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Abstract. Coronary computed tomography angiography (CCTA) provides de-
tailed anatomical information on all chambers of the heart. Existing segmentation 
tools can label the gross anatomy, but addition of application-specific labels can 
require detailed and often manual refinement. We developed a U-Net based 
framework to i) extrapolate a new label from existing labels, and ii) parcellate 
one label into multiple labels, both using label-to-label mapping, to create a de-
sired segmentation that could then be learnt directly from the image (image- to-
label mapping). This approach only required manual correction in a small subset 
of cases (80 for extrapolation, 50 for parcellation, compared with 260 for initial 
labels). An initial 6-label segmentation (left ventricle, left ventricular myocar-
dium, right ventricle, left atrium, right atrium and aorta) was refined to a 10-label 
segmentation that added a label for the pulmonary artery and divided the left 
atrium label into body, left and right veins and appendage components. The final 
method was tested using 30 cases, 10 each from Philips, Siemens and Toshiba 
scanners. In addition to the new labels, the median Dice scores were improved 
for all the initial 6 labels to be above 95% in the 10-label segmentation, e.g. from 
91% to 97% for the left atrium body and from 92% to 96% for the right ventricle. 
This method provides a simple framework for flexible refinement of anatomical 
labels. The code and executables are available at cemrg.com.  
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1 Introduction 

Coronary computed tomography angiography (CCTA) is a widely used imaging tool 
for investigation of the coronary artery anatomy in patients with suspected coronary 
artery disease [1]. However, a lot of anatomical information is also present in these 
scans [2]. Although CCTA has high signal and spatial resolution relative to MRI or 
echocardiography, existing segmentation methods are difficult to adapt to different ap-
plications. In particular, planning ablation therapy for atrial fibrillation requires the 
identification of left and right pulmonary veins (LPV, RPV) and their intersection with 
the left atrium (LA) body. Similarly, anatomical features such as the pulmonary artery 
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valve (PAV) and left atrial appendage (LAA) are important for particular pathologies 
(such as tetralogy of Fallot and stroke respectively).  
    Previous work. Neural network whole heart segmentation methods have previously 
shown good results with CCTA data [3]. In particular, Baskaran et al. [4] applied a 2D 
U-Net, using 132 training, 34 validation cases and 17 test cases, to predict 5 labels: left 
ventricle (LV), right ventricle (RV), LA, right atrium (RA) and LV myocardium 
(LVMyo). Median Dice scores ranged from 0.915 (RV) to 0.938 (LV). LPV and RPV 
were excluded from the LA but the LAA was included. In the 2017 Multi-Modality 
Whole Heart Segmentation (MMWHS) challenge, a variety of methods performed well 
on CCTA datasets (n=60) with 7 labels: LV, RV, LA (excluding LPV, RPV and LAA), 
LVMyo, ascending aorta (AA), and pulmonary artery (PA) [3]. The leading method 
used a two-step process, with a localization 3D U-Net and heatmap regression and a 
subsequent 3D U-Net for segmentation [5].  

In this paper, we present a method to adapt algorithms to a different label definition, 
leveraging existing segmentation tools derived from different sources. We apply our 
method to the problem of PAV localization and LA parcellation into LPV, RPV, LAA 
and LA body segments.  

2 Methods 

We describe a multi-stage process (Figure 1), in which existing segmentations were 
used to provide ground truth for an initial image-to-label 3D U-Net (U-Net 1) using 
200/30/30 (train/validation/test) cases, giving 6 regions directly from CCTA images. 
We then refined the segmentation and manually identified the PAV to separate PA from 
RV, and the image-to-label network was retrained with the refined 6 labels (U-Net 1 no 
PA, 200/30/30 cases). A label-to-label 3D U-Net (U-Net 2) was trained to extrapolate 
the PA label (62/9/9 cases), and another label-to label 3D U-Net (U-Net 3) was trained 
 

 
Fig. 1. Refinement approach overview. U-Net 1, U-Net 1 no PA, and U-Net 4 are image to label 
maps; U-Net 2 is a label-to-label extrapolation map; U-Net 3 is a label-to-label parcellation map. 
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to parcellate LA into LA body, LPV, RPV and LAA (38/6/6 cases). The resulting net-
works were applied to 1770 cases, and results from 260 cases were manually reviewed 
and used to train and test a final image-to-label 3D U-Net (U-Net 4, 200/30/30) to pre-
dict the refined labels directly from the CCTA images.  
 
2.1 Data 

CCTA exams of 1770 patients (56% male, 58±10 years old) who participated in the 
Scottish COmputed Tomography of the Heart (SCOT-HEART) trial were included in 
this study; patient demographics have been reported previously [6]. Briefly, all patients 
had suspected angina attributable to coronary artery disease and were imaged between 
2010 and 2014 at one of three sites using either 64- or 320-detector row scanners (Bril-
liance 64, Philips Medical Systems, Netherlands; Biograph mCT, Siemens, Germany; 
Aquilion ONE, Toshiba Medical Systems, Japan). Tube current, voltage, and volume 
of iodine-based contrast were adjusted based on body mass index. To illustrate how 
different sources of data can be combined, we also included 20 cases from the MMWHS 
challenge training dataset and 40 cases from the MMWHS challenge testing dataset [3]. 
These manually annotated cases were obtained from two 64-slice scanners (both 
Philips) at two sites in Shanghai, China. 
  

 
Fig. 2. Coronal, sagittal and axial views of the CCTA image overlapped with initial segmenta-
tion labels, and 3D visualization of the anatomies. LV, LVMyo, RV, LA, RA and AA are in 

purple, dark blue, light blue, green, yellow and orange respectively. 

2.2 Image-to-Label Initial Segmentation  

For the SCOT-HEART cases an initial segmentation was automatically performed us-
ing Siemens AXseg v4.11 prototypical software (Siemens Healthineers, Erlangen, Ger-
many). This method used an atlas combined with marginal space learning and steerable 
filters [7]. Six regions were labelled: LV, LVMyo, RV, LA, RA, and AA. For the 
MMWHS cases the manual annotations provided for the corresponding regions were 
used. The image and label maps were normalized to voxel size of 1 mm3 and cropped 
or padded to volumes with size of 128x192x192 with the heart at the center of the vol-
ume. For large hearts, the voxel size was iteratively increased by 10% until the field of 
view covered all labelled voxels. Typical results of the initial segmentation are shown 
in Figure 2.  
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A 3D U-Net (U-Net 1) was designed with 3 max-pooling and deconvolutional stages 
with a stride of 2x2x2. The numbers of convolutional kernels were set to be (16, 32), 
(32, 64), (64,128) for the contraction path and (128, 256) for the bottle neck, with the 
kernel size of 3x3x3. The numbers of deconvolutional kernels were set to be (128, 128), 
(64, 64), (32, N) for the expansion path, where N is the number of layers of the output 
volume. For the initial segmentation network N=7 (background and 6 labels). The net-
work was trained with cross-entropy loss, using 200 training (180 randomly selected 
from SCOT-HEART and 20 from MMWHS) cases, with additional 30 cases for vali-
dation and 30 cases for testing. The training, validating and testing cases from SCOT-
HEART were randomly and equally sampled from three types of scanner. Dice scores 
were used for evaluation. 
 
2.3 Label Processing 

We found that several refinements were necessary to improve the accuracy and con-
sistency of the initial segmentations. Firstly, AXseg tended to visually over-segment 
the LV cavity in non-Siemens scanners (Figure 2). We therefore used a morphological 
operator to dilate the LVMyo mask, and voxels overlapping between dilated LVMyo 
and LV were transferred to the LVMyo label if i) the mean intensity value of the overlap 
region was closer to LVmyo than LV, and ii) the voxel intensity was less than the mean 
plus one standard deviation of the original LVMyo voxel intensities. This process was 
repeated up to a maximum of three times. 

Secondly, a PA label was used for PAV identification, with the PAV defined as the 
intersection of PA with the RV (all voxels in the RV with a PA neighbor, and vice 
versa). This method was preferred to the direct segmentation of the PAV, since U-Nets 
do not work as well on classes with such small number of voxels due to class-imbal-
ance. However, a significant number of SCOT-HEART cases cropped the PA from the 
field of view, resulting in inconsistent PA segmentations. Furthermore, the AXseg tool 
did not include a PA label but included a PA section (if present) in the RV label. There-
fore, we manually partitioned the initial RV label for the 260 cases used to train and 
test U-Net 1 into RV and PA labels using a PAV plane defined using landmarks on the 
reformatted images. The initial image-to-label network was then retrained without the 
PA section, using the refined RV label (U-Net 1 no PA in Figure 1).  

 
Fig. 3. Examples of image to label results for initial (6 labels) and final (10 labels) maps. 
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2.4 Label to Label Networks 

Extrapolation of PA 
In order to enable prediction of a PA label by extrapolating the RV outflow tract, even 
in cases in which the PA was cropped, we chose 80 cases with PA present (from the 
original 260 cases used to train U-Net 1 no PA, with ground truth partitioned into RV 
and PA) split into 62 training cases, 9 validation cases and 9 testing cases. We applied 
same 3D U-Net architecture (section 2.2) to map predictions from U-Net 1 no PA to a 
7-label segmentation with PA included (U-Net 2). The input/output volumes were set 
to be 128x192x192.  
 
LA Parcellation 
We manually partitioned the LA into body, LPV, RPV and LAA labels (multiple LPV 
were given the same label, similarly for RPV) using 3DSlicer’s cropping boxes (scis-
sors tool). Compared to PA extrapolation, manual annotation was more time-consum-
ing, but the number of cases requiring annotation was smaller as it is simpler for a label-
to-label network to learn how to relabel an existing structure (initial LA label) than to 
predict a new one. Therefore, only 50 cases were required (38 training cases, 6 validat-
ing cases and 6 testing cases). The same 3D U-Net architecture (section 2.2) was ap-
plied and input/output volumes were set to be 128x128x128 (U-Net 3).  
 
2.5 Image to Label Refinement 

The image-to-label 3D U-Net was retrained to directly predict 10-label maps from 
CCTA input (U-Net 4). The ground truth for this network was generated by applying 
the refined initial segmentation network and label-to-label networks, fusing the predic-
tions, and manually evaluating the result using ITK-snap, until 260 predictions with 
good quality were identified.  The segmentations consisting of one object were cleaned 
by choosing the largest connected component. This process resulted in 200 training 
(180 from SCOT-HEART and 20 from MMWHS) cases, with additional 30 validation 
cases and 30 test cases, evenly split by scanner types. Dice scores were used for evalu-
ation against the output of the label-to-label network results. An example of a pair of 
initial and refined segmentations are shown in Figure 3.  
 

3 Results  

3.1 Image to Label Initial Segmentation 

Dice scores for U-Net 1 are shown in Figure 4 for the testing dataset of 30 cases. The 
network performed well on RV, LA and RA cavities, with median Dice scores above 
90%. The network performed less well on LV cavity, LVMyo and AA, with lower me-
dian values and higher variations of the Dice scores.  For LV and LVMyo, the Dice 
scores reflect a larger variation around the LV endocardial surface across scanner types, 
resulting in both a reduction in the overall similarity and a larger variation of the Dice 
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scores. The LVMyo volume was smaller and therefore showed lower Dice than LV 
cavity. The larger variations of the RV and AA scores reflect the effect of PA and de-
scending aorta variations. 

 
Fig. 4. Dice scores for test cases of image-to-label networks (U-Net 1 and U-Net 4, n=30) and 

label-to-label networks (U-Net 2 n=9, and U-Net 3, n=6). 

3.2 Label to Label Refinement 

Dice scores for the label-to-label U-Nets (U-Net 2 and U-Net 3) are shown in Figure 4. 
U-Net 2 extrapolated from 6 labels to 7 labels, and the 6 input labels were almost iden-
tically reproduced by the network with Dice scores all >99%. The PA Dice scores were 
relatively lower reflecting the large variation of PA cropping. However, the goal of the 
PA label was to identify the PAV, and the resulting PAV Dice was very good consid-
ering it has a thickness of just two voxels. The outliers of PAV Dice in U-Net 2 repre-
sent cases with incomplete PAV caused by the limited scanning field of view, which 
was common within SCOT-HEART. The initial segmentations were constrained by the 
image size, however, the extrapolation approach mitigated this problem by extrapolat-
ing the RV outflow tract as shown in Figure 5. 

 
Fig. 5. Coronal and sagittal views of the CCTA image overlapped with reconstructed RV (blue) 
and PA (red) labels from U-Net 2 predictions for the outlier testing case. The yellow arrows in-

dicate the predicted PA label voxels outside the scanning field of view. 

U-Net 3 mapped the initial LA label to LA body, LPV, RPV and LAA labels. The 
Dice scores showed good similarity between the reference and the predicted labels, 
especially for LA body. The Dice score was affected by the size of the object, and 
therefore the Dice scores for LPV, RPV and LAA were relatively lower. 
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3.3 Image to Label Final Segmentation 

Dice scores for U-Net 4, calculated against the 10-label predictions for the manually 
reviewed test cases, are shown in Figure 4. The median Dice scores are all above 95% 
for 6 initial labels, with the largest value above 98% for LV cavity. The mean values of 
Dice scores are also between 95% and 98% with the standard deviations between 1% 
and 2%. The reduction of outliers suggests that the consistency of the segmentations 
across scanner types was clearly improved through our refinement pipeline, including 
LV cavity adjustment, PA extrapolation and LA parcellation. The final segmentation 
network could also accurately predict the refined labels from CCTA images showing 
the manual annotations were highly correlated to the image features. As expected, the 
Dice scores for small regions are not as good as big regions, and PA has the lowest 
median Dice score (89%) while LPV, RPV and LAA all have median Dice score above 
90%. The larger variations and more outliers reflected images with partially cropped 
field of view superior to the LV. Compared with previous reports [3, 4, 8, 9], our results 
show high performance even in smaller regions. We also evaluated U-Net 1 and U-Net 
4 using the testing dataset of the MMWHS challenge, and compared to the top-5 ranked 
participants of the challenge for CT image segmentation [10]. The Dice scores are 
shown in Table 1.  The Dice score of U-Net 1 is smaller because it is trained using 
automatically generated segmentation as the reference, and there is an obvious im-
provement after our refinement process, giving the performance of U-Net 4 similar to 
the best performing challenge participants. 

Table 1. Dice on the CT test datasets of the MMWHS challenge for U-Net 1, U-Net 4, and the 
top-5 ranked participants. The values are the mean of 40 cases in %. 

 LV LVMyo RV LA RA 
U-Net 1 88.0 81.5 83.4 81.6 82.2 
U-Net 4 90.1 84.7 89.2 91.7 87.7 

1 91.8 88.1 90.9 92.9 88.8 
2 92.3 85.6 85.7 93.0 87.1 
3 90.4 85.1 88.3 91.6 83.6 
4 90.1 84.6 85.6 88.4 83.7 
5 90.8 87.4 80.6 90.8 85.5 

 

4 Conclusions and Limitations 

In this paper we described a flexible method for refining cardiac segmentations using a 
multi-stage process, by training both image-to-label and label-to label networks to learn 
task-dependent manual corrections in an iterative fashion. The label-to-label networks 
were able to learn the anatomical configuration of the refined label maps using only 
mask information by either extrapolating new labels from background (U-Net 2) or 
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partitioning existing labels (U-Net 3). Taking the advantage of neural networks, which 
provided a simple way to refine or adapt segmentations to suit the application, we ap-
plied this method to the problem of identifying the PAV, as well as the locations of the 
pulmonary veins and LAA with the LA. 

Limitations of this study include i) no cases had metal artefacts which are often pre-
sent in CCTA, and ii) the PAV could be distorted in some cases due to restricted field 
of view (Figure 5) – this could be corrected in future work by manually extrapolating 
the RV in addition to the LA for subsequent label-to-label refinement.  
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