Skip to main content

Sparrow Search Algorithm for Solving Flexible Jobshop Scheduling Problem

  • Conference paper
  • First Online:
Book cover Advances in Swarm Intelligence (ICSI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12689))

Included in the following conference series:

Abstract

With the global development of the third industrial revolution, intelligent manufacturing has received attention from many countries and regions since it was first proposed. In the next ten years, intelligent manufacturing has become an important factor in determining international status, and it is imminent for traditional manufacturing to switch to intelligent manufacturing. Flexible job-shop scheduling is a key research problem in the field of intelligent manufacturing. In this paper, we uses a novel swarm intelligence optimization algorithm-Sparrow Search Algorithm to solve the problem of the longest processing time of workshop scheduling. The experimental results show that compared with other advanced meta-heuristic algorithms, the Sparrow Search Algorithm (SSA) can not only achieve ideal optimization accuracy in the test function, but also can achieve acceleration effects and solving capabilities that other algorithms do not have in actual shop scheduling problems.

Supported by organization x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible job-shop scheduling problem. Comput. Oper. Res. 35(10), 3202–3212 (2008)

    Article  Google Scholar 

  2. Kacem, I., Hammadi, S., Borne, P.: Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Math. Comput. Simul. 60(3–5), 245–276 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Karthikeyan, S., Asokan, P., Chandrasekaran, M.: A hybrid discrete firefly algorithm for multi-objective flexible job shop scheduling problems with maintenance activity. Appl. Mech. Mater. 575, 922–925 (2014). https://doi.org/10.1007/s00170-014-5753-3

    Article  Google Scholar 

  4. Xing, L.N., Chen, Y.W., Wang, P., Zhao, Q.S., Xiong, J.: A knowledge-based ant colony optimization for flexible job shop scheduling problems. Appl. Soft Comput. 10(3), 888–896 (2010)

    Article  Google Scholar 

  5. Vallikavungal Devassia, J., Salazar-Aguilar, M.A., Boyer, V.: Flexible job-shop scheduling problem with resource recovery constraints. Int. J. Prod. Res. 56(9–10), 3326–3343 (2018)

    Article  Google Scholar 

  6. Beheshti, Z., Shamsuddin, S.M.H.: A review of population-based meta-heuristic algorithm. Int. J. Adv. Soft Comput. Appl. 5(1), 1–35 (2013)

    Google Scholar 

  7. Tarantilis, C., Kiranoudis, C.: A meta-heuristic algorithm for the efficient distribution of perishable foods. J. Food Eng. 50(1), 1–9 (2001)

    Article  Google Scholar 

  8. Lei, Y., De, G., Fei, L.: Improved sparrow search algorithm based DV-Hop localization in WSN. In: 2020 Chinese Automation Congress (CAC) (2020)

    Google Scholar 

  9. Liu, G., Shu, C., Liang, Z., Peng, B., Cheng, L.: A modified sparrow search algorithm with application in 3D route planning for UAV. Sensors 21(4), 1224 (2021)

    Article  Google Scholar 

  10. Zhu, Y., Yousefi, N.: Optimal parameter identification of PEMFC stacks using adaptive sparrow search algorithm. Int. J. Hydrogen Energy 46, 9541–9552 (2021)

    Article  Google Scholar 

  11. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016). https://doi.org/10.1007/s00521-015-1920-110.1007/s00521-015-1920-1

    Article  MathSciNet  Google Scholar 

  12. Qian, B., Wang, L., Huang, D.X., Wang, X.: An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers. Comput. Oper. Res. 33(1), 2960–2971 (2009)

    Google Scholar 

  13. Chen, P., You, C., Ding, P.: Event classification using improved salp swarm algorithm based probabilistic neural network in fiber-optic perimeter intrusion detection system. Opt. Fiber Technol. 56, 102182 (2020)

    Article  Google Scholar 

  14. Wang, J., Yang, W., Pei, D., Tong, N.: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm. Ener. Convers. Manag. 163, 134–150 (2018)

    Article  Google Scholar 

  15. Chen, Y., Wang, C.-F.: Synthesis of reactively controlled antenna arrays using characteristic modes and de algorithm. IEEE Antennas Wirel. Propag. Lett. 11, 385–388 (2012)

    Article  Google Scholar 

  16. Warid, W., Hashim, H., Norman, M., Noor, A.W.: Optimal power flow using the jaya algorithm. Energies 9(9), 678 (2016)

    Article  Google Scholar 

  17. Ham, A.: Flexible job shop scheduling problem for parallel batch processing machine with compatible job families. Appl. Math. Model. 45(May), 551–562 (2017)

    Article  MathSciNet  Google Scholar 

  18. Demir, Y., Isleyen, S.K.: Evaluation of mathematical models for flexible job-shop scheduling problems. Appl. Math. Modell. 37(3), 977–988 (2013)

    Article  MathSciNet  Google Scholar 

  19. Liang, J., Wang, Q., Xu, W., Gao, Z., Yan, Z., Yu, F.: Improved Niche GA for FJSP. In: 2019 IEEE 6th International Conference on Cloud Computing and Intelligence Systems (CCIS) (2019)

    Google Scholar 

  20. Sun, L., Lin, L., Gen, M., Li, H.: A hybrid cooperative coevolution algorithm for fuzzy flexible job shop scheduling. IEEE Trans. Fuzzy Syst. 27(5), 1008–1022 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This research work is supported by the National Key Research and Development Project under Grant 2018YFB1700500, Shenzhen Technology Research Project under Grant JSGG20180507182901552, and Natural Science Foundation of China (No. 52077213 and 62003332).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhile Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, M., Yang, D., Yang, Z., Guo, Y. (2021). Sparrow Search Algorithm for Solving Flexible Jobshop Scheduling Problem. In: Tan, Y., Shi, Y. (eds) Advances in Swarm Intelligence. ICSI 2021. Lecture Notes in Computer Science(), vol 12689. Springer, Cham. https://doi.org/10.1007/978-3-030-78743-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78743-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78742-4

  • Online ISBN: 978-3-030-78743-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics