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Abstract. In this paper, we present the performance of the supercom-
puter Fugaku for breadth-first search (BFS) problem in the Graph500
benchmark, which is known as a ranking benchmark used to evaluate
large-scale graph processing performance on supercomputer systems. Fu-
gaku is a huge-scale Japanese exascale supercomputer that consists of
158,976 nodes connected by the Tofu interconnect D (TofuD). We have
developed a BFS implementation that can extract the performance of
Fugaku. We also optimize the number of processes per node, one-to-one
communication, performance power ratio, and process mapping in the
six-dimensional mesh/torus topology of TofuD. We evaluate the BFS
performance for a large-scale graph consisting of about 2.2 trillion ver-
tices and 35.2 trillion edges using the whole Fugaku system, and achieve
102,956 giga-traversed edges per second (GTEPS), resulting in the first
position of Graph500 BFS ranking in November 2020. This performance
is 3.3 times higher than that of Fugaku’s previous system, the K com-
puter.

Keywords: Breadth-first search · Performance evaluation · Graph500.

1 Introduction

There is an increasing demand for computer systems capable of converting large-
scale real-world data into a graph, which is a data structure representing relation-
ships between elements with vertices and edges, and processing it at high speed.
The graph processing is used in various fields for the analysis of connections
between social network users, the optimization of very large scale integration
(VLSI) layouts and road networks, whole-brain simulation, Internet of Things
(IoT), search engines, drug discovery, gene analysis, and so on[7, 11, 16, 17]. In
such cases, the number of vertices can exceed 1 trillion, and the number of edges
can be several tens of times the number of vertices.
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Table 1: Specifications of the supercomputer Fugaku and the K computer

Name Supercomputer Fugaku The K computer

CPU
A64FX, 48+2/4cores, 2.0/2.2GHz, SPARC64 VIIIfx, 8cores, 2.0GHz,
3,072/3,379GFlops (double precision) 128GFlops (double precision)

Memory HBM2, 32GB, 1,024GB/s DDR3 SDRAM, 16GB, 64GB/s

Network
TofuD, 0.49 to 0.54µs (Latency) Tofu, 0.91 to 1.15µs (Latency)
6.8GB/s (Bandwidth) 5.0GB/s (Bandwidth)

Nodes 158,976 82,944

Against this background, Graph500, a project for evaluating large-scale graph
processing performance, has been ongoing since 2010 and released new list-
ings of the top-performing systems twice-yearly (June and November)[1, 12].
In Graph500, a scale-free graph called Kronecker graph[8] is used. The term
scale-free describes a property in which some vertices are connected to many
other vertices while numerous others are connected to only a few vertices. Social
network data are known to have a similar property. The Graph500 benchmark
consists of breadth-first search (BFS) and single-source shortest path (SSSP).
This paper focuses on BFS, which is a crucial algorithm used in the strongly
connected component decomposition and centrality analysis of graphs.

The K computer [6] was ranked first in Graph500 for nine consecutive terms
until June 2019, and it was removed from Graph500 following the decommis-
sioning of the K computer. And then, the supercomputer Fugaku (Fugaku)[10],
which is the successor of the K computer, has been ranked first since June 2020.
This paper describes the BFS algorithm used for the Graph500 submission and
the experimental evaluation results conducted on Fugaku.

The remainder of this paper is structured as follows. Section 2 provides an
overview of Fugaku. Section 3 describes the Hybrid-BFS algorithm commonly
used in Graph500. Section 4 introduces the BFS algorithm based on the Hybrid-
BFS. Section 5 describes how we tune the performance of BFS. Section 6 dis-
cusses the evaluation of BFS on Fugaku. Section 7 summarizes this paper and
discusses our future work.

2 The supercomputer Fugaku

Fugaku is a supercomputer installed at the RIKEN Center for Computational
Science in Japan, and is scheduled to commence operation in 2021. Table 1
shows the specification of Fugaku. Each node has a single Fujitsu A64FX pro-
cessor (A64FX)[10]. Fig. 1 shows the block diagram of A64FX. Fugaku consists
of “compute node” and “compute node with IO node”. While the “compute
node” performs calculations, the “compute node with IO node” performs both
calculations and input/output processings. A64FX has 48 compute cores, while
the “compute node” and “compute node with IO node” use two and four assis-
tant cores, respectively. The assistant core deals with interruptions caused by
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Fig. 1: A64FX processor[20]

OS, communications, and so on. The clock frequency of the A64FX core can be
set to either 2.0 GHz or 2.2 GHz for each job depending on the user’s preferences.
The peak performance of double precision is 3,072 GFlops at 2.0 GHz and 3,379
GFlops at 2.2 GHz. A64FX consists of four Core Memory Groups (CMGs), each
of which has 12 compute cores, a single assistant core, and an 8 GB High Band-
width Memory ver. 2 (HBM2). The four CMGs are connected via a Network
on Chip (NoC). The Fugaku interconnect uses Tofu Interconnect D (TofuD)[20].
The topology of TofuD is a six-dimensional mesh/torus in which the node posi-
tion is specified by XY Zabc axes. Since the size of Fugaku is (X, Y , Z, a, b, c) =
(24, 23, 24, 2, 3, 2), the total number of nodes is 158,976. Also, A64FX has ten
ports for TofuD, each XY Zb axis uses two ports, and each ac axis uses one port
because ac axes consist of two nodes. The latency (8 bytes put communication)
of Fugaku is 0.49 to 0.54 µs[20]. A64FX has six Tofu Network Interfaces (TNIs)
and can communicate at 6.8 GB/s in six directions simultaneously. Thus, the
injection bandwidth of each node is 40.8 GB/s.

Table 1 also shows the specification of the K computer for comparison. The
peak performance of A64FX at 2.2 GHz is 26.4 times, the memory capacity is
twice, and the memory bandwidth is 16.0 times that of the K computer. The
network interconnect used in the K computer is Tofu Interconnect (Tofu)[19],
which is the predecessor of TofuD. While its topology is the same as TofuD, the
size of the K computer is (X, Y , Z, a, b, c) = (24, 18, 16, 2, 3, 2). Since the
total number of nodes is 82,944, the number of nodes in Fugaku is 1.9 times
that of the K computer. The latency of Fugaku is about half and the network
bandwidth of Fugaku is 1.4 times that of the K computer. Since the K computer
had four TNIs in each node, the injection bandwidth is 20.0 GB/s. Thus, the
injection bandwidth of Fugaku is 2.0 times that of the K computer.

3 Hybrid-BFS for large-scale system

3.1 Algorithm for shared memory system

Fig. 2 shows an overview of Hybrid-BFS[13] where BFS is executed while
switching between the conventional search method called “top-down approach”
and another search method called “bottom-up approach”. The current starting
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Algorithm 1: Hybrid-BFS

1 hybrid-bfs(vertices, source, nbr)
2 frontier ← {source}
3 next ← {}
4 parents ← [-1,-1,...,-1]
5 while frontier ̸= {} do
6 | if next-direction(...) = top-down then
7 | | top-down(vertices, frontier, next, parents, nbr)
8 | else
9 | | bottom-up(vertices, frontier, next, parents, nbr)

10 | frontier ← next
11 | next ← {}
12 return parents
13
14 top-down(vertices, frontier, next, parents, nbr)
15 for v ∈ frontier do
16 | for n ∈ nbr[v] do
17 | | if parents[n] = -1 then
18 | | | parents[n] ← v
19 | | | next ← next ∪ {n}
20
21 bottom-up(vertices, frontier, next, parents, nbr)
22 for v ∈ vertices do
23 | if parents[v] = -1 then
24 | | for n ∈ nbr[v] do
25 | | | if n ∈ frontier then
26 | | | | parents[v] ← n
27 | | | | next ← next ∪ {v}
28 | | | | break

points are 2○, looking for unsearched adjacencies. The issue with the top-down
approach is that current start points must check all adjacencies. Since most
adjacencies have been searched (the first start point 1○ and current start points
2○ have been searched), redundant checks occur frequently. Therefore, in the
bottom-up approach, the search is performed in the opposite direction to the
top-down approach, in which the current start points 2○ are searched from the
unsearched vertices (○ in the figure). The advantage of the bottom-up approach
is that if even one of the current start points 2○ is found, the check can be
terminated, reducing redundant checks.

Algorithm 1 shows the pseudo-code of the Hybrid-BFS. In line 2, the first
starting point (source) is substituted for the visited points set (frontier). In line
3, the next visitation point set (next) is initialized as an empty set. In line 4,
BFS tree (parents) for the final output, is initialized. Note that the substitution
of “-1” for parents means that a vertex has not yet been visited.

The top-down approach in the function top-down() first checks whether
the vertices adjacent to frontier have been visited (lines 15–17). Note that nbr
(neighbors) is an adjacent set of vertices. If unvisited, the connection source
of an unvisited vertex is assigned to parents (line 18). Additionally, the unvis-
ited vertices are added to next without duplication (line 19). In the top-down
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Algorithm 2: Parallel top-down approach

1 parallel-top-down(...)
2 f ← {source}
3 n← {}
4 π ← [-1,-1,...,-1]
5 for all processes P (i, j) in parallel do
6 | while f ̸= {} do
7 | | transpose-vector(fi,j)
8 | | fi ← allgatherv(fi,j , P (:, j))
9 | | ti,j ← {}

10 | | for u ∈ fi do
11 | | | for v ∈ Ai,j(:, u) do
12 | | | | ti,j ← ti,j ∪ (u, v)
13 | | ti,j ← alltoallv(ti,j , P (i, :))
14 | | for (u, v) ∈ ti,j do
15 | | | if πi,j(v) = −1 then
16 | | | | πi,j(v)← u
17 | | | | ni,j ← ni.j ∪ v
18 | | f ← n
19 | | n←{}
20 return π

approach, vertices in frontier are used as the starting points in searches for un-
visited vertices adjacent to them. In contrast, in the bottom-up approach of the
function bottom-up(), all unvisited vertices are used as the starting points and
the searches determine whether the vertices adjacent to them belong to frontier
(lines 22–25). When a vertex belonging to frontier is found, it is assigned to
parents and its starting point is added to next without duplication (lines 26–27).

The advantage of the bottom-up approach is that when one vertex belonging
to frontier is found, the search for that starting vertex can be terminated (line
28), thus reducing the redundant checks seen in the top-down approach. However,
since the bottom-up approach requires checking whether all vertices have been
visited, the top-down approach is faster when frontier is small. Therefore, the
Hybrid-BFS uses the top-down approach when frontier is small, and the bottom-
up approach when frontier is large. Although we have omitted the full details
here, the next-direction() function in line 6 dynamically decides whether to
switch between the top-down and bottom-up approaches.

3.2 Algorithm for distributed memory system

To handle large graphs, the parallel Hybrid-BFS has been proposed[14]. In the
parallel Hybrid-BFS, the adjacency matrix A is assigned to the processes divided
into two dimensions (R rows and C columns) as shown in Fig. 3. A process P (i, j)
has information on a partial adjacency matrix Ai,j . Algorithms 2 and 3 show the
pseudo-codes for the parallel top-down and bottom-up approaches, respectively.
The parallel Hybrid-BFS is executed by switching the approaches, as well as
the Hybrid-BFS in Algorithm 1. The f , n, and π correspond to frontier, next,
and parents, respectively. The t is a sparse vector for temporarily holding two
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Algorithm 3: Parallel bottom-up approach

1 parallel-bottom-up(...)
2 f ← {source}
3 c← {source}
4 n← {}
5 π ← [-1,-1,...,-1]
6 for all processes P (i, j) in parallel do
7 | while f ̸= {} do
8 | | transpose-vector(fi,j)
9 | | fi ← allgatherv(fi,j , P (:, j))

10 | | for s in 0 .. C-1 do
11 | | | ti,j ← {}
12 | | | for u ∈ ci,j do
13 | | | | for v ∈ Ai,j(u, :) do
14 | | | | | if v ∈ fi then
15 | | | | | | ti,j ← ti,j ∪ (u, v)
16 | | | | | | ci,j ← 1
17 | | | | | | break
18 | | | ti,j ← sendrecv(ti,j , P (i, j+s), P (i, j-s))
19 | | | for (v, u) ∈ ti,j do
20 | | | | πi,j(v)← u
21 | | | | ni,j ← ni.j ∪ v
22 | | | ci,j ← sendrecv(ci,j , P (i, j+1), P (i, j-1))
23 | | f ← n
24 | | n←{}
25 return π

0 2 2 2 2 2 2 3 4

4 5 3 1
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dst

Compressed Sparse Row (CSR)

0 2 3 4

1 0 0 0 0 0 1 1

0 1 3

4 5 3 1
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offset

dst

Bitmap-based CSR (BCSR)

Fig. 4: Compressed formats

adjacent vertices (u and v). The c is a bitmap of checked vertices, while the f and
n are sparse vectors for the top-down approach and bitmaps for the bottom-up
approach, respectively. The π is a dense vector in both approaches.

In Algorithm 2, in lines 7–8, the f is shared in the column process. In lines
9–13, information about the f and the adjacent vertices is exchanged in the row
process. In lines 14–17, the π and n are created. In Algorithm 3, lines 8–9 are
the same as lines 7–8 of Algorithm 2, except for the data structure of the f .
The for statement in lines 10–22 is divided into C sub-steps. The reason is to
reduce the number of vertices to be searched for in each process by periodically
updating c in the row process in line 22, thereby improving the overall speed. In
lines 10–18, the information on unvisited vertices adjacent to the f is exchanged
in the row process. In lines 19–21, the π and n are created.

4 Improvement to Hybrid-BFS

This section introduces the BFS algorithm for Fugaku, which is also adopted in
the K computer[9]. Since the algorithm is an improved version of the Hybrid-BFS
described in Section 3, this section describes only the changes.
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Table 2: Memory consumption in CSR and BCSR

CSR BCSR
Order Actual Order Actual

row-starts n′C 2048MB n′p 190MB
bitmap - - n′C/64 32MB
offset - - n′C/64 32MB
dst n′d 1020MB n′d 1020MB

TOTAL n′(C+d) 3068MB n′( C
32
+p+d) 1274MB

4.1 Bitmap-based representation for adjacency matrix

When using a conventional compressed sparse row (CSR) as a format for storing
an adjacency matrix, the array dst, which holds the output vertex number, and
the offset array row-starts of the edge vertex numbers are used. For efficient
edge information retrieval, the smaller row-starts size is desirable. However, the
size of row-starts is proportional to C in the case of a two-dimensional division
of R rows and C columns.

To resolve the issue, Bitmap-based CSR (BCSR) is proposed, which can
extract edge information more efficiently and with less memory than CSR. BCSR
provides the following features: (1) Compress the row-starts in CSR so that only
the edge start position of a vertex with one or more edges is retained. (2) Use the
bitmap, which is an array of bits per vertex that indicates whether each vertex
has at least one edge. (3) Use the array offset to efficiently calculate the vertex
number of an edge source. The position of row-starts at a vertex is the number
of bits standing from the beginning of the bitmap to the bit corresponding to
the vertex. To efficiently calculate the number of standing bits in bitmap, the
cumulative total of bits is stored at offset in advance, word by word.

Fig. 4 shows examples of CSR and BCSR when the edge list is {(0, 4),
(0, 5), (6, 3), (7, 1)} where each word is assumed to be 4 bits for the sake
of explanation. The row-starts in CSR is represented in BCSR as three arrays:
row-starts, bitmap, and offset . Next, Table 2 shows a comparison of the amount
of memory where one word is set to 64 bits. Here, n′ is the number of vertices
per node, d is the degree, and p is the probability of having one or more edges
in a row from a partial adjacency matrix of a process. Table 2 also shows the
actual memory usage using a Kronecker graph used in Graph500 with 16 billion
vertices and 256 billion edges when the two-dimensional division of R×C = 64
× 32. This result indicates that BCSR is more memory-efficient than CSR.

4.2 Sorting of vertex number

Bit positions in the bitmap are generally in vertex number order. A Kronecker
graph has vertices with large and small degrees, and the vertices with larger
degrees are accessed more frequently. Thus, the memory locality can be improved
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Algorithm 4: Simple thread parallelization

1 top-down-sender-naive(fi, Ai,j)
2 for u ∈ fi in parallel do
3 | for v ∈ Ai,j(:, u) do
4 | | k ← owner(v)
5 | | ti,j,k ← ti,j,k ∪ (u, v)

Algorithm 5: Proposed thread parallelization

1 top-down-sender-load-balanced(fi, Ai,j)
2 for u ∈ fi in parallel do
3 | for k ∈ P (i, :) do
4 | | (v0, v1)← edge-range(Ai,j(:, u), k)
5 | | ri,j,k ← ri,j,k ∪ (u, v0, v1)
6 for k ∈ P (i, :) in parallel do
7 | for (u, v0, v1) ∈ ri,j,k do
8 | | for v ∈ Ai,j(v0:v1, u) do
9 | | | ti,j,k ← ti,j,k ∪ (u, v)

by arranging the bit positions in degree order. In the algorithm, vertex numbers
are reassigned in degree order within the process. Note that parents is created
in degree order with the technique. Thus, it prepares a new array that holds the
original vertex numbers and is used for writing to parents.

4.3 Yoo’s distribution of adjacency matrix

When applying the distribution shown in Fig. 3 to the adjacency matrix,
communication in transpose-vector() is required to transpose frontier shown
in line 7 of Algorithm 2 and line 8 of Algorithm 3. By applying the distribution
proposed by Yoo[4], the communications can be removed. Fig. 5 shows the distri-
bution. The distribution in the rows is the same as Fig. 3, while the distribution
in the columns is R× C block-cyclic distribution.

4.4 Load balancing in top-down approach

Algorithm 4 shows a simple example of thread implementation in lines 10–12 of
Algorithm 2. In line 2, it is threaded by the input source vertices in frontier.
In line 3, Ai,j(:, u) is an edge list whose edge input source is u. In line 4, the
owner(v) function returns the process in charge of the output destination vertex
v. In line 5, the adjacent vertex information is stored. Although the technique
is simple, a large load imbalance between threads may occur because the degree
of a Kronecker graph differs significantly depending on the vertex.

To resolve this load imbalance, it is threaded by the output destination ver-
tices. Algorithm 5 shows the technique which uses two thread-parallelized for
statements. The first for statement stores the information of the output destina-
tion vertices for each process in charge, and the second for statement stores the
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Algorithm 6: Proposed bottom-up approach

1 parallel-bottom-up(...)
2 f ← {source}
3 c← {source}
4 n← {}
5 π ← [-1,-1,...,-1]
6 for all processes P (i, j) in parallel do
7 | while f ̸= {} do
8 | | fi ← allgatherv(fi,j , P (:, j))
9 | | for s in 0 .. C-1 do

10 | | | ti,j ← {}
11 | | | for u ∈ ci,j do
12 | | | | for v ∈ Ai,j(u, :) do
13 | | | | | if v ∈ fi then
14 | | | | | | ti,j ← ti,j ∪ (u, v)
15 | | | | | | ci,j ← 1
16 | | | | | | break
17 | | | ci,j ← sendrecv(ci,j , P (i, j+1), P (i, j-1))
18 | | ti,j ← alltoallv(ti,j , P (i, :))
19 | | for (v, u) ∈ ti,j do
20 | | | πi,j(v)← u
21 | | | ni,j ← ni.j ∪ v
22 | | f ← n
23 | | n←{}
24 return π

Table 3: Communication costs

Approach Pattern Times Words

Top-down
allgatherv O(1) nR
alltoallv O(1) 4m

allgatherv O(1) sbnR/64
Bottom-up sendrecv O(C) sbnC/64

alltoallv O(1) 2n

set of adjacent vertices. The function edge-range(Ai,j(:, u), k) in line 4 returns
the range of the edge list for which the process in charge is k.

In Algorithm 4, an adjacent vertex is not stored in the communication buffer,
but in a temporary buffer in line 5. The reason is that the data need to be con-
tiguous for communication but the number of elements to be sent to each process
cannot be known in advance. In contrast, in Algorithm 5, the number of vertices
passed to each process in the first for statement can be counted. Therefore, in
line 9, the adjacent vertices are used for communication without the temporary
buffer. However, the disadvantage of the technique is that the amount of infor-
mation in r is larger than that in t. When searching for vertices whose degree
is relatively small compared to the number of destination processes, the amount
of data written to r is larger than that to t, which is inefficient. Accordingly,
the techniques in Algorithm 4 and Algorithm 5 are switched depending on the
degree of each vertex and the number of destination processes.

4.5 Communication in bottom-up approach

Use of collective communication In the sendrecv communication in line 18
of Algorithm 3, point-to-point communication is performed within the row pro-
cess group. As a result of preliminary experiments in a large-scale environment,
it was found that the communication efficiency deteriorates when such unsched-
uled communications occur frequently. Therefore, by using alltoallv communi-
cation instead of the sendrecv communication, data are exchanged collectively,
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as shown in line 18 of Algorithm 6. Additionally, as described in Section 4.3, the
transpose-vector() function is removed in Algorithm 6.

Switching data structure by vertex concentration Table 3 shows the
communication costs of BFS. The third column shows the order of the com-
munications required to perform one approach. The fourth column shows the
communication size required to perform one BFS, assuming that the approach
is not switched. Here, one word is 64 bits, n is the number of vertices, R and C
are the sizes of each dimension of the process grid, m is the number of edges,
and sb is the number of times the bottom-up approach is performed. Addition-
ally, for the sake of formula simplification, (C − 1)/C ≈ 1 is set and one-word
communications are excluded. In the bottom-up approach, the one-step com-
munication sizes of allgatherv and sendrecv increase in proportion to R and
C, respectively. Note that allgatherv in the top-down approach uses a sparse
vector and is executed only when frontier is small, so there is no problem.

To reduce the communication size of the allgatherv and sendrecv in the
bottom-up approach, a technique is used to select a bitmap or sparse vector
according to the vertex concentration of the data automatically. When a sparse
vector is used for each communication, the communication size of allgatherv is
proportional to the number of vertices in frontier, and the communication size
of sendrecv is proportional to the number of the unvisited vertices. In other
words, when the number of vertices is smaller than n/64, the communication
size of each can be reduced by using the sparse vector.

Overlapping communication with calculation To proceed with communi-
cation and calculation simultaneously in lines 9–17 of Algorithm 6, the sub-step
in line 9 increases from C to n × C. Our implementation uses n = 4. In addi-
tion, to effectively use torus topology networks such as TofuD, the sendrecv
communication in line 17 is performed simultaneously in two directions. Fig. 6
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shows its concept when C = 3. In the case of n = 2, communication to the right
side, calculation process, and communication to the left side can be performed
simultaneously. Note that P (i, 1) and P (i, 3) are directly connected in a torus
topology. For reducing the communication waiting time, the processing order of
the receiving process is the receiving order, not the loop order.

5 Performance optimization for Fugaku

This section reports how to optimize the BFS performance using up to 16,384
nodes, while the next Section 6 reports the final evaluation using more nodes.
Note that these sections evaluate the BFS performance on Fugaku, but the
evaluation results are not guaranteed to match the results at the start of sharing.

5.1 Graph500 benchmark

The number of vertices in a graph used in Graph500 is a power of two and is
expressed as 2SCALE . The number of edges is 16 times the number of vertices.
The BFS performance unit is a traversed edges per second (TEPS)[1]. According
to the Graph500 regulation[1], 64 vertices are randomly selected as the start
points, after which BFS processing is performed on each. The harmonic mean of
all 64 BFS performance values is set as the evaluation performance value. Since
64 times is excessive for the performance optimization performed in this section,
the harmonic mean of 16 times in BFS is used as the performance value. In the
next Section 6, the harmonic mean value produce by 64 BFS repetitions is used.

5.2 Setting parameters

In the evaluations, a graph size per node is set at SCALE = 24 and is measured
with weak scaling. In Fugaku, users can specify one- to three-dimensional logical
process layouts (job shapes). Since BFS uses the R×C two-dimensional process
grid, we specify the two-dimensional job shape. In this case, each process is
assigned to a node so that it has a physically two-dimensional torus topology.
Please note that due to Fugaku’s job scheduler, if the number of nodes used is
384 or less, it may not become the torus physically. Thus, in this experiment,
384 or more nodes will be used. Table 3 indicates that the communication size
becomes smaller when the values of R and C are close. Note that if R = C
cannot be set, R > C is desirable. Thus, if the number of processes is a square
number, R and C should be set to the same value. If not a square number, R
should be set to be larger and the difference between R and C should be set to
be as small as possible. For example, if the number of processes is 8, then (R,
C) = (4, 2).

5.3 Optimization of the number of processes per node

This section examines the optimum number of processes assigned to one node.
The evaluation uses 1, 2, or 4 processes per node (denoted 1ppn, 2ppn, and 4ppn,
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respectively) because A64FX has four CMGs shown in Fig. 1. The number of
threads in each process is 48, 24, or 12.

Fig. 7a shows the performance results for each number of processes per node
and Fig. 7b shows the relative performance of 2ppn and 4ppn when the result of
1ppn is 1.0. The result of 16,384 (=214) nodes for 2ppn could not be measured
due to a system malfunction. The results of 16,384 nodes for 1ppn and 4ppn
are 17,560 GTEPS and 18,738 GTEPS, respectively. Fig. 7 indicates that the
performance is higher in the order of 4ppn, 2ppn, and 1ppn, but the performance
difference becomes smaller as the number of nodes increases. One of the reasons
for this performance difference is that at 1ppn and 2ppn, each thread frequently
gets data across the CMGs in the process. In addition, 4ppn has a smaller data
size per process, so the cache hit rate is higher. According to the profiler provided
by Fugaku, the number of L2 misses in the case of 4ppn was about half that in
the case of 1ppn.

Fig. 8 shows the time ratio of each BFS process for 1ppn and 4ppn. The
calculation is the local processing, while allgatherv, alltoallv, and sendrecv
are the communication times listed in Table 3. Additionally, imbalance is the
synchronization waiting time when barrier synchronization is performed at the
end of the approach. Fig. 8 indicates that the communication time ratio for 1ppn
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Fig. 9: Comparison of Rendezvous and Eager

is smaller than that for 4ppn. The reason is considered to be that the number
of communication partners of 1ppn is less than that of 4ppn.

Although we used up to 16,384 nodes in this section, we will report evalua-
tions using more nodes in Section 6. From an examination of Fig. 8, it can be
predicted that the communication time ratio will be larger when a larger number
of nodes is used. Additionally, in general, as the number of processes increases,
the amount of memory consumed internally by the MPI library increases. Thus,
the subsequent evaluations will be performed for 1ppn.

5.4 Use of Eager method

In the point-to-point communication of most MPI implementations, the Eager
and Rendezvous methods are implemented. The Eager method sends a message
via a buffer regardless of the state of the receiving process. In contrast, the Ren-
dezvous method does not send a message until the receiving process is ready.
Since the Eager method is suitable for small message communication, most MPI
implementations switch the Eager and Rendezvous methods automatically de-
pending on message size.

As shown in Table 3 and Fig. 6, point-to-point communication is performed
in sendrecv. In the previous evaluation described in Section 5.3, we found that
the Rendezvous method was used for all sendrecv communications. Here, it
should be noted that the Fujitsu MPI library provided by Fugaku can change
the switching threshold between the Eager and Rendezvous methods by setting
a parameter in the “mpiexec” command. If the node on Fugaku has sufficient
memory, the Eager method usage rate can be increased using the parameter. In
this experiment, the threshold is set to 512,000 bytes.

This section evaluates the performance when the Eager method is used for all
sendrecv communications. Fig. 9 shows the results. For comparison purposes,
Fig. 9 also shows the results for 1ppn in Section 5.3 as the “Rendezvous” item.
Fig. 9a shows the communication time of sendrecv, and Fig. 9b shows the
breakdown when using 16,384 nodes. These results show that BFS performance
is improved by using the Eager method. The result of 16,384 nodes using the
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Eager method is 17,964 GTEPS. In Fig. 9a, the reason for the staircase shape
of the measured value is its relationship to the value of C, shown in Table 3. For
example, the values of (R, C) when using 212, 213, and 214 nodes are (64, 64),
(128, 64), and (128, 128), respectively.

In the subsequent evaluations, the switching threshold will be adjusted so
that all sendrecv communications will use the Eager method.

5.5 Power management

As mentioned in Section 2, the clock frequency of the A64FX core can be spec-
ified as either 2.0 or 2.2 GHz for each job. While the operation at 2.0 GHz
is called “Normal mode”, that at 2.2 GHz is called “Boost mode”. Of course,
Boost mode requires more power than Normal mode. To reduce power consump-
tion, “Eco mode” is also available on A64FX. In Eco mode, the two floating-point
arithmetic pipelines of A64FX are limited to one, and power control is performed
according to the maximum power used at that time. Since BFS does not perform
floating-point arithmetic, Eco mode can be expected to reduce power consump-
tion without affecting performance. With that point in mind, this section reports
on the performance and power consumption of BFS when using Boost mode and
Eco mode. Since the modes are orthogonal settings, the evaluation is performed
using the following four combinations:

– Normal mode: 2.0 GHz and two floating-point arithmetic pipelines (this
mode was used in Sections 5.3 and 5.4).

– Boost mode: 2.2 GHz and two floating-point arithmetic pipelines
– Eco mode: 2.0 GHz and one floating-point arithmetic pipeline
– Boost Eco mode: 2.2 GHz and one floating-point arithmetic pipeline

There are two power measurement methods used in Fugaku. One is performed
by a user (called user method), the other is performed by the facility (called
facility method). The user method measures the power in a part of the user
program using dedicated APIs on a node-by-node basis, whereas the facility
method measures the entire job in rack units (384 nodes are stored in one rack),
which means that nodes executing BFS must occupy the rack. In this section,
power is measured using the user method. The difference is that the user method
measures the direct current (DC) supplied from the power supply unit (PSU),
while the facility method measures the 200 V alternating current (AC) supplied
to the PSU. In a preliminary evaluation of three racks (1,152 nodes) using Normal
mode, the power measured by the user method was found to be 117 kW, while
the facility method measurement was 126 kW. The difference between these
values is considered to be the AC/DC conversion loss plus the power of the
control device in the rack that is not included in the node power[18].

Fig. 10a shows the performance ratio of the other modes to that of Normal
mode, and Fig. 10b shows the corresponding power efficiency (TEPS/W) ratios.
Thus, a value higher than 1.00 indicates performance or power efficiency better
than that of Normal mode. Fig. 10a indicates that the performance is improved
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Fig. 10: Comparison between modes

by about 4 to 7 % by setting Boost mode or Boost Eco mode, whereas the
performance does not change when Eco mode is set. Fig. 10b indicates that
the power efficiency is improved by 27 to 35 % by setting Eco mode or Boost
Eco mode. From the above results, it can be said that Boost Eco mode is most
suitable for BFS because it has both high performance and good power efficiency.
In Boost Eco mode, the result for 16,384 nodes is 18,607 GTEPS in performance,
1,408 kW in power consumption, and 13.22 MTEPS/W in power efficiency.

5.6 Six-dimensional process mapping

As described in Section 5.2, it is desirable that R and C be close to each other.
However, since the maximum size of two-dimensional job shapes supported by
the Fugaku job scheduler is Y Zc×Xab, it is 1,104 × 144 for the whole system,
and the difference between R and C is 7.67 times. Therefore, we perform a pro-
cess mapping that can set any combination of axes of the TofuD six-dimensional
network to R and C. For example, in the case of the whole system, by assigning
R to the XY axes and C to the Zabc axes, 552 × 288 process grid is created.
The difference between R and C is 1.92 times.

In the process mapping for C, since the sendrecv communication shown
in Fig. 6 is suitable for adjacent communication, the mapping should ensure
that all the nodes are adjacent. If not, performance will be degraded due to
communication collisions. Fig. 11 shows an example of assigning the abc axes
(2 × 3 × 2) to C. First, the assigned axis is expanded in two dimensions. The
horizontal is the first axis, and the vertical is the remaining axes. Then, all
processes are assigned so that they are adjacent to each other. To make the first
and last processes (0 and 11) adjacent to each other physically, the topology of
the last axis must be either a torus, or the a or c axis because the a and c axes
consist of two nodes. Regarding the process mapping for R, it is not necessary
to take the above measure because there is no adjacent communication.
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6 Performance evaluation on Fugaku

6.1 Performance on whole Fugaku system

This section evaluates the BFS algorithm on the whole Fugaku system. As de-
scribed above, we set (R, C) to (552, 288) = 158,976 nodes, SCALE = 41 (a
graph with 241 vertices and 245 edges), and Boost Eco mode. For a comparison
purpose, we also conducted evaluations using 1/4 and 1/16 of Fugaku. We set (R,
C) to (276, 144) = 39,744 nodes and SCALE = 39 for 1/4 system, and (R, C)
to (138, 72) = 9,936 nodes and SCALE = 37 for 1/16 system. Fig. 12 shows the
time ratio of each process in this evaluation. As the number of nodes increases,
the ratio of total communication (sendrecv + alltoallv + allgatherv) and
imbalance increase. The performance of each is 102,956 GTEPS for the whole
system, 38,749 GTEPS for 1/4 system, and 13,738 GTEPS for 1/16 system. In
addition, power consumption and power efficiency in the whole system measured
by the facility method are 14,961 kW and 6.88 MTEPS/W, respectively.

Fig. 13 and Fig. 14 summarize the performance and power consumption
results so far; they also show the parallel efficiency and relative power per node
with the 29-node result set to 1. Note that for power consumption, all results are
measured with the user method. As the number of nodes increases, Fig. 13 shows
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Table 4: Graph500 list for June 2019 and November 2020

June 2019 November 2020
NAME SCALE GTEPS NAME SCALE GTEPS

1st K computer 40 31,302 Supercomputer Fugaku 41 102,956
2nd Sunway TaihuLight 40 23,756 Sunway TaihuLight 40 23,756
3rd Sequoia 41 23,751 TOKI-SORA 36 10,813
4th Mira 40 14,982 Summit 40 7,666
5th SuperMUC-NG 39 6,279 SuperMUC-NG 39 6,279

a sharp drop in parallel efficiency, whereas Fig. 14 shows a slight decrease in
relative power per node. The reason is considered to be that the communication
load becomes large.

6.2 Comparison with other systems

Table 4 shows the first to fifth places of Graph500 in June 2019 and November
2020. In June 2019, the first place was the K computer; this was the last rank-
ing prior to its decommissioning. In November 2020, Fugaku was ranked first
based on the performance optimization described in this paper. The Fugaku
performance value was 3.3 times that of the K computer and 4.3 times that
of Sunway TaihuLight. Between June 2019 and November 2020, Sequoia[5] and
Mira[15] were removed from the ranking due to decommissioning, while TOKI-
SORA[2] and Summit[3] were newly ranked. TOKI-SORA consists of 5,760 nodes
of PRIMEHPC FX1000, which has almost the same specification as Fugaku
shown in Table 1, and our implementation is used for the evaluation.

Although omitted in Table 4, in June 2020, Fugaku achieved 70,980 GTEPS
in SCALE = 40 using 92,160 nodes (60% of Fugaku) and also won the first
place. Since this calculation scale is almost the same as the K computer, we will
try to compare the two systems. The per-node performance of the K computer
and Fugaku at 92,160 nodes is 377 MTEPS (31,302 GTEPS/82,944 nodes) and
770 MTEPS (70,980 GTEPS/92,160 nodes), respectively, so Fugaku has about
twice the performance. As shown in Fig. 12, most of the communication time is
occupied by collective communication (alltoallv and allgatherv), and the injec-
tion bandwidth is important for them. As described in Section 2, the difference
in injection bandwidth between Fugaku and the K computer is a factor of two.
Since the overall performance difference is also twice, we can assume that there
is also a 2x difference in local calculation performance, but it is not as great as
the specification. For example, the difference in bandwidth is 16.0 times. The
reason why Fugaku’s local performance is relatively low is that since the mea-
surement is performed with 48 threads per process, there is a lot of memory
access across CMGs. The performance modeling of BFS and the CMG-aware
locality optimization of A64FX are the future works.
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Green Graph500[1] is a ranking that evaluates the power efficiency perfor-
mance (TEPS/W) among the systems ranked in Graph500. Green Graph500 is
divided into two categories: the BIG DATA category deals with SCALE ≥ 30,
and the SMALL DATA category is for SCALE ≤ 29. Since SCALE = 30 is a
relatively small graph size, most top results in the BIG DATA category utilize
only one node. Therefore, it can be said that the current Green Graph500 regu-
lations are not suitable for a large-scale system such as Fugaku. As described in
Section 6.1, BFS on Fugaku uses SCALE = 41 and Sequoia was the only ma-
chine that ran at the same size in Table 4. Since the power efficiency of Sequoia
was 3.72 MTEPS/W, that of Fugaku is 1.9 times better than that of Sequoia.

7 Conclusion and future work

This paper presents the performance optimization of BFS in the Graph500
benchmark and evaluations conducted on Fugaku. In the performance evalu-
ation using all Fugaku nodes for a large-scale graph consisting of about 2.2
trillion vertices and 35.2 trillion edges, we achieve 102,956 GTEPS and won the
award in Graph500 in November 2020. This performance is 3.3 times that of the
K computer, and 4.3 times that of Sunway TaihuLight which is the second place
in the Graph500.

Future work will focus on the following: (1) We will optimize our BFS
implementation to be aware of the four CMGs in A64FX. For this, NUMA
architecture-aware techniques for BFS will be useful[21]. (2) Detailed perfor-
mance modeling will be necessary to clarify the relationship between hardware
and BFS performance. (3) We will develop various graph processing codes in-
cluding SSSP in the Graph500 benchmark, and utilize Fugaku to perform graph
processing of real-world data. (4) From the experiments in this paper, it was
found that the communication time became dominant as the number of nodes
increased. Future supercomputers for higher performance of BFS will require
higher dimensional topologies than TofuD.
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