Skip to main content

Subspace Classification of Attention Deficit Hyperactivity Disorder with Laplacian Regularization

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12736))

Included in the following conference series:

  • 1736 Accesses

Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is a common nerobehavioral disease in school-age children. Its accurate diagnostic methods have drawn widespread attention in recent years. Among them, neurobiological diagnosis methods are proved as a significant way to identify ADHD patients. By employing some neurobiological measures of ADHD, machine learning is treated as a useful tool for ADHD diagnosis (or classification). In this work, we develop a Laplacian regularization subspace learning model for ADHD classification. In detail, we use resting-state Functional Connectivities (FCs) of the brain as input neurobiological data and cast them into the subspace learning model which is carried out in an existing binary hypothesis testing framework. In this testing framework, under a hypothesis of the test subject (ADHD or healthy control subject), training data generates its corresponding feature set in the feature selection phase. Then, the feature set is turned to its projected features by the subspace model for each hypothesis. Here, a Laplacian regularization is employed to enhance the relationship of intra-class subjects. By comparing the subspace energies of projection features between two hypotheses, a label is finally predicted for the test subject. Experiments show, on the ADHD-200 database, the average accuracy is about 91.8% for ADHD classification, which outperforms most of the existing machine learning and deep learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biederman, J., Faraone, S.V.: Attention-deficit hyperactivity disorder. Lancet (London, England) 366(9481), 237–248 (2005)

    Article  Google Scholar 

  2. Weibel, S., Ménard, O., Ionita, A.: Practical considerations for the evaluation and management of attention deficit hyperactivity disorder (ADHD) in adults. Encephale 46(1), 30–40 (2020)

    Article  Google Scholar 

  3. Battle, D.E.: Diagnostic and Statistical Manual of Mental Disorders (DSM). CoDAS 25(2), 191–192 (2013)

    Article  Google Scholar 

  4. Dellabadia Jr., J., Bell, W., Keyes Jr., J., Mathews, V., Glazier, S.: Assessment and cost comparison of sleep-deprived EEG, MRI and PET in the prediction of surgical treatment for epilepsy. Seizure 11(5), 303–309 (2002)

    Article  Google Scholar 

  5. Lachaux, J.P., Fonlupt, P., Kahane, P., Minotti, L., Baciu, M.: Relationship between task-related gamma oscillations and BOLD signal: new insights from combined fMRI and intracranial EEG. Hum. Brain Mapp. 28(12), 1368–1375 (2010)

    Article  Google Scholar 

  6. Heuvel, M.P.V.D., Pol, H.E.H.: Exploring the brain network: a review on resting-state fMRI functional connectivity. J. Eur. College Neuropsychopharmacol. 20(8), 519–534 (2010)

    Article  Google Scholar 

  7. Sun, Y., Zhao, L., Lan, Z., Jia, X.Z., Xue, S.W.: Differentiating boys with ADHD from those with typical development based on whole-brain functional connections using a machine learning approach. Neuropsychiatr. Dis. Treat. 16, 691–702 (2020)

    Article  Google Scholar 

  8. Savage, N.: Machine learning: calculating disease. Nature 550(7676), S115–S117 (2017)

    Article  Google Scholar 

  9. Colby, J.B., Rudie, J.D., Brown, J.A., Douglas, P.K., Cohen, M.S., Shehzad, Z.: Insights into multimodal imaging classification of ADHD. Front. Syst. Neurosci. 6, 59 (2012)

    Article  Google Scholar 

  10. Zhao, Y., Chen, H., Todd, R.: Wavelet-based weighted LASSO and screening approaches in functional linear regression. J. Comput. Graph. Stat. 24(3), 655–675 (2015)

    Article  MathSciNet  Google Scholar 

  11. Nuñez-Garcia, M., Simpraga, S., Jurado, M.A., Garolera, M., Pueyo, R., Igual, L.: FADR: functional-anatomical discriminative regions for rest fMRI characterization. In: Zhou, L., Wang, Li., Wang, Q., Shi, Y. (eds.) MLMI 2015. LNCS, vol. 9352, pp. 61–68. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24888-2_8

    Chapter  Google Scholar 

  12. Soumyabrata, D., Ravishankar, R.A., Mubarak, S.: Exploiting the brain’s network structure in identifying ADHD subjects. Front. Syst. Neurosci. 6(75), 61–68 (2015)

    Google Scholar 

  13. Tabas, A., Balaguer-Ballester, E., Igual, L.: Spatial discriminant ICA for RS-fMRI characterization. In: 2014 4th International Workshop on Pattern Recognition in Neuroimaging, pp. 1–4. IEEE (2014)

    Google Scholar 

  14. Sidhu, G.S., Nasimeh, A., Russell, G., Brown, M.R.G.: Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD. Front. Syst. Neurosci. 9(6), 74 (2012)

    Google Scholar 

  15. Yao, D., Sun, H., Guo, X., Calhoun, V.D., Sui, J.: ADHD classification within and cross cohort using an ensembled feature selection framework. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI). IEEE (2019)

    Google Scholar 

  16. Tang, Y., Wang, C., Chen, Y., Sun, N., Jiang, A., Wang, Z.: Identifying ADHD individuals from resting-state functional connectivity using subspace clustering and binary hypothesis testing. J. Atten. Disord. 25(5), 736–748 (2019)

    Article  Google Scholar 

  17. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  18. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.-R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2016)

    Article  MathSciNet  Google Scholar 

  19. Riaz, A., Asad, M., Alonso, E., Slabaugh, G.: DeepFMRI: end-to-end deep learning for functional connectivity and classification of ADHD using fMRI. J. Neurosci. Methods 335, 108506 (2020)

    Article  Google Scholar 

  20. Zou, L., Zheng, J., Miao, C., Mckeown, M.J., Wang, Z.J.: 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI. IEEE Access 5, 23626–23636 (2017)

    Article  Google Scholar 

  21. Abdolmaleki, S., Abadeh, M.S.: Brain MR image classification for ADHD diagnosis using deep neural networks. In: 2020 International Conference on Machine Vision and Image Processing (MVIP), pp. 1–5. IEEE (2020)

    Google Scholar 

  22. Riaz, A., Asad, M., Alonso, E., Slabaugh, G.: Fusion of fMRI and non-imaging data for ADHD classification. Comput. Med. Imaging Graph. 65, 115–128 (2018)

    Article  Google Scholar 

  23. Riaz, A., et al.: FCNet: a convolutional neural network for calculating functional connectivity from functional MRI. In: Wu, G., Laurienti, P., Bonilha, L., Munsell, B.C. (eds.) CNI 2017. LNCS, vol. 10511, pp. 70–78. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67159-8_9

    Chapter  Google Scholar 

  24. Shao, L., Zhang, D., Du, H., Fu, D.: Deep forest in ADHD data classification. IEEE Access 7, 99 (2019)

    Article  Google Scholar 

  25. Chen, Y., Tang, Y., Wang, C., Liu, X., Wang, Z.: ADHD classification by dual subspace learning using resting-state functional connectivity. Artif. Intell. Med. 103, 101786 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by Fundamental Research Funds for Central Universities, China, under Grant B200202217; Changzhou Science and Technology Program, China, under Grant CJ20200065 and CE20205043; Changzhou Science and Technology Program, China, under Grant CE20205043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibin Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Gao, Y., Jiang, J., Lin, M., Tang, Y. (2021). Subspace Classification of Attention Deficit Hyperactivity Disorder with Laplacian Regularization. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2021. Lecture Notes in Computer Science(), vol 12736. Springer, Cham. https://doi.org/10.1007/978-3-030-78609-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78609-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78608-3

  • Online ISBN: 978-3-030-78609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics