Skip to main content

Multimodal Takeover Request Displays for Semi-automated Vehicles: Focused on Spatiality and Lead Time

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12791))

Abstract

To investigate the full potential of non-speech sounds, this study explored the effects of different multimodal takeover request displays in semi-automated vehicles. It used a mixed design - the visual and auditory notification lead time was within-subjects, whereas the auditory notification spatiality was between-subjects. The study was conducted in a motion-based driving simulator with 24 participants. All participants were engaged in four 9-min driving tasks in level-3 automated vehicle and simultaneously performed a non-driving related task (NDRT, online game). Each driving session contained three hazardous events with takeover request (in total 12 requests per user). The results showed that 3-s lead time evoked the fastest reaction time but caused high perceived workload and resulted in unsafe and non-comfortable maneuver. In terms of workload and maneuver, 7-s lead time showed better results than others. Auditory displays with directional information provided significantly better reaction times and reaction types. Subjective evaluation, on the other hand, did not show any significant differences between non-directional and directional displays. Additionally, the results showed that braking is a more common first reaction than steering, and that the NDRT did not influence the takeover request.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Merat, N., Jamson, A.H., Lai, F.C., Carsten, O.: Highly automated driving, secondary task performance, and driver state. Human Factors 54(5), 762–771 (2012)

    Google Scholar 

  2. Gold, C., Damböck, D., Lorenz, L., Bengler, K.: Take over!” How long does it take to get the driver back into the loop? In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2013 Sep, vol. 57, no. 1, pp. 1938–1942. Sage Publications, Sage CA, Los Angeles (2013)

    Google Scholar 

  3. Zeeb, K., Buchner, A., Schrauf, M.: What determines the take-over time? an integrated model approach of driver take-over after automated driving. Accid. Anal. Prev. 1(78), 212–221 (2015)

    Article  Google Scholar 

  4. Damböck, D., Bengler, K.: Übernahmezeiten beim hochautomatisierten Fahren. In5. Tagung Fahrerassistenz (2012)

    Google Scholar 

  5. Feldhütter, A., Gold, C., Schneider, S., Bengler, K.: How the duration of automated driving influences take-over performance and gaze behavior. In: Schlick, C.M., et al. (eds.) Advances in Ergonomic Design of sysTEMS, PROducts and Processes 2017, pp. 309–318. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53305-5_22

  6. Neubauer, C., Matthews, G., Saxby, D.: The effects of cell phone use and automation on driver performance and subjective state in simulated driving. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2012 Sep, vol. 56, no. 1, pp. 1987–1991. Sage Publications, Sage CA, Los Angeles

    Google Scholar 

  7. Radlmayr, J., Gold, C., Lorenz, L., Farid, M., Bengler, K.: How traffic situations and non-driving related tasks affect the take-over quality in highly automated driving. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2014 Sep, vol. 58, no. 1, pp. 2063–2067. Sage Publications, Sage CA, Los Angeles (2014)

    Google Scholar 

  8. Ho, C., Tan, H.Z., Spence, C.: The differential effect of vibrotactile and auditory cues on visual spatial attention. Ergonomics 49(7), 724–738 (2006)

    Article  Google Scholar 

  9. Politis, I., Brewster, S., Pollick, F.: Language-based multimodal displays for the handover of control in autonomous cars. In: Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications 2015 Sep 1, pp. 3–10 (2015)

    Google Scholar 

  10. Petermeijer, S., Bazilinskyy, P., Bengler, K., De Winter, J.: Take-over again: investigating multimodal and directional tors to get the driver back into the loop. Appl. Ergon. 1(62), 204–215 (2017)

    Article  Google Scholar 

  11. Eriksson, A., Stanton, N.A.: Takeover time in highly automated vehicles: noncritical transitions to and from manual control. Hum. Factors 59(4), 689–705 (2017)

    Article  Google Scholar 

  12. Gold, C., Berisha, I., Bengler, K.: Utilization of drivetime–performing non-driving related tasks while driving highly automated. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2015 Sep, vol. 59, no. 1, pp. 1666–1670. SAGE Publications, Sage CA, Los Angeles (2015)

    Google Scholar 

  13. Wan, J., Wu, C., Zhang, Y.: Effects of lead time of verbal collision warning messages on driving behavior in connected vehicle settings. J. Safety Res. 1(58), 89–98 (2016)

    Article  Google Scholar 

  14. Mok, B., et al.: Emergency, automation off: Unstructured transition timing for distracted drivers of automated vehicles. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems 2015 Sep 15, pp. 2458–2464. IEEE (2015)

    Google Scholar 

  15. Gold, C., Körber, M., Lechner, D., Bengler, K.: Taking over control from highly automated vehicles in complex traffic situations: the role of traffic density. Hum. Factors 58(4), 642–652 (2016)

    Article  Google Scholar 

  16. Barton, B.K., Ulrich, T.A., Lew, R.: Auditory detection and localization of approaching vehicles. Accid. Anal. Prev. 1(49), 347–353 (2012 )

    Article  Google Scholar 

  17. Ho, C., Spence, C.: Assessing the effectiveness of various auditory cues in capturing a driver’s visual attention. J. Exp. Psychol. Appl. 11(3), 157 (2005 )

    Article  Google Scholar 

  18. Zhang, Y., Yan, X., Yang, Z.: Discrimination of effects between directional and nondirectional information of auditory warning on driving behavior. Discret. Dyn. Nat. Soc. 1, 2015 (2015 )

    Google Scholar 

  19. Liu, Y.C., Jhuang, J.W.: Effects of in-vehicle warning information displays with or without spatial compatibility on driving behaviors and response performance. Appl. Ergon. 43(4), 679–686 (2012 )

    Article  Google Scholar 

  20. Marshall, D.C., Lee, J.D., Austria, P.A.: Alerts for in-vehicle information systems: annoyance, urgency, and appropriateness. Hum. Factors 49(1), 145–157 (2007 )

    Article  Google Scholar 

  21. Burt, J.L., Bartolome, D.S., Burdette, D.W., Comstock, J.R., Jr.: A psychophysiological evaluation of the perceived urgency of auditory warning signals. Ergonomics 38(11), 2327–2340 (1995)

    Article  Google Scholar 

  22. Haas, E.C., Casali, J.G.: Perceived urgency of and response time to multi-tone and frequency-modulated warning signals in broadband noise. Ergonomics 38(11), 2313–2326 (1995)

    Article  Google Scholar 

  23. Garzonis, S., Jones, S., Jay, T., O'Neill, E.: Auditory icon and earcon mobile service notifications: intuitiveness, learnability, memorability and preference. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems 2009, 4 April, pp. 1513–1522 (2009)

    Google Scholar 

  24. Vengust, M., Kaluža, B., Stojmenova, K., Sodnik, J.: NERVteh compact motion based driving simulator. In: Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct 2017, 24 September, pp. 242–243 (2017)

    Google Scholar 

  25. AV Simulations. SCANeR DT. https://www.avsimulation.fr/

  26. SAE: Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems. SAE Standard J3016, USA (2014)

    Google Scholar 

  27. Draft, ISO Working. Road vehicles-Ergonomic aspects of transport information and control systems-Specifications for in-vehicle auditory presentation, ISO Standard 15006:2011(E)

    Google Scholar 

  28. Kilinç, A.S., Baybura, T.: Determination of minimum horizontal curve radius used in the design of transportation structures, depending on the limit value of comfort criterion lateral jerk. TS06G-Engineering Surveying, Machine Control and Guidance, Rome, Italy (2012)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by a grant (number BI-US/19–21-008) from Slovenian Research Agency and grant (code 17TLRP-B131486–01) from Transportation and Logistics R&D Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Stojmenova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sanghavi, H., Jeon, M., Nadri, C., Ko, S., Sodnik, J., Stojmenova, K. (2021). Multimodal Takeover Request Displays for Semi-automated Vehicles: Focused on Spatiality and Lead Time. In: Krömker, H. (eds) HCI in Mobility, Transport, and Automotive Systems. HCII 2021. Lecture Notes in Computer Science(), vol 12791. Springer, Cham. https://doi.org/10.1007/978-3-030-78358-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78358-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78357-0

  • Online ISBN: 978-3-030-78358-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics