Skip to main content

Visualization of Zero Energy Bus Implementation Through Effective Computer Interaction

  • Conference paper
  • First Online:
  • 1789 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12791))

Abstract

This paper outlines our process of researching, developing, and implementing a data analysis and visualization framework for Electric Bus (eBus) implementation – battery and hydrogen – in Canada, described as Zero Energy Buses (ZEB) using Human Computer Interaction strategies. Our research team works in collaboration with the Canadian Urban Transit & Innovation Research Consortium (CUTRIC), the coordinating agency for research and eBus trials across Canada. Our paper reviews factors considered to provide a meaningful systems analysis of eBus implementation, relevant data resources, and user-centric design approaches that will mitigate risks to create a successful eBus system analytics tool able to support diverse users. We are developing innovative techniques able to manage and represent the large volume of multisource spatial and temporal data in this new field of transit electrification including 2D/3D space-time and 4D visualization; real-time and predictive visualizations resulting from generative algorithms. Visual analytics will allow the careful tracking of multiple data sources, to measure the process of adoption, providing tools for monitoring of services, consumer attitudes, user experience, and prediction of impacts. Visual analytics provides a comprehensive overview of implementation nationally, enabling opportunities to share data, assess progress, identify challenges, and to explore challenges in this new field. Based on user consultations we are developing a Sustainable Transit Planning Index which considers multiple environmental, economic and equity/access factors in supporting ZEB implementation in Canada and applicable to other jurisdictions. It will extract and link local ZEB implementation data into a national framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. High-level advisory group on sustainable transport. Mobilizing sustainable transport for development, United Nations (2016). https://www.un.org/development/desa/undesavoice/more-from-undesa/2016/11/29738.html. Accessed 8 Feb 2021

  2. Mohamed, M., Ferguson, M., Kanaroglou, P.: What hinders adoption of the electric bus in Canadian transit? Perspectives of transit providers. Transport. Res. Part D Transp. Environ. 64, 1–18 (2018)

    Article  Google Scholar 

  3. Mahmoud, M., Garnett, R., Ferguson, M., Kanaroglou, P.: Electric buses: a review of alternative powertrains. Renew. Sustain. Energy Rev. 62, 673–684 (2016)

    Article  Google Scholar 

  4. Noel, L., McCormack, R.: A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus. Appl. Energy 126, 246–255 (2014)

    Article  Google Scholar 

  5. Tzeng, G.-H., Lin, C.-W., Opricovic, S.: Multi-criteria analysis of alternative-fuel buses for public transportation. Energy Policy 33(11), 1373–1383 (2005)

    Article  Google Scholar 

  6. Petrunic, J., Abotalebi, E., Raj, A.: Best Practices and Key Considerations for Transit Electrification and Charging Infrastructure Deployment to Deliver Predictable, Reliable, and Cost-Effective Fleet Systems. Canadian Urban Transit Research and Innovation Consortium (CUTRIC), Toronto (2020)

    Google Scholar 

  7. Petrunic, J.: Supporting Zero-Emissions Technology Innovation, Research, Development, Demonstration & Integration (RDD&I). Canadian Urban Transit Research and Innovation Consortium (CUTRIC), Toronto (2016)

    Google Scholar 

  8. Sobral, T., Galvão, T., Borges, J.: Visualization of urban mobility data from intelligent transportation systems. Sensors 19(2), 332 (2019)

    Article  Google Scholar 

  9. Perera, T., Gamage, C.N., Prakesh, A., Srikanthan, T.: A simulation framework for a real-time demand responsive public transit system. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, Hawaii, USA , pp. 608–613. (2018)

    Google Scholar 

  10. Skelton, C., et al.: Citizen informatics: integrating urban data and design for future stakeholders. Int. J. Electron. Gov. 11(1), 23–43 (2019)

    Google Scholar 

  11. Bowes, J., Diamond, S., Juneja, M., Gordon, M., Skelton, C., Gunatilleke, M., Carnevale, M., Zheng, M.D.: User-centered taxonomy for urban transportation applications. In: Nah, F.F.-H., Xiao, B.S. (eds.) HCIBGO 2018. LNCS, vol. 10923, pp. 577–593. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91716-0_46

    Chapter  Google Scholar 

  12. Gordon, M., Diamond, S., Zheng, M., Carnevale, M.: Compara. Encounters Theor. Hist. Educ. 19, 163–185 (2018)

    Article  Google Scholar 

  13. Zhang, J., Chen, Z., Liu, Y., Du, M., Yang, W., Guo, L.: Space-time visualization analysis of bus passenger big data in Beijing. In: Cluster Computing, pp. 1–13 (2018)

    Google Scholar 

  14. Kwon, Y., Kim, S., Kim, H., Byun, J.: What attributes do passengers value in electrified buses? Energies 13(10), 1–14 (2020)

    Article  Google Scholar 

  15. Ma, X., Chen, X.: Chapter 7 - Public transportation big data mining and analysis. In: Wang, Y., Zeng, Z. (eds.) Data-Driven Solutions to Transportation Problems, pp. 175–200. Elsevier (2019). https://doi.org/10.1016/B978-0-12-817026-7.00007-2

  16. Neilson, A., Indratmo, B.D., Tjandra, S.: Systematic review of the literature on big data in the transportation domain: concepts and applications. Big Data Res. 17, 35–44 (2019)

    Article  Google Scholar 

  17. Andrienko, G., Andrienko, N., Chen, W., Maciejewski, R., Zhao, Y.: Visual analytics of mobility and transportation: state of the art and further research directions. IEEE Trans. Intell. Transp. Syst. 18(8), 2232–2249 (2017)

    Article  Google Scholar 

  18. Nusrat, S., Kobourov, S.: Task taxonomy for cartograms. In: Bertini, E., Kennedy, J., Puppo, E. (eds.) Eurographics Conference on Visualization 2015, EuroVisShort2015. The Eurographics Association, Cagliari (2015)

    Google Scholar 

  19. Bouillet, E., Gasparini, L., Versheure, O.: Towards a real time, public transport awareness system: case study in Dublin. In: Proceedings of the 19th ACM International Conference on Multimedia, MM 2011, pp. 797–798. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/2072298.2072463

  20. VeriCiti Fleet Management Homepage. https://viriciti.com/. Accessed 8 Feb 2021

  21. Zight transit Homepage. https://zight.nl/clients/. Accessed 8 Feb 2021

  22. Freedman, D.: Market-driven considerations affecting the prospects of alternative road fuels. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372, 20120326 (2014)

    Article  Google Scholar 

  23. Sorger, J., Ortner, T., Piringer, H., Hesina, G., Gröller, E.: A taxonomy of integration techniques for spatial and non-spatial visualizations. In: Bommes, D., Ritshel, T., Schultz, T. (eds.) Vision, Modeling, and Visualization, VMV 2015. The Eurographics Association, Aachen(2015). https://doi.org/10.2312/vmv.20151258

  24. Gu, Y., Kraak, M.-J., Engelhardt, Y.: Revisiting flow maps: a classification and a 3D alternative to visual clutter. In: Proceedings of the International Cartographic Association (ICA), Washington, USA, vol. 1, p. 51 (2017)

    Google Scholar 

  25. Wood, J., Dykes, J., Slingsby, A., Clarke, K.: Interactive visual exploration of a large spatio-temporal dataset: reflections on geovisualization mashup. IEEE Trans. Visual Comput. Graphics 13(6), 1176–1183 (2007)

    Article  Google Scholar 

  26. Varga, B.O., Mariasiu, F., Miclea, C.D., Szabo, I., Sirca, A.A.: Direct and indirect environmental aspects of an electric bus fleet under service. Energies 13(2), 1–12 (2020)

    Article  Google Scholar 

  27. Holland, S.P., Mansur, E.T., Muller, N.Z., Yates, A.J.: The environmental benefits from transportation electrification: urban buses. Working Paper Series, Paper No. 27285. National Bureau of Economic Research (NBER), Cambridge, MA, USA (2020)

    Google Scholar 

  28. Fortini, P.M., Clodoveu, A.: Analysis, integration and visualization of urban data from multiple heterogeneous sources. In: Proceedings of the 1st ACM SIGSPATIAL Workshop on Advances on Resilient and Intelligent Cities (ARIC 2018), pp. 17–26. Association for Computing Machinery, Seattle (2018)

    Google Scholar 

  29. C40 Cities Climate Leadership Group Homepage. https://www.c40knowledgehub.org/s/article/Electric-Buses-in-Cities-Driving-Toward-Cleaner-Air-and-Lower-CO2. Accessed 8 Feb 2021

  30. Clairand, J.-M., Guerra-Terán, P., Serrano-Guerrero, X., González-Rodríguez, M., Escrivá-Escrivá, G.: Electric vehicles for public transportation in power systems: a review of methodologies. Energies 12(16), 1–22 (2019)

    Article  Google Scholar 

  31. Lopez, C., Ruíz-Benítez, R., Vargas-Machuca, C.: On the environmental and social sustainability of technological innovations in urban bus transport: The EU case. Sustainability. 11(5), 1–22 (2018)

    Google Scholar 

  32. Sanchez-Hidalgo, M.-A., Cano, M.-D.: A survey on visual data representation for smart grids control and monitoring. Sustain. Energ. Grids Netw. 16, 351–369 (2018)

    Article  Google Scholar 

  33. Manitoba Government and City of Winnipeg Joint Task Force on Transit Electrification. The Future is ahead of you: battery electric-bus zero emissions. Manitoba Government, City of Winnipeg, province of Manitoba (2016)

    Google Scholar 

  34. Pihlatie, M.: Planning of electric bus systems. VTT Technical Research Centre of Finland (2017)

    Google Scholar 

  35. Sisson, P.: How a Chinese city turned all of its 16,000 buses electric. Curbed Journal transportation (2018). https://www.curbed.com/2018/5/4/17320838/china-bus-shenzhen-electric-bus-transportation Accessed 11 Feb 2021

  36. Teunissen, T., Sarmiento, O., Zuidgeest, M., Brussel, M.: Mapping equality in access: the case of Bogotá’s sustainable transportation initiatives. Int. J. Sustain. Transp. 9(7), 457–467 (2015)

    Article  Google Scholar 

  37. Todoruț, A., Cordo, N., Iclodean, C.: Replacing diesel buses with electric buses for sustainable public transportation and reduction of CO2 emissions. Polish J. Environ. Stud. 29(5), 3339–3351 (2020)

    Article  Google Scholar 

  38. Disu-Sule, O., et al.: Designing a bus bridging tool for team iCity. In: Fourth Bi-Annual GIS in Education and Research Conference, Toronto, Canada (2020)

    Google Scholar 

  39. Mariano, G.C., et al.: Designing a dashboard visualization tool for urban planners to assess the completeness of streets. In: Yamamoto, S., Mori, H. (eds.) HCII 2020. LNCS, vol. 12184, pp. 85–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50020-7_6

    Chapter  Google Scholar 

  40. Kasraian, D., et al.: Evaluating complete streets with a 3D stated preference survey. In: Proceedings 12th International Conference on Travel Survey Methods, Lisbon, Portugal, May 31–June 5, 2020. (Conference delayed due to COVID-19) (2020)

    Google Scholar 

  41. Kasraian, D., et al.: Designing a complete streets dashboard for team iCity. In: Fourth Bi-annual GIS in Education and Research Conference, Toronto, Canada (2020)

    Google Scholar 

  42. Bruntland Commission. Report of the World Commission on Environment and Development. General Assembly Resolution 42/187 (1987)

    Google Scholar 

  43. Zito, P., Salvo, G.: Toward an urban transport sustainability index: an European comparison. Eur. Transp. Res. Rev. 3, 179–195 (2011)

    Article  Google Scholar 

  44. Faulin, J., Grasman, S.E., Juan, A.A., Hirsch, P.: Chapter 1 - Sustainable transportation: concepts and current practices. Sustain. Transp. Smart Logistics, pp. 3–23. Elsevier (2019)

    Google Scholar 

  45. Grijalva, E.R., López Martínez, J.M.: Analysis of the reduction of CO2 emissions in urban environments by replacing conventional city buses by electric bus fleets: Spain case study. Energies 12(3), 1–31 (2019)

    Google Scholar 

  46. Thomas, C.E.S.: Sustainable Transportation Options for the 21st Century and Beyond. A Comprehensive Comparison of Alternatives to the Internal Combustion Engine. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16832-6

    Book  Google Scholar 

  47. Welch, D.: Electrified transportation for all: how electrification can benefit low income communities. Centre for Climate and Energy Solutions, Virginia (2017)

    Google Scholar 

  48. Mahady, J.A., Octaviano, C., Bolaños, O.S.A., López, E.R., Kammen, D.M., Castellanos, S.: Mapping opportunities for transportation electrification to address social marginalization and air pollution challenges in greater Mexico city. Environ. Sci. Technol. 54, 2103–2111 (2020)

    Article  Google Scholar 

  49. Farber, S., Bartholomew, K., Li, X., Páez, A., Habib, K.M.N.: Assessing social equity in distance-based transit fares using a model of travel behavior. Transp. Res. Part A Policy Pract. 67, 291–303 (2014)

    Article  Google Scholar 

  50. Ollier, M.: At the crossroads of sustainable transportation and social inclusion: the potential of public transit to create inclusive and equitable cities A research case on transport-related social exclusion in Montreal. Social Connectedness Fellow 2018, Samuel Centre for Social Connectedness (2018)

    Google Scholar 

  51. Mercado, R.G., Páez, A., Farber, S., Roorda, M.J., Morency, C.: Explaining transport mode use of low-income persons for journey to work in urban areas: a case study of Ontario and Quebec. Transportmetrica 8(3), 157–179 (2012)

    Article  Google Scholar 

  52. Kaplan, S., Popoks, D., Giacomo, C.P., Ceder, A.: Using connectivity for measuring equity in transit provision. J. Transp. Geogr. 37, 82–92 (2014)

    Article  Google Scholar 

  53. Litman, T.: Sustainable transportation indicators. A recommended research program for developing sustainable transportation indicators and data. Paper presented at the 2009 Transportation Research Board Annual Conference, Washington, DC, 11–15 January 2008

    Google Scholar 

  54. Mameli, F., Marletto, G.: Can national survey data be used to select a core set of sustainability indicators for monitoring urban mobility policies? Int. J. Sustain. Transp. 8(5), 336–359 (2014)

    Article  Google Scholar 

  55. Cooper, E., Kenney, E., Velásquez, J.M., Li, X., Tun, T.H.: Costs and emissions appraisal tool for transit buses. World Resources Institute, Washington (2019). Technical Note

    Google Scholar 

  56. Borén, S.: Electric buses’ sustainability effects, noise, energy use, and costs. Int. J. Sustain. Transp. 14(12), 956–971 (2020)

    Article  Google Scholar 

  57. Adheesh, S.R., Vasisht, M.S., Ramasesha, S.K.: Air-Pollution and economics: diesel bus versus electric bus. Curr. Sci. 110(5), 858–862 (2016)

    Google Scholar 

  58. Chandler, S., Espino, J., O’Dea, J.: Electrification of Trucks and Buses: Delivering Opportunity Report - How Electric Buses and Trucks Can Create Jobs and Improve Public Health in California. Union of Concerned Scientists, California (2016)

    Google Scholar 

  59. Barriga, M.R.M.: Electric Mobility in Belo Horizonte. Wuppertal Institute, Berlin (2018)

    Google Scholar 

  60. Nardo, M., Saisana, M., Saltelli, A., Tarantola, S.: Tools for Composite Indicators Building. Institute for the Protection and Security of Citizen, Italy (2005)

    MATH  Google Scholar 

  61. Gjolberg, M.: Measuring the immeasurable? Constructing an index of CSR practices and CSR performance in 20 countries. Scand. J. Manag. 25(1), 10–22 (2009)

    Article  Google Scholar 

  62. Jeon, C.M., Amekudzi-Kennedy, A.A.: Addressing sustainability in transportation systems: definitions, indicators, and metrics. J. Infrastruct. Syst. 11(1), 31–50 (2005)

    Article  Google Scholar 

  63. Lee, Y.-J., Huang, C.-M.: Sustainability index for Taipei. Environ. Impact Assess. Rev. 27(6), 505–521 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Diamond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bowes, J. et al. (2021). Visualization of Zero Energy Bus Implementation Through Effective Computer Interaction. In: Krömker, H. (eds) HCI in Mobility, Transport, and Automotive Systems. HCII 2021. Lecture Notes in Computer Science(), vol 12791. Springer, Cham. https://doi.org/10.1007/978-3-030-78358-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78358-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78357-0

  • Online ISBN: 978-3-030-78358-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics