCAP
vulnerability scanner. The NuvlaBox on top of the security scans within the Fog
Manager has the ability to automatically update its own database of common
vulnerabilities. Upon every scan, and for a configurable set of vulnerabilities found,
it can proactively take action, halting certain sensitive internal services or even
moving the whole edge device into a quarantine state.
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2.6.4 Distributed Storage

The distributed storage component in ELASTIC is implemented by dataClay (see
Sect. 2.3). Since dataClay runs on different kinds of devices, it can be integrated at
any level throughout the edge to cloud continuum. Its function within the elastic
architecture is twofold. On the one hand, it is in charge of storing data gathered by
the Data Router andmaking it accessible in other devices. The embedded computing
capabilities of dataClay enable the association of a given behaviour to each type of
data, such as synchronization policies or filters before handling it to other devices.
On the other hand, dataClay is used by other components, such as the NFR tool, or
the DDAP.

2.6.5 Communication Middleware

The communication middleware is the software component in charge of the
exchange of information between services and other devices. This component offers
an abstraction over the communication protocols and physical devices used.

Inter-Service Communication

For communication between services, the middleware offers a standard MQTT
broker. MQTT is an IoT-oriented pub-sub communication protocol built over
TCP/IP. For example, a service which is getting readings from a temperature
sensor can publish data to a topic (e.g. /sensor/temperature/data). Other services
can subscribe to that same topic in order to get updates of the temperature in real
time.

External Communication

The communication between services and other devices (other edge nodes, cloud,
etc.) can be separated in different data streams depending on the desired QoS.
Different levels of QoS can be defined with different requirements in order to choose
between communication interfaces or protocols. For example, a high priority data
stream can be mapped to the 4G/LTE modem. A bulk-data data stream (e.g. high
volume of data for offline analysis, etc.) can be transferred when Wi-Fi connectivity
is available, because this is not a critical data with real-time constraints.
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3 Conclusions

Big data analytics have become a key enabling technology across multiple appli-
cation domains, to address societal, economic and industrial challenges for safe
mobility, well-being and health, sustainable production and smart manufacturing,
energy management, etc. A particular challenge for big data analytics in the near
future (or even today) is managing large and complex real-world systems, such
as production lines, fleets of public transportation and even whole cities, which
continuously produce large amounts of data that need to be processed on the fly.
Providing the required computational capacity level for absorbing extreme amounts
of complex data, while considering non-functional properties, is of paramount
importance to allow converting the data into few concise and relevant facts that
can be then consumed by humans and be decided or acted upon. The ELASTIC
project [1] is facing this challenge by proposing the end-to-end software framework
described in this chapter. The final goal is to efficiently distribute extreme-scale
big data analytic methods across the compute continuum, to match performance
delivered by the different computing resources with the required precision and
accuracy.
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