Skip to main content

On the Interrelationship Between Left Ventricle Infarction Geometry and Ischemic Mitral Regurgitation Grade

  • Conference paper
  • First Online:
Book cover Functional Imaging and Modeling of the Heart (FIMH 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12738))

Abstract

Ischemic mitral regurgitation (IMR) is manifested by the inability of the mitral valve (MV) to form a completed sealed shape, which is induced by rapidly impairing contractile function of acute myocardial infarction (MI). Mitral valve repair with undersized ring annuloplasty is currently the preferred treatment strategy for IMR. However, the overall persistence and recurrence rate of moderate or severe IMR within 12 months of surgery has been consistently reported as high, which is a direct consequence of adverse left ventricle (LV) remodeling after MI. In this study, we developed a detailed finite element model with coupled left ventricle-mitral valve structure including mitral valve leaflets, chordae tendineae (CT), papillary muscles, and myocardium. In addition, this model was consisted of high fidelity structure segmented from image data, a novel structural constitutive model of MV leaflets and mechanical properties of CT measured using an in-vitro mechanical testing in an integrated computational modeling framework. Discrepancy of strain mapping has been found between in-silico model and in-vivo strain analysis and including pre-strain of mitral valve leaflets in in-silico model was necessary to have more agreement with in-vivo data. Our findings suggests our LV-MV model is capable of predicting IMR results by shutting down regional contractility and pre-strain should be incorporated into future LV-MV model for more accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amini, R., et al.: The posterior location of the dilator muscle induces anterior iris bowing during dilation, even in the absence of pupillary block. Invest Ophthalmol. Vis. Sci. 53(3), 1188–1194 (2012). https://doi.org/10.1167/iovs.11-8408, http://www.ncbi.nlm.nih.gov/pubmed/22281822

  2. Atluri, P., et al.: Cardiac retransplantation is an efficacious therapy for primary cardiac allograft failure. J. Cardiothorac. Surg. 3(1), 26 (2008). https://doi.org/10.1186/1749-8090-3-26

    Article  Google Scholar 

  3. Baillargeon, B., Rebelo, N., Fox, D.D., Taylor, R.L., Kuhl, E.: The Living Heart Project: a robust and integrative simulator for human heart function. Eur. J. Mech. A. Solids 48, 38–47 (2014). https://doi.org/10.1016/j.euromechsol.2014.04.001, http://www.ncbi.nlm.nih.gov/pubmed/25267880

  4. Connelly, C.M., McLaughlin, R., Vogel, W., Apstein, C.: Reversible and irreversible elongation of ischemic, infarcted, and healed myocardium in response to increases in preload and afterload. Circulation 84(1), 387–399 (1991)

    Article  Google Scholar 

  5. Drach, A., Khalighi, A.H., Sacks, M.S.: A comprehensive pipeline for multi-resolution modeling of the mitral valve: validation, computational efficiency, and predictive capability. Int. J. Numer. Methods Biomed. Eng. 34(2), e2921 (2018)

    Google Scholar 

  6. Enomoto, Y., et al.: Surgical treatment of ischemic mitral regurgitation might not influence ventricular remodeling. J. Thorac. Cardiovasc. Surg. 129(3), 504–511 (2005)

    Article  Google Scholar 

  7. Fan, R., Sacks, M.S.: Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J. Biomech. 47(9), 2043–2054 (2014)

    Article  Google Scholar 

  8. Gao, H., Feng, L., Qi, N., Berry, C., Griffith, B.E., Luo, X.: A coupled mitral valve-left ventricle model with fluid-structure interaction. Med. Eng. Phys. 47, 128–136 (2017)

    Article  Google Scholar 

  9. Gupta, K.B., Ratcliffe, M.B., Fallert, M.A., Edmunds Jr., L.H., Bogen, D.K.: Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 89(5), 2315–2326 (1994)

    Article  Google Scholar 

  10. Hung, J., et al.: Mechanism of recurrent ischemic mitral regurgitation after annuloplasty: continued lv remodeling as a moving target. Circulation 110(11\_suppl\_1), II-85 (2004)

    Google Scholar 

  11. Jackson, B.M., et al.: Extension of borderzone myocardium in postinfarction dilated cardiomyopathy. J. Am. College Cardiol. 40(6), 1160–1167 (2002)

    Article  Google Scholar 

  12. Khalighi, A.H., Rego, B.V., Drach, A., Gorman, R.C., Gorman, J.H., Sacks, M.S.: Development of a functionally equivalent model of the mitral valve chordae tendineae through topology optimization. Ann. Biomed. Eng. 47(1), 60–74 (2019)

    Article  Google Scholar 

  13. Klotz, S., et al.: Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application. Am. J. Phys. Heart Circulatory Phys. 291(1), H403–H412 (2006)

    Google Scholar 

  14. Lee, C.H., Rabbah, J.P., Yoganathan, A.P., Gorman, R.C., Gorman, J.H., Sacks, M.S.: On the effects of leaflet microstructure and constitutive model on the closing behavior of the mitral valve. Biomech. Model. Mechanobiology 14(6), 1281–1302 (2015)

    Article  Google Scholar 

  15. Li, D.S., et al.: Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3d kinematics. J. Mech. Behav. Biomed. Mater. 103, 103508 (2020)

    Google Scholar 

  16. Lindsey, M.L., et al.: Guidelines for experimental models of myocardial ischemia and infarction. Am. J. Phys. Heart Circulatory Phys. 314(4), H812–H838 (2018)

    Google Scholar 

  17. McGee Jr., E.C., et al.: Recurrent mitral regurgitation after annuloplasty for functional ischemic mitral regurgitation. J. Thorac. Cardiovasc. Surg. 128(6), 916–924 (2004)

    Article  Google Scholar 

  18. Rego, B.V., et al.: Remodeling of the mitral valve: an integrated approach for predicting long-term outcomes in disease and repair. Ph.D. thesis (2019)

    Google Scholar 

  19. Sato, S., Ashraf, M., Millard, R., Fujiwara, H., Schwartz, A.: Connective tissue changes in early ischemia of porcine myocardium: an ultrastructural study. J. Mol. Cell. Cardiol. 15(4), 261–275 (1983)

    Article  Google Scholar 

  20. Shimkunas, R., et al.: Left ventricular myocardial contractility is depressed in the borderzone after posterolateral myocardial infarction. Ann. Thorac. Surg. 95(5), 1619–1625 (2013)

    Article  Google Scholar 

  21. Soares, J.S., Li, D.S., Lai, E., Gorman III, J.H., Gorman, R.C., Sacks, M.S.: Modeling of myocardium compressibility and its impact in computational simulations of the healthy and infarcted heart. In: Pop, M., Wright, G.A. (eds.) FIMH 2017. LNCS, vol. 10263, pp. 493–501. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59448-4_47

    Chapter  Google Scholar 

  22. Wenk, J.F., et al.: First finite element model of the left ventricle with mitral valve: insights into ischemic mitral regurgitation. Ann. Thorac. Surg. 89(5), 1546–1553 (2010). https://doi.org/10.1016/j.athoracsur.2010.02.036, http://www.ncbi.nlm.nih.gov/pubmed/20417775

  23. Wong, V.M., et al.: The effect of mitral annuloplasty shape in ischemic mitral regurgitation: a finite element simulation. Ann. Thorac. Surg. 93(3), 776–782 (2012)

    Article  Google Scholar 

  24. Zhang, W., Ayoub, S., Liao, J., Sacks, M.S.: A meso-scale layer-specific structural constitutive model of the mitral heart valve leaflets. Acta Biomater. 32, 238–255 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, H., Narang, H., Gorman, R., Gorman, J., Sacks, M.S. (2021). On the Interrelationship Between Left Ventricle Infarction Geometry and Ischemic Mitral Regurgitation Grade. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds) Functional Imaging and Modeling of the Heart. FIMH 2021. Lecture Notes in Computer Science(), vol 12738. Springer, Cham. https://doi.org/10.1007/978-3-030-78710-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78710-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78709-7

  • Online ISBN: 978-3-030-78710-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics