
Analytic Modeling of Idle Waves in Parallel Programs:
Communication, Cluster Topology, and Noise Impact

Ayesha Afzal1, Georg Hager1, and Gerhard Wellein1,2

1 Erlangen Regional Computing Center (RRZE), 91058 Erlangen, Germany,
ayesha.afzal@fau.de, georg.hager@fau.de

2 Department of Computer Science, University of Erlangen-Nürnberg, 91058 Erlangen, Germany,
gerhard.wellein@fau.de

Abstract. Most distributed-memory bulk-synchronous parallel programs in HPC
assume that compute resources are available continuously and homogeneously
across the allocated set of compute nodes. However, long one-off delays on indi-
vidual processes can cause global disturbances, so-called idle waves, by rippling
through the system. This process is mainly governed by the communication topol-
ogy of the underlying parallel code. This paper makes significant contributions
to the understanding of idle wave dynamics. We study the propagation mecha-
nisms of idle waves across the ranks of MPI-parallel programs. We present a
validated analytic model for their propagation velocity with respect to communi-
cation parameters and topology, with a special emphasis on sparse communication
patterns. We study the interaction of idle waves with MPI collectives and show
that, depending on the implementation, a collective may be transparent to the
wave. Finally we analyze two mechanisms of idle wave decay: topological decay,
which is rooted in differences in communication characteristics among parts of the
system, and noise-induced decay, which is caused by system or application noise.
We show that noise-induced decay is largely independent of noise characteristics
but depends only on the overall noise power. An analytic expression for idle
wave decay rate with respect to noise power is derived. For model validation we
use microbenchmarks and stencil algorithms on three different supercomputing
platforms.

1 Introduction

1.1 Idle waves in barrier-free bulk-synchronous parallel programs

Parallel programs with alternating computation and communication phases and without
explicit synchronization are ubiquitous in high performance computing. In theory, when
running on a clean, undisturbed system and lacking any load imbalance or other irregu-
larities, such applications should exhibit a regular lockstep pattern. In practice, however,
a variety of perturbations prevent this: system and network noise, application imbalance,
and delays caused by one-off events such as administrative jobs, message re-transmits,
I/O, etc. Among all of these, long one-off events have the most immediate impact on
the regular compute-communicate pattern. They cause periods of idleness in the process
where they originated, but via inter-process dependencies they “ripple” through the
system and can thus impact all other processes as well. In massively parallel programs,

ar
X

iv
:2

10
3.

03
17

5v
1 

 [
cs

.D
C

] 
 4

 M
ar

 2
02

1



2

delays can occur anytime, impeding the performance of the application. On the other
hand, idle waves may also initiate desynchronization among processes, which is not
necessarily disadvantageous since it can lead to automatic communication overlap [3].

The speed and overall characteristics of idle wave propagation have been the subject
of some scrutiny [10, 12, 4, 3], but a thorough analytical understanding of their dynamics
with respect to the communication topology of the underlying parallel code is still
lacking. There is also no investigation so far of the interaction of idle waves with global
operations such as reductions, and how the system’s hardware topology and the particular
characteristics of system noise impact the decay of idle waves. These topics will be
covered by the present work. We restrict ourselves to process-scalable scenarios, i.e.,
where multiple MPI processes running on a hardware contention domain (such as a
memory interface or a shared out-level cache) do not feel scalability loss due to hardware
bottlenecks.

1.2 Related work

Noise has been studied for almost two decades. A large part of the work focuses on
sources of noise outside of the control of the application and explores the influence
of noise on collective operations [11, 6, 8]. However, it lacks coverage of pair-wise
communication and the interaction of noise with idle periods, which are common in
distributed-memory parallel codes. Gamell et al. [7] noted the emergence of idle periods
in the context of failure recovery and failure masking of stencil codes. Markidis et al. [10]
used a LogGOPS simulator [8] to study idle waves and postulated a linear wave equation
to describe wave propagation.

Afzal et al. [4, 2, 3, 1] were the first to investigate the dynamics of idle waves,
(de)synchronization processes, and computational wavefront formation in parallel pro-
grams with core-bound and memory-bound code, showing that nonlinear processes
dominate there. Our work builds on theirs to significantly extend it for analytic mod-
eling with further influence factors, such as communication topology, communication
concurrency, system topology and noise structure.

Significant prior work exists on the characterization of noise and the influence of
noise characteristics on performance of systems. Ferreira et al. [6] noted that HPC appli-
cations with collectives can often absorb substantial amounts of high-frequency noise,
but tend to be affected by low-frequency noise. Agarwal et al. [5] found noise properties
to matter for the scalability of collectives, comparing different distributions (exponen-
tial, heavy tail, Bernoulli). Hoefler et al. [9] used their LogGOPS-based simulator and
studied both point-to-point (P2P) and collective operations. They found that application
scalability is mostly determined by the noise pattern and not the noise intensity.

In the context of idle wave propagation and decay, the present work finds that the
noise intensity is the main influence factor rather that its detailed statistics.

1.3 Contribution

This work makes the following novel contributions:



3

– We analytically predict the propagation velocity of idle waves in scalable code with
respect to (i) communication topology, i.e., the distance and number of neighbors
in point-to-point communication, and (ii) communication concurrency, i.e., how
many point-to-point communications are grouped and subject to completion via
MPI_Waitall.

– The analytical model is validated with measurements on real systems and applied to
microbenchmarks with synthetic communication topologies and a realistic scenario
from the context of stencil codes with Cartesian domain decomposition.

– We show that not all MPI collective routines eliminate a traveling idle wave; some
may even be almost transparent to it, depending on their implementation.

– We show that idle wave decay can also be initiated by the system topology via
inhomogeneities in point-to-point communication characteristics between MPI pro-
cesses.

– We show analytically that the decay rate (and thus the survival time until running out)
of an idle wave under the influence of noise is largely independent of the particular
noise characteristics and depends only on the overall noise power. This prediction is
validated with experiments.

Overview This paper is organized as follows: Section 2 provides details about our
experimental environment and methodology. In Section 3, we first introduce some
important terms to categorize execution and communication in distributed-memory
parallel programs and then develop and validate an analytical model of delay propagation.
Section 4 covers the interaction of idle waves with collective primitives. An analysis of
idle wave decay with respect to noise and system topology is conducted in Section 5.
Finally, Section 6 concludes the paper and gives an outlook to future work.

2 Test bed and experimental methods

The three clusters listed in Table 1 were used to conduct various experiments and validate
our analytical models.

Process-core affinity was enforced using the I_MPI_PIN_PROCESSOR_LIST envi-
ronment variable. We ignored the simultaneous multithreading (SMT) feature and used
only physical cores. The clock frequency was always fixed to the base value of the
respective CPUs (or to 2.3 GHz in case of SuperMUC-NG because of the power capping
mechanism). On Emmy, experiments with up to 120 nodes were conducted on a set
of nodes connected to seven 36-port leaf switches in order to achieve homogeneous
communication characteristics. A similar strategy was not possible on the other systems.
Open-chain boundary conditions were employed unless specified otherwise. Commu-
nication delays for non-blocking calls were measured by time spent in the MPI_Wait
or MPI_Waitall function. We used Intel Trace Analyzer and Collector (ITAC)4 for
timeline visualization and the C++ high-resolution Chrono clock for timing measure-

3 https://anleitungen.rrze.fau.de/hpc/emmy-cluster
4 https://software.intel.com/en-us/trace-analyzer

https://anleitungen.rrze.fau.de/hpc/emmy-cluster
https://software.intel.com/en-us/trace-analyzer


4

Table 1: Key hardware and software specifications of systems.
Systems Emmy3 SuperMUC-NG Hawk

Processor Intel Xeon Ivy Bridge EP Intel Xeon Skylake SP AMD EPYC Rome
Processor Model E5-2660 v2 Platinum 8174 7742
Base clock speed 2.2 GHz 3.10 GHz (2.3 GHz used∗) 2.25 GHz
Physical cores per node 20 48 128
Numa domains per node 2 2 8
LLC size 25 MB 33 MB 256 MB = 16 × 16 MB / CCX (4C)

M
ic

ro
-a

rc
hi

te
ct

ur
e

Memory per node (type) 64 GB (DDR3) 96 GB (DDR4) 4 TB =16 × 256 GB (DDR4)

Node interconnect QDR InfiniBand Omni-Path HDR InfiniBand
Interconnect topology Fat-tree Fat-tree Enhanced 9D-Hypercube

N
et

w
or

k

Raw bandwidth p. lnk n. dir 40 Gbit s−1 100 Gbit s−1 200 Gbit s−1

Compiler Intel C++ v2019.5.281 Intel C++ v2019.4.243 Intel C++ v2020.0.166
Optimization flags -O3 -xHost -O3 -qopt-zmm-usage=high -O3 -xHost
SIMD -xCORE-AVX2 -xCORE-AVX512 -mavx2
Message passing library Intel MPI v2019u5 Intel MPI v2019u4 Intel MPI v2019u6So

ft
w

ar
e

Operating system CentOS Linux v7.7.1908 SESU Linux ENT. Server 12 SP3 CentOS Linux 8.1.1911

Tool ITAC v2019u4 v2019 v2020
∗ A power cap is applied on SuperMUC-NG, i.e., the CPUs run by default on a lower than maximum clock speed (2.3 GHz instead of 3.10 GHz).

ments. For tuning of the Intel MPI collectives implementations, we used the Intel MPI
autotuner5; the configuration space is defined by I_MPI_ADJUST_<opname>6.

We run barrier-free bulk-synchronous MPI-parallel micro-benchmarks with con-
figurable latency-bound communication and compute-bound workload. This results in
process scalability, i.e., there is no contention on memory interfaces, shared caches,
or network interfaces. The code loops over back-to-back divide instructions (vdivpd),
which have low but constant throughput. The message size was set to 1024 B, which
is well within the default eager limit of the MPI implementation. For more realistic
workloads we chose a 3D Jacobi stencil and sparse matrix-vector multiplication (SpMV)
with the High Performance Conjugate Gradient (HPCG)7 matrix. Further characteriza-
tion will be addressed in Section 3. One-off idle periods were generated by massively
extending one computational phase via doing extra work on one MPI rank, usually rank
5.

All experiments described in this paper were conducted on all three benchmark sys-
tems. However, we show the results for all of them only if there are relevant differences.

3 Idle wave propagation velocity for scalable code

In this section we first categorize the execution and communication characteristics of
parallel applications. Later, we investigate how they influence the idle wave velocity and
construct an analytic model for the latter.

5 https://software.intel.com/content/www/us/en/develop/documentation/
mpi-developer-reference-linux/top/environment-variable-reference/
tuning-environment-variables/autotuning.html

6 https://software.intel.com/content/www/us/en/develop/documentation/
mpi-developer-reference-windows/top/environment-variable-reference/
i-mpi-adjust-family-environment-variables.html

7 https://www.hpcg-benchmark.org/

https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/tuning-environment-variables/autotuning.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/tuning-environment-variables/autotuning.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/tuning-environment-variables/autotuning.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/i-mpi-adjust-family-environment-variables.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/i-mpi-adjust-family-environment-variables.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/i-mpi-adjust-family-environment-variables.html
https://www.hpcg-benchmark.org/


5

1

2 30 60 90 119

0

20

40

60

80

100

119

Receiver rank

Se
nd

er
ra

nk

(a) Pi

�

(Pi±1 . . .Pi±2)

6 30 60 90 119

Receiver rank

(b) Pi

�
(Pi±1 . . .Pi±6)

12 30 60 90 119

Receiver rank

(c) Pi

�

(Pi±1 . . .Pi±12)

6 30 60 90 119

Receiver rank

(d) Pi

�

(Pi±1,Pi±6)

12 30 60 90 119

Receiver rank

(e) Pi

�

(Pi±1,Pi±12)

Fig. 1: Compact and non-compact communication topologies with bidirectional open
chain characteristics. Pi sends (receives) data to (from) Pi±1 (a) till Pi±2 (b) till Pi±6 (c)
till Pi±12, (d) and Pi±6 (e) and Pi±12.

3.1 Execution characteristics

HPC workloads have a wide spectrum of requirements regarding code execution towards
resources of the parallel computing platform. The most straightforward categorization
is whether the workload is sensitive to certain resource bottlenecks, such as memory
bandwidth. Since we restrict ourselves to scalable code here, we run the traditionally
memory-bound algorithms such as stencil updates or SpMV with one MPI process
per contention domain (typically a ccNUMA node). This is not a problem for the
microbenchmarks since we deliberately choose an in-core workload there.

3.2 Categorization of communication characteristics

Here we briefly describe the different communication characteristics under investigation.
We start by assuming a “P2P-homogeneous” situation where all processes (except
boundary processes in case of open boundary conditions) have the same communication
partners and characteristics. We will later lift this restriction and cover more general
patterns.

Communication topology Communication topology is a consequence of the physical
problem underlying the numerical method and of the algorithm (discretization, geome-
try). It boils down to the question “which other ranks does rank i communicate with?”
and is characterized by a topology matrix (see Figure 1 for examples of compact and
noncompact topologies).

In a compact topology, each process communicates with a dense, continuous array
of neighbors with distances d =±1,±2,...,±j. The topology matrix comprises a dense
band around the main diagonal. In a noncompact topology, each process communicates
with processes that are not arranged as a continuous block, e.g., d = ±1,±j. In both
variants, the topology matrix can be symmetric or asymmetric.



6

Table 2: Selected algorithms for communication concurrency in our MPI microbench-
marks. Arrows of the same color correspond to a single MPI_Waitall call. “One
distance” means that one MPI_Waitall is responsible only for the send/recv pair of one
particular communication distance, while “all distances” means that it encompasses all
distances in one dimension.

1

Multi-wait, single-dimension
(MWSDim)
1: while d ≤ dims do
2: while dir ≤ bi do
3: MPI_Isend ‡
4: MPI_Irecv §
5: end while
6: MPI_Waitall
7: end while

one distance

Multi-wait, multi-dimension
(MWMDim)
1: while dir ≤ bi do
2: while d ≤ dims do
3: MPI_Isend ‡
4: MPI_Irecv §
5: end while
6: MPI_Waitall
7: end while

all distances

Single-wait, multi-dimension
(SWMDim)
1: while d ≤ dims do
2: while dir ≤ bi do
3: MPI_Isend ‡
4: MPI_Irecv §
5: end while
6: end while
7: MPI_Waitall

all distances

Multi-wait, single-direction
(MWSDir)
1: while d ≤ dims do
2: while dir ≤ bi do
3: MPI_Isend ‡
4: MPI_Irecv §
5: MPI_Waitall
6: end while
7: end while

one distance

‡ Pi send to Pi+dir×d ; § Pi receive from Pi−dir×d

For example, sparse matrices emerging from numerical algorithms with high locality
lead to compact communication structures, while stencil-like discretizations on Cartesian
grids lead to noncompact structures with far-outlying sub-diagonals. Figures 1(a)–(c)
depict symmetric cases with 4, 12, and 24 neighbors, respectively (2, 6 and 12 distinct
processes per direction) for every process, while there are always four neighbors (two
distinct processes per direction) for both noncompact cases in Figures 1(d)–(e).

Communication concurrency When a process communicates with others, it is often a
deliberate choice of the developer which communications are grouped together and later
finished using MPI_Waitall (“split-waits”). However, since interprocess dependencies
have an impact on idle wave propagation, such details are relevant. Of course, beyond
user-defined communication concurrency, there could still be nonconcurrency “under
the hood,” depending on the internals of the MPI implementation.

Here we restrict ourselves to a manageable subset of options that nevertheless cover a
substantial range of patterns. We assume that all P2P communication is nonblocking. Ta-
ble 2 shows the four variants covered here in a 2D Cartesian setting according to the num-
ber of split-waits: multi-wait, single-dimension (MWSDim), multi-wait, multi-dimension
(MWMDim), single-wait, multi-dimension (SWMDim), and multi-wait, single-direction
(MWSDir). The iteration space of loops in Table 2 is defined as the outer (d) loop goes
over the Cartesian dimensions (i.e, x and y here) and the inner (dir) loop goes over
the two directions per dimension (i.e., positive and negative). For each direction (e.g.,
positive x), the communication is effectively a linear shift pattern; the pairing of send and
receive operations per MPI_Waitall ensures that no deadlocks will occur. The third and
fourth option are corner cases with minimum and maximum number of MPI_Waitalls.

More complex patterns Beyond the simple patterns described above, we will also
cover more general P2P inhomogeneous communication scenarios, where subsets of



7

processes have different communication properties, such as in stencil codes or sparse-
matrix algorithms. Figure 4 shows an example with compact long-range and short-range
communication, which could emerge from a sparse-matrix problem with “fat” and
“skinny” regions of the matrix. Finally, we will discuss implementation alternatives of
collective communication primitives.

3.3 Analytical model of idle wave propagation

The propagation speed of an idle wave is the speed, in ranks per second, with which
it ripples through the system. Previous studies of idle wave mechanisms on silent
systems [3, 4] characterized the influence of execution time, communication time,
communication characteristics (e.g., uni- vs. bidirectional communication patterns and
eager vs. rendezvous protocols), and the number of active multi-threaded or single-
threaded MPI processes on a contended or noncontended domain. However, the scope of
that work was restricted to a fixed P2P communication pattern (fourth column in Table 2
– MWSDir). Here we extend the analysis to more general patterns, which show a much
richer phenomenology. We restrict ourselves to open boundary conditions across the
MPI ranks. This is not a severe limitation since it only affects the survival time and not
the propagation speed of the wave.

Corner cases Minimum idle wave speed (and thus maximum survival time) is observed
with simple direct next-neighbor communication (d = 1). If Texec and Tcomm are execution
and communication times of one iteration of the bulk-synchronous program, then the
idle wave speed is

vmin
silent = 1

[
ranks
iter

]
× 1

Texec +Tcomm

[
iter
s

]
. (1)

In this case, the wave survives until it runs into system boundaries [4], i.e., for at most as
many time steps as there are MPI ranks. Barrier-like, i.e., long-distance synchronizing
communication leads to maximum speed and the wave dying out quickly in a minimum
of one time step. Thus, in this case,

vmax
silent = α

[
ranks
iter

]
× 1

Texec +Tcomm

[
iter
s

]
, (2)

where α depends on the rank rinject where the idle wave originated:

α = max
(
MPI_Comm_size− rinject−1,rinject−1

)
. (3)

Multi-neighbor communication Away from the extreme cases, we have to distinguish
between compact and noncompact multi-neighbor communication patterns, but the basic
mechanisms are the same. The propagation speed of the idle wave can be analytically
modeled as

vsilent = κ · vmin
silent

[
ranks

s

]
, (4)



8

1

0
5

10
20
30
40
50
60
70
80
90

100
110
119

R
an

k

50

52

54

56

58

60

50

52

54

56

58

60

47
50

55

60

65
69

47
50

55

60

65
69

53

60

66

53

60

66

1.4 1.6 1.8 2 2.2 2.4
0

60

119

Time [s]

N
A

M
A

SS

(a1) MWSDim

(a) Pi � (Pi±1 . . .Pi±2)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(a2) MWMDim/SWMDim

(a) Pi � (Pi±1)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b1) MWSDim

(b) Pi � (Pi±1 . . .Pi±6)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b2) MWMDim/SWMDim

(b) Pi � (Pi±1)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c1) MWSDim

(c) Pi � (Pi±1 . . .Pi±12)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c2) MWMDim/SWMDim

(c) Pi � (Pi±1)

Fig. 2: Top row: Idle wave propagation for 60 iterations in a core-bound microbenchmark
for an injected delay at rank 5 (see text for details) and compact communication patterns
with different numbers of communication partners: (a) two, (b) six, and (c) twelve
partners per direction. The second row of panels shows the fraction of MPI ranks
executing MPI library code.

Where κ depends on communication concurrency and topology:

κ =



j

∑
k=1

k =
j(j+1)

2
if compact MWSDim / MWSDir / blocking

∑
k=1,j

k = j+1 if non-compact MWSDim / MWSDir / blocking

j if MWMDim / SWMDim

. (5)

Here, j is the longest-distance communication partner of a rank. Modifications to these
expressions may apply for complex communication topologies; we will discuss them in
the validation section.

3.4 Experimental validation

In this section, we first validate the analytical model via measurements using synthetic
benchmarks on a real system. Thereafter, we apply the model to a 3D a stencil code with
Cartesian domain decomposition. Since stencil codes are commonly memory-bound, we
run a single thread per ccNUMA domain only in order to maintain resource scalability.
Since the phenomenology matches across all three clusters (Table 1), we show results
only for the Emmy system.

Microbenchmarks Figures 2 and 3 (top row) show traces of the propagation of injected
one-off idle phases (extra work at at rank 5, dark blue) and its dependency on communi-
cation concurrency and communication topology, using the variants shown in Table 2.
In these experiments, we used an execution phase of Texec = 13ms (light blue) and a



9

1

1.4 1.6 1.8 2 2.2 2.4

0
5

10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

R
an

k

6

12

18

24

30

36

(a1) MWSDim

(a) Pi � (Pi±1,Pi±6)

1.4 1.6 1.8 2 2.2 2.4

Time [s]

6

12

18

24

30

36

(a2) MWMDim

(a) Pi � (Pi±1,Pi±6)

1.4 1.6 1.8 2 2.2 2.4

Time [s]

6

12

18

24

30

36

(a3) SWMDim

(a) Pi � (Pi±1,Pi±6)

1.56 1.72 1.88

Time [s]
(b1) MWSDim

(b) Pi � (Pi±1,Pi±12)

1.56 1.72 1.88

Time [s]
(b2) MWMDim

(b) Pi � (Pi±1,Pi±12)

1.56 1.72 1.88

Time [s]
(b3) SWMDim

(b) Pi � (Pi±1,Pi±12)

Fig. 3: Idle wave propagation in a core-bound microbenchmark for an injected delay at
rank 5 (see text for details) and noncompact communication patterns with two communi-
cation partners per direction at different distances on Emmy: (a) Pi � (Pi±1,Pi±6) for 60
iterations and (b) Pi � (Pi±1,Pi±12) for 20 iterations.

data volume of 1 KiB per message. The insets show close-ups of parts of the wave. In
the second row, a quantitative timeline of the number of MPI processes executing MPI
library code (i.e., waiting or communicating) is displayed. In these settings, the natural
system noise is weak enough to not cause decay of the idle wave until it runs into the
system boundary.

Compact communication In Figure 2, the observed propagation speed of the idle
waves is independent of the number of split-waits, as expected. Higher speeds are
observed when (i) the overall communication distance goes up, i.e., with growing number
of communication partners, and (ii) the number of dimensions spanned within each
MPI_Waitall (communication concurrency). In Figure 2(a), where Pi � (Pi±1,Pi±2),
higher speed results in (a1) with κ = ∑

2
k=1 k = 3 due to the MWSDim concurrency

pattern, while in (a2) we have κ = j = 2 for the other patterns. The data confirms the
model in (4) and (5).

In Figure 2(b) and (c), the number of communication partners per direction is
increased to six and twelve, respectively, with expected consequences: In (b1) we have
κ = ∑

6
k=1 k = 21, and in (b2) κ = j = 6. In (c1), we getκ = ∑

12
k=1 k = 78, confirming

intuitively our prediction that survival time in the high-speed limit is equal to Texec +
Tcomm. Finally, in (c2) we get κ = j = 12.

The second row in Figure 2 shows that slower wave propagation causes a more
even spread of waiting times and thus resource utilization across ranks. A rising/con-
stant/falling slope indicates an oncoming/traveling/leaving wave. Although our particular
scenarios have been designed to show no resource bottlenecks, these utilization shapes
will be significant in case of memory-bound execution or bandwidth-contended commu-
nication [3]. An exploration of these mechanisms is left for future work.

Noncompact communication Topology matrices with noncompact characteristics (Fig-
ures 1(d)–(e)) entail a more complex phenomenology of idle wave propagation. The
presence of “gaps” leads to multiple waves propagating at different speeds, with the



10

Fig. 4: Idle wave propaga-
tion with inhomogeneous com-
pact communication charac-
tersitics (60 iterations) on
Emmy. (a) Topology matrix:
Pi sends (receives) 1 KiB to
(from) Pi±1,. . . ,Pi±3 for pro-
cesses near boundaries and to
(from) Pi±1,. . . ,Pi±12 for 40 in-
ner processes. (b) Idle wave
propagation for SWMDim con-
currency.

1

0 30 60 90 119

0
10
20
30
40
50
60
70
80
90

100
110
119

Receiver rank

Se
nd

er
ra

nk
(a)

1.4 1.6 1.8 2 2.2 2.4

0
5

10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

R
an

k

0

50

119

N
A

M
A

SS

(b)

added complication that each “hop” of a faster wave sparks local idle waves wherever it
hits (see Figure 3). These secondary waves propagate and annihilate each other even-
tually (more specifically, after j/2 hops), and what remains is the fast wave emerging
from the longest-distance communication. The speed of this residual wave is faster with
(i) a larger number of split-waits, (ii) a smaller number of communication dimensions
spanned by each MPI_Waitall, and evidently (iii) a larger longest communication
distance j.

With respect to communication concurrency, there is a fundamental difference
between multiple split-waits and one wait-for-all in non-compact communication. The
“zig-zag” pattern emerging from the two different propagation speeds prevails in case of
SWMDim (one wait-for-all) but dies out for MWSDim and MWMDim after a couple
of iterations. This decay is entirely a consequence of the communication concurrency
and has nothing to do with the other mechanisms of idle wave decay, such as noise and
communication inhomogeneity (see Section 5). The propagation of the “envelope wave”
is untouched by this effect.

This phenomenon is shown in Figure 3(a1, b1, a2, b2), where the zig-zag pattern
dissolves eventually, and the residual wave exhibits (a1) κ = ∑k=1,6 k = 7, (a2) κ = j = 6,
(b1) κ = ∑k=1,6 k = 13, and (b2) κ = j = 12. The number of time steps required for the
zig-zag to even out depends on the propagation speed. In case of a single MPI_Waitall,
however (a3, b3), the pattern prevails. The envelope travels with (a3) κ = j = 6 and (b3)
κ = j = 12.

The results from these microbenchmarks show that our model is able to describe the
basic phenomenology of idle wave propagation on a silent system in the parameter space
under consideration. In the following we cover some more general patterns.

Inhomogeneous communication From the basic propagation model and its validation
on simple communication patterns we can now advance to more complex scenarios. In
Figure 4, we use a compact topology matrix that is “fatter” for the middle 40 processes,
mimicking an inhomogeneous situation that may, e.g., emerge with some sparse matrix
problems (Figure 4(a)). Since the idle wave speed emerges from local properties of the
topology matrix, we expect a “refraction effect,” where the wave travels faster within



11

Fig. 5: Idle wave propagation within a
double-precision 3D Jacobi algorithm
with Cartesian domain decomposition
and bidirectional halo exchange (15 it-
erations) at a problem size of 12003

and two different process grids (120
processes on Emmy) with open bound-
ary conditions. Top row: topology ma-
trices color-coded with communication
volume. Bottom row: timelines of idle
wave progression. Orange color shows
idleness in MPI_Wait, while pink color
indicates waiting time in MPI_Send. See
text for communication grouping. Single-
message communication volumes are (a)
576 kB, 480 kB, 384 kB and (b) 960 kB,
576 kB, 192 kB per dimension.

1

0 30 60 90 119

0
10
20
30
40
50
60
70
80
90

100
110
119

Receiver rank

Se
nd

er
ra

nk

380
400
420
440
460
480
500
520
540
560

M
sg

[K
B

]

0 30 60 90 119

0
10
20
30
40
50
60
70
80
90

100
110
119

Receiver rank

Se
nd

er
ra

nk

150
235
320
405
490
575
660
745
830
915

M
sg

[K
B

]

78.6 78.9 80.2 80.5 80.8 81

0
5

10
20
30
40
50
60
70
80
90

100
110
119

Time [s]
R

an
k

(a) Process grid 4×5×6

13 13.4 13.8 14.2 14.6 15

0
5

10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

(b) Process grid 2×6×10

the fat region of the matrix. Indeed, this is exactly what is observed (see Figure 4(b)),
and the quantitative model of propagation speed holds for the different regions: We have
κ = 12 in the middle and κ = 3 elsewhere.

Blocking communication and eager vs. rendezvous mode Instead of grouped non-
blocking point-to-point calls, a popular choice is MPI_Sendrecv for a pair of in- and
outgoing messages along the same direction. This is identical to the MWSDir case in
Table 2, so the phenomenology shown in Figures 2 (a1, b1, c1) and Figures 3 (a1,b1)
applies. Similarly one can employ a MPI_Irecv/MPI_Send/MPI_Wait sequence within
the innermost loop. In all these cases, the wave propagation speed doubles in rendezvous
mode, where synchronization between sender and receiver is implied. However, the dif-
ference between eager and rendezvous mode does not impact the other variants beyond
MWSDir.

Stencil smoother with halo exchange Figure 5 shows an idle wave experiment with
a double-precision Jacobi smoother using Cartesian domain decomposition and two
different process grids (4×5×6 vs. 2×6×10; inner dimension goes first). Here we used
MWSDir concurrency via MPI_Irecv/MPI_Send/MPI_Wait per direction. The message
sizes are such that the rendezvous mode applies. As expected from the model, the
longest-distance communication determines the overall wave speed, i.e., it is lower in
case (b) where the topology matrix is narrower.

The communication topology is more intricate here than in the microbenchmark
studies covered so far. It turns out that all connections apart from the longest-distance
one can be summarized by averaging over their respective distances and taking the
largest smaller integer (floor function) when calculating the κ factor. For the case in



12

Fig. 6: Idle wave propagation
in sparse matrix-vector mul-
tiplication (SpMV) using the
HPCG matrix with a prob-
lem size of 163 per process
and bidirectional halo exchange
(15 iterations) on Emmy and
three different process grids (a)–
(c). Top row: topology matri-
ces with color-coded commu-
nication volumes. Bottom row:
Timelines of idle wave progres-
sion. Message sizes are 8 B,
128 B, and 2.05 kB per dimen-
sion (symmetry across main di-
agonals).

1

3 11 20 30 39

0

5

10

15

20

25

30

35
39

Receiver rank

Se
nd

er
ra

nk

5 17 30 40 59

0

10

20

30

40

50

59

Receiver rank

5 25 40 60 80 99

0
10
20
30
40
50
60
70
80
90
99

Receiver rank

0
124
247
371
494
618
741
865
988

1110
1240
1360
1480
1610
1730
1850
1980

Msg [B]

7.140 7.142 7.144

0

5

10

15

20

25

30

35

39

Time [ms]

R
an

k

(a) Ranks: 2×4×5

7.140 7.142 7.144

0
5

10

20

30

40

50

59

Time [ms]
(b) Ranks: 4×3×5

7.705 7.708

0
5

10

20

30

40

50

60

70

80

90

99

Time [ms]
(c) Ranks: 4×5×5

Figure 5(a), this leads to κ = 2+20 = 22, so the propagation speed is 22×2 = 44 times
larger than vmin

silent. For Figure 5(b), we have κ = 0+ 12 = 12 and thus 24 times vmin
silent.

Both predictions are confirmed by the data after the initial slow, short-distance waves
have died out.

SpMVM with halo exchange The High Performance Conjugate Gradient (HPCG)
benchmark is popular for ranking supercomputers beyond the ubiquitous LINPACK.
Here we choose to discuss idle wave propagation during multiple back-to-back sparse
matrix-vector multiplications using the HPCG matrix, which emerges from a sparse
linear system using a 27-point stencil in 3D. Communication is largely symmetric, except
for boundaries. The number of communication partners varies between 7 (corners) and
26 (interior processes), and MWSDir concurrency applies just like in the stencil example.
The per-process problem size is small enough for eager mode, but communication time
is a relevant contribution to the overall runtime.

Figure 6 shows idle wave propagation through three different process grids with
2×4×5 = 40, 4×3×5 = 60, and 4×5×5 = 100 ranks, respectively (inner dimension
goes first). The decomposition is indicated in the captions of Figures 6(a)–(c). In case (a)
we get κ = 8, for (b) we get κ = 12, and for (c) we get κ = 24.

4 Idle waves interacting with MPI collectives

Few MPI programs use point-to-point communications only. Concerning idle wave
propagation, the question arises which collective routines may be transparent to a
traveling wave. In practice, the elimination or the survival of the wave may be desirable



13

1

0
5

10
20
30
40
50
60
70
80
90

100
110
119

R
an

k

50

52

54

56

58

60

1.4 1.6 1.8 2 2.2 2.4
0

60

119

Time [s]

N
A

M
A

SS

(a) Sync

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b) Non-sync

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c) Non-sync

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(d) Non-sync

Fig. 7: Transparency of collective routines for idle waves on Emmy. (a) Default In-
tel MPI implementation of MPI_Allreduce / MPI_Alltoall / MPI_Allgather
/ MPI_Scatter / MPI_Bcast / MPI_Barrier / I_MPI_ADJUST_REDUCE=1 /
any collective with I_MPI_TUNING_AUTO_SYNC=1, (b) default MPI_Reduce or
with I_MPI_ADJUST_REDUCE=8-11, (c) default MPI_Gather / MPI_Reduce with
I_MPI_ADJUST_REDUCE=2,4-7, (d) MPI_Reduce with I_MPI_ADJUST_REDUCE=3.
Collective calls are injected at rank 5 in the 20th iteration and the root (where ap-
plicable) is rank 0. The message size is 1024 B, and MPI_SUM is used for all operations.
Green color indicates the time spent by MPI processes in the collective routines.

depending on the context; for instance, it was shown that idle waves can lead to automatic
communication-computation overlap in desynchronized bottleneck-bound programs [3].

The effects we discuss here are certainly heavily dependent on the details of the MPI
implementation, the communication buffer size, and possibly other parameters, so it is
impossible to give a comprehensive overview. We thus restrict ourselves to Intel MPI on
one of the three benchmark systems (Emmy). The results are summarized in Figure 7 and
discussed below.

Globally synchronizing primitives Examples of necessarily synchronizing collectives
are MPI_Allreduce, MPI_Alltoall, MPI_Allgather, MPI_Barrier, etc. These de-
stroy propagating idle waves completely (see Figure 7(a)). The default Intel implemen-
tations of MPI_Scatter and MPI_Bcast are also synchronizing. If the autotuner mode
is enabled by setting I_MPI_TUNING_AUTO_SYNC=1 (disabled by default), an internal
barrier is called on every tuning iteration. This, of course, completely eradicates an idle
wave on any collective call.



14

Global non-synchronizing primitives Figure 7(b) shows an idle wave colliding with
the default Intel implementation of MPI_Reduce. Reductions are not necessarily syn-
chronizing, and indeed the idle wave can pass the collective, which appears like a global,
compact communication block through which the wave travels with maximum speed
(see the discussion of inhomogeneous communication above).

If the survival of idle waves is desirable, one option is to avoid synchronizing
collectives if the performance implications are noncritical. In Figure 7(c), we show that
the default MPI_Gather implementation is completely transparent to the wave.

Implementation variants MPI implementations usually provide tuning knobs to opti-
mize the internal implementation of collectives in order to better adapt it to the applica-
tion. The process of finding the optimal parameter settings can also be automated [13].
With Intel MPI, the I_MPI_ADJUST_<opname> environment variable can be set to a
value that selects a particular implementation variant for the <opname> collective. Eleven
documented settings are available in case of MPI_Reduce. Figure 7(c), although it de-
picts a gather operation, is also applicable to MPI_Reduce with I_MPI_ADJUST_REDUCE
set to 2 or a value between 4 and 7. Finally, Figure 7(d) illustrates how the interaction of
the idle wave with MPI_Reduce changes for I_MPI_ADJUST_REDUCE set to 3 (topology-
aware Shumilin’s algorithm).

Another option is to override the default shared-memory node-level implementation
of collectives and substitute it with a standard point-to-point variant. For instance, setting
I_MPI_COLL_INTRANODE=pt2pt (insted of the default shm) modifies the reduction
behavior from Figure 7(b) to Figure 7(c).

5 Idle wave decay

The decay of traveling idle waves is a well-known phenomenon [10], and the under-
lying microscopic mechanism via interaction with short idle periods (“noise”) is well
understood [4]. There are, however, two questions that have not been addressed so far:
(i) Does the system topology lead to idle wave decay also for resource-scalable parallel
programs?, and (ii) Which characteristics of the system noise have an impact on the
decay rate of the idle wave? Here answer both.

5.1 Topological decay

It has been shown that the system topology, specifically a memory bandwidth bottleneck,
can cause idle wave decay without the presence of system noise [3]. For the resource-
scalable codes considered here this mechanism does not apply, but there is more to
system topology than memory bottlenecks. The three benchmark systems we use here
have quite different features in this respect, even within a single node: Hawk has 16
cores (4×4 CCX) per ccNUMA domain, 4 ccNUMA domains per socket, and 2 sockets
per node. SuperMUC-NG has 24 cores per ccNUMA domain, 1 ccNUMA domain per
socket, and 2 sockets per node. Emmy has 10 cores per ccNUMA domain, 1 ccNUMA
domain per socket, and 2 sockets per node. The inherent topological boundaries cause
communication inhomogeneities, which create structured noise as small variations in



15

1

0 0.2 0.4

0
10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

R
an

k

40

50

60

70

80

(a) ClusterA

0 0.2 0.4

0

24

48

72

96

120

144

Time [s]
48

72

96

(b) SuperMUC-NG

0 0.2 0.4

0
8

16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

Time [s]
48
56
64
72
80

(c) Hawk

Fig. 8: Topological idle wave decay on the benchmark systems running one process per
core (scalable workload) using nonblocking MPI distance-1 communication topology
(i.e., Pi � Pi±1) for 120 iterations. We chose Texec = 2.7ms (white color) and injected
extra work of 58 ms (blue color) at rank 0. The message size was 1 MB. (a) 12 domains
(sockets), 120 processes (b) 5 domains (sockets), 120 processes, (c) 30 domains (CCX),
120 processes. Topological boundaries exist at every 10, 24, and 4 cores on Emmy,
SuperMUC-NG and Hawk, respectively.

communication time (intranode vs. internode) propagate and interact with the idle
wave to cause visible kinks. This is demonstrated in Figure 8 for the three benchmark
clusters, running one MPI process per ccNUMA domain. For 120 iterations, we measured
an average decay rate of 149 µs/rank on SuperMUC-NG, 203 µs/rank on Hawk, and
346 µs/rank on Emmy. Although one might expect Hawk to show the strongest topology
effects due to its intricate node structure, it is not only the number of hierarchy levels
but also the actual communication inhomogeneity that determines the decay effect. In
Figure 8, all 128 processes were run on a single node of Hawk, so the internode boundary
is missing there.

In order to substantiate the claim that this decay emerges from system topology
and communication inhomogeneities, we repeated all experiments with round-robin
placement of MPI ranks across nodes. In this way, node-level differences in communica-
tion characteristics are all but eliminated since all interprocess boundaries are internode
boundaries. Indeed, the decay observed with standard placement vanishes under these
conditions.



16

1

Exec Delay = 4.85 s

Exec Comm

Comm

Delay = 4.85 s

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Comm

Delay = 4.55 s

Exec

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Comm

Delay = 4.35 s

Exec

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Comm

Delay = 4.25 s

Exec

Comm

Delay = 3.9 s

Exec

Comm

Delay = 3.2 s

Exec

Exec Comm

Exec Comm

Exec Comm

Comm

Delay = 2.85 s

Exec

Exec Comm

Exec Comm Exec Comm

Comm

Delay = 1.7 s

Exec

Comm

Delay

Exec

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm0
1
2
3
4
5
6
7
8
9

R
an

k

Exec Delay

Exec Comm

Comm

Delay = 4.85 s

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Comm

Delay = 4.75 s

Exec

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Comm

Delay = 4.65 s

Exec

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Comm

Delay = 4.3 s

Exec

Comm

Delay = 4.1 s

Exec

Comm

Delay = 2.9 s

Exec

Exec Comm

Exec Comm

Exec Comm

Comm

Delay =2.5 s

Exec

Exec Comm

Exec Comm Exec Comm

Comm

Delay=1.5s

Exec

Comm

Delay

Exec

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

Exec Comm

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0
1
2
3
4
5
6
7
8
9

Time [s]

R
an

k

Fig. 9: Experiment comparing the average decay rate of an idle wave (initial duration
4850 ms) for two different noise characteristics (top vs. bottom). In both cases, the
integrated noise power is 9.1% of the total area below the idle wave, i.e., 13 s of 142 s,
but the distribution of the fine-grained noise is different. However, the overall average
decay rate is the same (480 ms/rank), as is the wave survival time (34 s).

Fig. 10: Decay rate (min/-
max/median at sixteen cross-
process transitions) of an idle
period in s/rank, comparing
three different noise patterns
(see [4]) on the InfiniBand
Emmy (18 processes, one per
node, single leaf switch). The
x-axis shows integrated noise
power with respect to overall
integrated runtime of 142 s. 0 2 4 6 8 10

0

0.2

0.4

0.6

Integrated noise power [%]

A
ve

ra
ge

de
ca

y
ra

te
[s
/r

an
k] Discontinuous shot noise

Continuous exponential noise
Continuous uniform noise

5.2 Noise-induced decay

For the purpose of this work, we define “noise” as any (per-process) deviation from
a fixed, repeatable, lockstep-type compute-communicate pattern. In this sense, strong
one-off delays are also noise, but in this section we specifically consider noise that is con-
siderably more fine grained. One of the unsolved questions in previous work about idle
wave decay, specifically with resource-scalable code, is whether the detailed statistical
properties of the fine-grained noise or just the integrated noise power impact the rate of
decay. In order to exert full control over all noise characteristics, we conduct experiments
with artificial noise injections that are orders of magnitude stronger than natural noise.
Due to the fundamental scale invariance of these mechanisms, the conclusions must also
hold for realistic scenarios.



17

How idle waves interact with each other in a nonlinear way has been analyzed in
previous work [4]; noise-induced decay is just a variant of this process. Noise “eats
away” at the trailing edge of the wave, so a small idle period (i.e., a part of the noise)
of duration Tnoise that collides with the idle wave shortens the latter by an amount of
exactly Tnoise. This process is cumulative, which leads to the immediate conclusion that
multiple interactions {T i

noise} diminish the idle wave by η = ∑i T i
noise. Noise statistics

is of minor importance for the average decay rate. It will only impact the “smoothness”
of the decay. Figure 9 illustrates this fact by comparing the decay of the same idle
wave under two widely different noise characteristics with identical integrated “noise
power” η . Although the details of the decay are different, the survival time and hence
the average decay rate of the wave is the same in both cases. This holds as long as the
noise is fine-grained enough to not annihilate the idle wave in one fell swoop at an early
stage. Note that previous research [9, 5, 6] only studied the influence of noise statistics
on application and global operations scalability. Our observable is idle wave decay rate,
which is largely robust against noise statistics.

Experimental validation To better validate this hypothesis, we measured the decay
rate of an idle wave under three different noise characteristics with the same noise power.
Figure 10 shows results for 18 processes (one per node) on one leaf switch of Emmy to
rule out topological effects. Apart from this detail, the setting is similar to Figure 9. The
microscopic shape of the decay is influenced by the statistics: Shot noise, i.e., random
but strong, sparse noise injections of a single duration, lead to discontinuous decay and
strong variations in decay rate (diamonds in Figure 10). On the other hand, exponential
(squares) and uniform (circles) noise characteristics, where noise injections show a whole
spectrum of durations, and the variation in decay rates is much weaker. The median of
measured decay rates, however, only depends on the noise power.

6 Summary and future work

We have presented an analytical model of idle wave propagation speed based on commu-
nication topology and concurrency characteristics of resource-scalable MPI programs.
The model was validated against simple microbenchmarks, a 3D stencil smoother, and
sparse matrix-vector multiplication with the HPCG matrix. We have also shown that MPI
collective routines can be transparent to idle waves depending on the type and implemen-
tation of the collective, which extends the relevance of idle wave phenomena beyond
bulk-synchronous algorithms without collective communication. In light of the fact that
the presence of idle waves is not necessarily detrimental for performance, this result can
be quite relevant to the performance analysis of highly scalable codes. Furthermore, we
have uncovered the relevance of system topology for idle wave decay: The presence of
inhomogeneous communication characteristics emerging from the hierarchical structure
of modern compute nodes leads to fine-grained noise that causes the decay of idle waves.
Finally, we have shown that it is the noise power, and not its detailed statistical properties,
that govern the noise-induced decay rate. All these findings contribute significantly to
the understanding of the idle wave phenomenon on multicore clusters.



18

Future work will include the extension of the analysis to programs that are not
resource scalable, i.e., that are limited by node-level or network-level bottlenecks. There
is also the open question which wave and noise phenomena can be described by effective
models that abstract away from the details of the cluster hardware. Finally, we will de-
velop a capable MPI simulation tool that can take node-level characteristics into account
and will allow for more extensive experimental studies and architectural exploration.

Acknowledgments

This work was supported by KONWIHR, the Bavarian Competence Network for Scien-
tific High Performance Computing in Bavaria, under project name “OMI4papps,” and by
the BMBF under projects “Metacca” and “SeASiTe.” We are indebted to LRZ Garching
and to HLRS Stuttgart for granting CPU hours on their “SuperMUC-NG” and “Hawk”
systems.

References

[1] A. Afzal, G. Hager, and G. Wellein. An analytic performance model for overlap-
ping execution of memory-bound loop kernels on multicore CPUs. In arXiv, 2020.
arXiv: 2011.00243 [cs.DC]. Submitted.

[2] A. Afzal, G. Hager, and G. Wellein. Delay flow mechanisms on clusters. URL:
https://hpc.fau.de/files/2019/09/EuroMPI2019_AHW-Poster.pdf.
Poster at EuroMPI 2019, September 10–13, 2019, Zurich, Switzerland.

[3] A. Afzal, G. Hager, and G. Wellein. Desynchronization and wave pattern for-
mation in MPI-parallel and hybrid memory-bound programs. In P. Sadayappan,
B. L. Chamberlain, G. Juckeland, and H. Ltaief, editors, High Performance Com-
puting, pages 391–411, Cham. Springer International Publishing, 2020. ISBN:
978-3-030-50743-5. DOI: 10.1007/978-3-030-50743-5_20.

[4] A. Afzal, G. Hager, and G. Wellein. Propagation and decay of injected one-off
delays on clusters: A case study. In 2019 IEEE International Conference on
Cluster Computing, CLUSTER 2019, Albuquerque, NM, USA, September 23-26,
2019, pages 1–10, 2019. DOI: 10.1109/CLUSTER.2019.8890995.

[5] S. Agarwal, R. Garg, and N. K. Vishnoi. The impact of noise on the scaling
of collectives: A theoretical approach. In International Conference on High-
Performance Computing, pages 280–289. Springer, 2005.

[6] K. B. Ferreira, P. Bridges, and R. Brightwell. Characterizing application sensitivity
to OS interference using kernel-level noise injection. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, page 19. IEEE Press, 2008.

[7] M. Gamell et al. Local recovery and failure masking for stencil-based applications
at extreme scales. In SC ’15: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1–12,
Nov. 2015. DOI: 10.1145/2807591.2807672.

https://arxiv.org/abs/2011.00243
https://hpc.fau.de/files/2019/09/EuroMPI2019_AHW-Poster.pdf
https://doi.org/10.1007/978-3-030-50743-5_20
https://doi.org/10.1109/CLUSTER.2019.8890995
https://doi.org/10.1145/2807591.2807672


19

[8] T. Hoefler, T. Schneider, and A. Lumsdaine. LogGOPSim - Simulating Large-
Scale Applications in the LogGOPS Model. In Proceedings of the 19th ACM In-
ternational Symposium on High Performance Distributed Computing, pages 597–
604, Chicago, Illinois. ACM, June 2010. ISBN: 978-1-60558-942-8. DOI: 10.
1145/1851476.1851564.

[9] T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the influence of
system noise on large-scale applications by simulation. In Proceedings of the
2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–11. IEEE Computer Society, 2010.

[10] S. Markidis et al. Idle waves in high-performance computing. Physical Review E,
91(1):013306, 2015. DOI: 10.1103/PhysRevE.91.013306.

[11] A. Nataraj et al. The ghost in the machine: observing the effects of kernel operation
on parallel application performance. In Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, pages 1–12, 2007.

[12] I. B. Peng et al. Idle period propagation in message-passing applications. In
High Performance Computing and Communications; IEEE 14th International
Conference on Smart City; IEEE 2nd International Conference on Data Science
and Systems (HPCC/SmartCity/DSS), 2016 IEEE 18th International Conference
on, pages 937–944. IEEE, 2016.

[13] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra. Automatically tuned collective
communications. In SC’00: Proceedings of the 2000 ACM/IEEE Conference on
Supercomputing, pages 3–3. IEEE, 2000.

https://doi.org/10.1145/1851476.1851564
https://doi.org/10.1145/1851476.1851564
https://doi.org/10.1103/PhysRevE.91.013306

	Analytic Modeling of Idle Waves in Parallel Programs: Communication, Cluster Topology, and Noise Impact

