Skip to main content

Application of Gaussian Process Estimation for Magnetic Field Mapping

  • Conference paper
  • First Online:
Book cover Future Access Enablers for Ubiquitous and Intelligent Infrastructures (FABULOUS 2021)

Abstract

The applicability of characteristics of local magnetic fields for more precise determination of localization of subjects and/or objects in indoor environments, such as railway stations, airports, exhibition halls, showrooms, or shopping centers, is considered. An investigation has been carried out to find out whether and how low-cost magnetic field sensors and mobile robot platforms can be used to create maps that improve the accuracy and robustness of later navigation with smartphones or other devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saxena, A., Zawodniok, M.: Indoor positioning system using geomagnetic field. In: IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Montevideo, Uruguay (2014)

    Google Scholar 

  2. Iatcheva, I.I., Andreev, A.D., Stancheva, R.D., Lilyanova, I.T.: Electromagnetic flow meter field distribution maximizing device sensitivity. Mater. Sci. Forum 856, 157–162 (2016)

    Article  Google Scholar 

  3. Shockley, J.A., Raquet, J.F.: Navigation of Ground vehicles using magnetic field variations. Navigation 61, 237–252 (2014)

    Google Scholar 

  4. Li, B., Gallagher, T., Dempster, A., Rizos, C.: How feasible is the use of magnetic field alone for indoor positioning? In: Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, Australia (2012)

    Google Scholar 

  5. Hensel, S., Marinov, M.B., Schmitt, M.: System setup for synchronized visual-inertial localization and mapping. In: 2020 XXIX International Scientific Conference Electronics (ET), Sozopol, Bulgaria (2020)

    Google Scholar 

  6. Frassl, M., Angermann, M., Lichtenstern, M., Robertson, P., Julian, B., Doniec, M.: Magnetic maps of indoor environments for precise localization of legged and non-legged locomotion. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan (2013)

    Google Scholar 

  7. Filipov, F.: Forschung und Implementierung von Technologien für die Navigation in Innenräumen, Sofia: Dissertation, Technische Universität Sofia (2016)

    Google Scholar 

  8. Kim, H.S., Seo, W., Baek, K.R.: Indoor positioning system us-ing magnetic field map navigation and an encoder system. Sensors 17(3), 651 (2017)

    Article  Google Scholar 

  9. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  10. Jain, A., Nghiem, T., Morari, M., Mangharam, R.: Learning and control using gaussian processes. In: 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), Porto, Portugal (2018)

    Google Scholar 

  11. Quigley, M., Gerkey, B., Smart, W.: Programming Robots with ROS. O’Reilly Media, Sebastopol (2015)

    Google Scholar 

  12. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Rob. 23, 34–46 (2007)

    Google Scholar 

  13. Minasny, B., McBradley, B.: Spatial prediction of soil properties using EBLUP with the Matérn covariance function. Geoderma 140, 323–456 (2007)

    Article  Google Scholar 

  14. Hensel, S., Marinov, M.B.: Estimation of magnetic field maps with mobile platforms. In: Proceedings of the 7th FDIBA Conference, Sofia, 30 November–1 December 2017

    Google Scholar 

  15. Kokolanski, Z.: Hardware techniques for improving the calibration performance of direct resistive sensor-to-microcontroller interface. Metrol. Meas. Syst. 20(1), 529–542 (2013)

    Article  Google Scholar 

  16. Klein, L.: Sensor and Data Fusion. SPIE-International Society for Optical Engineering, Washington (2004)

    Google Scholar 

Download references

Acknowledgments

This research is supported by the Bulgarian National Science Fund in the scope of the project “Exploration the application of statistics and machine learning in electronics” under contract number КП-06-H42/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin B. Marinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hensel, S., Marinov, M.B., Schwilk, T., Nikolov, D. (2021). Application of Gaussian Process Estimation for Magnetic Field Mapping. In: Perakovic, D., Knapcikova, L. (eds) Future Access Enablers for Ubiquitous and Intelligent Infrastructures. FABULOUS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 382. Springer, Cham. https://doi.org/10.1007/978-3-030-78459-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78459-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78458-4

  • Online ISBN: 978-3-030-78459-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics