Skip to main content

Neural Network Study Quantum Synchronization and Quantum Correlation Under Non-zero Temperature

  • Conference paper
  • First Online:
  • 1717 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12736))

Abstract

As an important part of quantum mechanics, quantum measurement can not only enable us to get the information of the quantum system, but also play an indispensable role in the control of the quantum system. The quantum synchronization phenomenon and the quantum correlation between the detector and the quantum system are very useful in quantum measurement process. However, there are still few studies on the nature of the quantum synchronization process and the realization of the classification of quantum synchronization. In this work, a two-qubit open system model which consists of a qubit system in a cavity and probing tool (another qubit) is proposed, the properties of quantum correlation are explored under non-zero temperature, and the characterizes of quantum synchronization also has been illustrated in different situation. It is shown the effect of different temperature for the quantum synchronization and the quantum correlation. Additionally, it is shown in the article that the process of synchronization under different parameter. Meanwhile, the artificial neural networks method is used to further study the classification of the quantum synchronization at non-zero temperature and it is shown an effective consequence. The results pave a way for subsequent research on the quantum synchronization and quantum correlation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bennett, C.H.: Quantum information and computation. Nature 48, 24–30 (1995)

    Google Scholar 

  2. Bub, J.: Quantum information and computation. Philos. Phys. 404(6775), 555–660 (2007)

    Article  Google Scholar 

  3. Ziman, M., P., Bužek, V., et al.: Diluting quantum information: an analysis of information transfer in system-reservoir interactions. Phys. Rev. A 65(1), 042105 (2002)

    Google Scholar 

  4. Rosencher, E., Fiore, A., Vinter, B., Berger, V., Bois, P., Nagle, J.: Quantum engineering of optical nonlinearities. Science 271(5246), 168–173 (1996)

    Article  Google Scholar 

  5. Naikoo, J., Alok, A.K., Banerjee, S.: Study of temporal quantum correlations in decohering B and K meson systems. Phys. Rev. D 97(5), 053008 (2018)

    Article  Google Scholar 

  6. Dixit, K., et al.: Quantum correlations and the neutrino mass degeneracy problem. Eur. Phys. J. C 78(11), 1–8 (2018)

    Article  Google Scholar 

  7. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 99(1), 017901 (2001)

    Article  Google Scholar 

  8. Ashouri, A., et al.: Concurrence and quantum discord in the eigenstates of chaotic and integrable spin chains. Annalen der Physik 532(8), 1900515 (2020). https://doi.org/10.1002/andp.201900515

  9. Wilde, et al.: Renyi squashed entanglement, discord, and relative entropy differences. J. Phys. A Math. Theor. 48(39), 395303 (2015)

    Google Scholar 

  10. Piani, M.: The problem with the geometric discord. Quantum Phys. 86(3), 034101 (2012)

    Google Scholar 

  11. Yao, Y., et al.: Geometric interpretation of the geometric discord. Phys. Lett. A 376(4), 358–364 (2012)

    Article  Google Scholar 

  12. Witte, C., Trucks, M.: A new entanglement measure induced by the Hilbert-Schmidt norm. Phys. Lett. A 257(1–2), 14–20 (1999)

    Article  Google Scholar 

  13. Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15(10), 603–610 (2013)

    Article  MathSciNet  Google Scholar 

  14. Gieres, F.: Mathematical surprises and Dirac’s formalism in quantum mechanics. Reports Progress Phys. 63(12)1893–1931(39) (2000)

    Google Scholar 

  15. Mari, A., et al.: Measures of quantum synchronization in continuous variable systems. Phys. Rev. Lett. 111(10), 103605 (2013)

    Article  Google Scholar 

  16. Giorgi, G.L., Galve, F., Zambrini, R.: Probing the spectral density of a dissipative qubit via quantum synchronization. Phys. Rev. A 94(5), 52121–52121 (2016)

    Article  Google Scholar 

  17. Garau Estarellas, G., et al.: Machine learning applied to quantum synchronization-assisted probing. Adv. Quantum Technol. 2(7–8), 1800085 (2019)

    Article  Google Scholar 

  18. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press (2007)

    Google Scholar 

  19. Hübner, M.: Explicit computation of the Bures distance for density matrices. Phys. Lett. A 163(4), 239–242 (1992)

    Article  MathSciNet  Google Scholar 

  20. Liu, H.: Publisher’s note: molecular-frame photoelectron angular distributions of strong-field tunneling from inner orbitals. Phys. Rev. A 88, 069905 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

Project supported by the National Key R&D Program of China, Grant No. 2018YFĂ703.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin-Sheng Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Q., Zhu, QS., Meng, QY., Hu, Y., Li, XY. (2021). Neural Network Study Quantum Synchronization and Quantum Correlation Under Non-zero Temperature. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2021. Lecture Notes in Computer Science(), vol 12736. Springer, Cham. https://doi.org/10.1007/978-3-030-78609-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78609-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78608-3

  • Online ISBN: 978-3-030-78609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics