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Abstract. Swarm intelligence optimization algorithms can be adopted
in swarm robotics for target searching tasks in a 2-D or 3-D space by
treating the target signal strength as fitness values. Many current works
in the literature have achieved good performance in single-target search
problems. However, when there are multiple targets in an environment
to be searched, many swarm intelligence-based methods may converge
to specific locations prematurely, making it impossible to explore the
environment further. The Brain Storm Optimization (BSO) algorithm
imitates a group of humans in solving problems collectively. A series
of guided searches can finally obtain a relatively optimal solution for
particular optimization problems. Furthermore, with a suitable clus-
tering operation, it has better multi-modal optimization performance,
i.e., it can find multiple optima in the objective space. By matching
the members in a robotic swarm to the individuals in the algorithm
under both environments and robots constraints, this paper proposes a
BSO-based collaborative searching framework for swarm robotics called
Robotic BSO. The simulation results show that the proposed method
can simulate the BSO’s guided search characteristics and has an excellent
prospect for multi-target searching problems for swarm robotics.

Keywords: Swarm Robotics - Multi-target Searching - Brain Storm
Optimization
1 Introduction

Swarm robotics simulates the emergent behaviors of social insects or animals,
such as bees, ants, birds, fish schools, wolves, and even humans [I7]. Many works
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in the literature have shown that this kind of system can be applied to different
aspects varies from space exploration to military inspection, from industrial
maintenance to medical solutions [I6JI§]. Collaborative searching problem is one
of the popular topics in this field. It intends to determine the specific target(s)
location in a particular region in a collective way. It belongs to the coordinated
motion and decision making of multi-robot systems. This problem strongly cor-
relates with many practical applications, such as search and rescue applications
(scream search, radiation source location, pollution source location, etc.). The
characteristics of this problem are that the target number and location(s) are
both unknown. Because swarm robot systems have excellent redundancy based
robustness, they have more advantages than single robots or a small group of
robots to perform such tasks.

The swarm intelligence optimization algorithms can be applied to target
searching tasks of robotic swarms by introducing practical constraints and map-
ping individuals in an algorithm into robots in a swarm, including the Particle
Swarm Optimization (PSO) [19], Bees Algorithm (BA) [6], Artificial Bee Colony
(ABC) [1], Ant Colony Optimization (ACO) [4], Bacterial Foraging Optimization
(BFO) [13], Glowworm Swarm Optimization (GSO) [9], Firefly Algorithm (FA)
[11], and Grey Wolf Optimizer (GWO) [5], etc. However, when multiple targets
need to be located in an environment, many current solutions imitating swarm
intelligence algorithms will converge to specific positions prematurely and lose
the ability to explore the searching space further. The multi-target search ability
is a critical issue that needs to be solved in the collaborative searching domain
of swarm robotics. What is illustrated in this paper is a new paradigm for col-
laborative searching of swarm robotics called Robotic Brain Storm Optimization
(RBSO). It applies the Brain Storm Optimization (BSO) algorithm [12] as the
source of inspiration and aims to solve the premature problem in the multi-target
collaborative searching tasks.

The original BSO algorithm imitates the brainstorming process to solve op-
timization problems heuristically. It can guide the searching process to converge
to optimal solutions over iterations. It has been verified successfully in many
real-world applications [I5]. Individuals in BSO are grouped and diverged in
the search space. The search performance could be benefited from this inherent
advantage of clustering, making it more suitable for multi-modal optimization
problems with multiple peaks. By matching the members in a robotic swarm to
the individuals in the algorithm, the BSO has a significant potential to be applied
as a new collaboration paradigm for multi-robot systems. Essentially, the multi-
target search problem in swarm robotics can be transformed into a multi-modal
optimization problem in a two-dimensional or three-dimensional space [20]. The
BSO’s multi-modal optimization properties make it an excellent candidate to
solve the collaborative multi-target searching problems. It worth to mention
that there are related applications of swarm robotics that use the SI algorithms
as optimization tools. For example, the Brain Storm Robotics (BSR) framework
can automatically design the corresponding swarm behavior collectively [14]. Li
et al. expressed swarm robotics exploration as an optimization problem and then
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used the BSO method to solve it [I0]. There are three kind of operations in the
original BSO algorithm: clustering, new individuals generation, and selection, as
shown in Algll]

Algorithm 1 The BSO Procedure

1: Randomly generate n potential solutions (individuals);

2: Evaluate the generated n solutions;

3: while not terminated do

4: Clustering: Cluster n individuals into m clusters by a clustering algorithm;

5 New individuals generation: randomly select one or two cluster(s) to
generate n new individuals;

6: Selection: The fitness values of the newly generated individuals are compared
with the existing individuals with the same index, the better one is kept;

The purpose of clustering in the solution space is to converge the solution
to a smaller area [2]. Then, a new individual can be generated based on one
or several cluster(s). In the original BSO, a probability value p,n. is adopted
to determine while a new individual will be generated by one or two cluster(s).
Generating an individual from a cluster can refine the search area and improve
exploitation capabilities. Conversely, individuals generated from two or more
clusters may be far away from these clusters. In this case, the exploration ability
is enhanced. Furthermore, the BSO uses another predefined probability value
Peenter t0 determine whether to generate a new solution based on the cluster
center(s) or non-cluster center(s). In the one cluster generation case, the new
individual from center or normal individual can control the exploitation region.
While in several clusters generation case, the normal individuals could increase
the population diversity of swarm. The selection strategy in BSO is to keep good
solutions in all individuals. The better solution is kept by the selection strategy
after each new individual generation, while clustering strategy and generation
strategy add new solutions into the swarm to keep the diversity for the whole
population.

The rest of the paper is organized as follows: Section 2 defines the collabora-
tive multi-target searching problem and the assumptions for this paper. Section 3
introduces the RBSO framework, including operations of grouping, new position
generation, task allocation, fitness evaluation, etc. The simulation results with
the proposed framework are given in Section 4. The conclusion is reached in
Section 5 with the forecast of our future works.

2 Problem Statement

2.1 Assumptions

Environments and Targets For the sake of simplicity, we intend to conduct
related research in this article in a two-dimensional environment. This work can
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also be further extended to three-dimensional environments. In this hypothet-
ical two-dimensional environment, some simulated obstacles will be randomly
distributed. During the movement, the robot must avoid these obstacles, and
the robots cannot collide either. Meanwhile, a number of static targets will
be distributed in the same environment outside the obstacles. The targets can
broadcast non-directional beacon signals. Futhermore, it can only cover a small
area around it, and the signal strength will attenuate with distance, as shown in
the following formula:
_ 1 —d/a?

§=_ ﬁe (1)
where s is the signal strength, d is the distance to the center position of the
target, a is the attenuation coefficient.

Member Robots Simple but without generality loss, this article uses a homoge-
nous swarm with the omnidirectional model for member robots. Furthermore,
in terms of perception, we assume that every member robot is equipped with a
sensor that can detect the target signal strength, i.e., it can measure the target
signal strength at the current position. Also, it can perceive other robots and
obstacles within a specific range. In terms of positioning, it is assumed that
the member robot can obtain its position in the reference coordinate system and
knows the boundary of the search area. In terms of communication, it is assumed
that information can be shared with all other robots through corresponding
information interaction within a time slot. In terms of storage, it is assumed that
member robots have storage capacity and can record the target signal strength
of the visited location.

Target Handling For target handling, we assume that when the detected
target signal is stronger than a certain threshold, which can be converted into
a distance less than € to the target, the target is treated as found. Before the
next iteration, the robot will stay to process the target until the next iteration.
After the handling, the target will no longer broadcast beacon signals to the
environment, and the robot that processes the target will become available again.

2.2 Multi-target Searching Problem

Generally, based on the number of targets in a given search area, collaborative
search tasks can be divided into the following two categories: single-target search
and multi-target search. If the target is moving, the problem is a dynamic single-
target or multi-target search problem correspondingly. This article aims to design
a method of controlling a swarm of mobile robots, so that the path of the robots
will contain the position of the targets as many as possible, i.e., to locate the
multi-target positions. Denote m is the target number in an unknown aera, L,,
is the location of target m, € is the allowed tolerance vector, P;(t) is the position
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of robot ¢ at time ¢, the multi-target collaborative searching problem of swarm
robotics can be formally expressed by Eq.:

T N
max|{m € N|Ln e Y P(t)}
i t=0 i=1 (2)
st.  Pi(t)#Pi(t) Vi,jE€N,i#j
Pi(t) # P,(t) Vi€ N,o€ O

where ¢t and T is the current and maximum searching time respectively, N is the
population of the robotic swarm. | - | is the cardinal number of the set. P;(t) #
P;(t) represents the anti-collision between robots, and P;(t) # P,(t) means the
robobts in the swarm need to avoid obstacles in environments, which expressed
by set O in Eq. . It should be noted that although we have formalized the multi-
object search problem of swarm robotics above in an optimization form, it can
not be solved directly by optimization mathmatically. The expression contains
physical constraints, such as the relationship between the robot’s moving speed
and its position, collision avoidance, etc., which needs to be achieved in the
physical world by robotic techniques.

3 Robotic Brain Storm Optimization

The basic idea of this paper is to map the BSO to Robotic BSO. As shown in
Table [1} The target searching environments correspond to the BSO algorithm’s
solution space. The signal strength is treated as the fitness value at a position,
and the swarm members are mapped to the individuals in the algorithm. The
decision of the robotic swarm is imitating the iterative process of the BSO
algorithm. Furthermore, the operations such as the clustering, new individual
generation can be mapped to position grouping, new position generation, corre-
spondingly. As modeled above, the multi-target searching problem is related to
a multi-modal optimization problem.

Table 1. Mapping BSO Algorithm to RBSO.

BSO RBSO
N-D Solution Space 2-D or 3-D Searching Space
Fitness Value Signal Strength
Individuals Robots
Clustering Grouping
New individual generation| New position generation
Multi-modal Optimization| Multi-target Searching

As Fig[l] shows, the proposed method mainly includes the following steps.
First, grouping a swarm of robots into several subgroups according to their
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fitness values in their current locations, i.e., the clustering procedure in the
BSO algorithm. Secondly, according to the subgroups, a series of new posi-
tions are generated, i.e., the new solution generation procedure in the BSO
algorithm. Unlike the update method in the BSO algorithm, the fitness values
of the newly generated positions can not be obtained immediately. Instead, it
has to be physically visited to get the fitness values by the robots. Thus we
designed an additional task allocation procedure, which optimally assigns the
newly generated positions to each robot in the swarm, then controls the robots
move to the assigned positions.

( h! 's

Initializing N Grouping ]4

(N Robots) 71 (Max. M Groups)J‘ )
. J .
. N\ - l

New Position
Task Allocation [« Generation
] (N Positions) No
No!
A 4

—
Moving and
Evaluating

——

Yes Yes

v

[TargetHandling < End )

Fig. 1. Flowchart of RBSO.

Furthermore, during the movements to a generated goal point, the robot can
measure the signal strength along the moving path. Therefore, different from
the evaluation of a single point by the BSO algorithm, in the proposed RBSO,
when evaluating the signal strength of a newly generated position, it evaluates
the signal strength of all points on the path between the robot and the allocated
position. If the target signal value in a position exceeds the predetermined
threshold (o) during the movements, it will be marked as a potential target
position. As assumed, the robot will stay there to handle the target until the next
planning procedure. After all robots in the swarm stop moving, the procedure
will return to the grouping and new location generation operations until all the
targets have been found or the specified search time has been reached.

3.1 Grouping

Corresponding to the clustering operation in the BSO algorithm, the purpose of
grouping is to allow each robot in a swarm to be divided into several subgroups in



Robotic Brain Storm Optimization 7

the search space. In this article, we simply use a top-down hierarchical clustering
method to complete the task of robot grouping, namely DIvisive ANAlysis
Clustering (DIANA), which constructs the hierarchy in the inverse order [7].
Initially, all robots are seen as in the same group, and the largest group is
split until the one of the following termination condition is met, i.e. the mean
distance between elements of each group (D) larger than a threshold (mg), or
the number of groups reach a pre-defined number m,. In order to ensure that the
new solution can be generated according to the BSO mechanism, here mgy < 2.

. 1

where A, B is two groups, d(z,y) is the Euclidean distance between two elements
z in group A and y in group B.

Algorithm 2 Grouping Precedure in RBSO

1: Inputs: N pbest, maximum groups mgy, maximum iterations Ty, mg;
2: Consider all robots as a whole group;
3: Selected Group Gs = the whole group;
4: while not terminated do
5: Find the most dissimilar pairs of robots (4, j) in Gs;
6 Assign the robots closer to i to a new group 1 and the robots closer to j to a
new group 2.

Split the G5 to group 1 and group 2.

Gs = Find the group with the maximum internal distance in all groups.
9: if |Gs| < 2 then

return

3.2 New Position Generation

After grouping, the new positions can be generated according to the procedure
of the BSO. The difference is that the class center is selected according to the
fitness values in the BSO, i.e., individuals with a larger fitness value in the group
will be selected as the class center. In the collaborative search task of a swarm
of robots, since the targets’ influence ranges are not global, all the fitness values
of pbest of robots in a group maybe 0. Also, there is a case that more than one
robots reaches the same maximum fitness value in a group. In these cases, the
group center will be randomly selected among the individuals in a group.

3.3 Task Allocation

Multi-robot task allocation (MRTA) is an essential aspect of many multi-robot
systems. It is a problem of determining which robots should execute which
tasks to achieve overall system goals. The features and complexity of the MRTA
problem depend on which requirements are under consideration [§]. In this paper,
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the task allocation aims to match the newly generated positions to each robot
in the swarm for a new round of fitness evaluation.

In this article, the member robot can be regarded as a single-task robot
(ST) since it only needs to evaluate the signal strength or handling targets at
a time during the searching process. Besides, only one robot is needed for the
signal strength evaluation task of a specific position, i.e., the task is a single
robot task (SR). Also, the corresponding task allocation is performed after each
step of the new position is generated, i.e., the instantaneous allocation (IA).
Therefore, the task allocation problem is a typical ST-SR-IA allocation problem
[3], which is an instance of the optimal assignment problem (OAP) from the field
of combinatorial optimization . Given n robots and m tasks, each task requiring
one worker. The OAP can be cast in many ways, including as an integral linear
program that find mn nonnegative integers a;; that minimize the cost of the

system:
minC' = Zzaijcij (4)

i=1 j=1

subject to:
n
Zaij =1, I1<j<m
i=1

m (5)
D ai =1, 1<i<n
j=1

where C' in Eq. is the overall system cost, which is the weighted sum of each
assignment costs. Eq. enforces the constraints of single-robot tasks and single-
task robots. The «;; are integers that must all be either 0 or 1. This problem is
also known as zero-one type integer linear programming. Here the robot number
is equal to the generated new locations, i.e., |m| = |n|. The linear assignment
problem can be solved in polynomial time with algorithms such as the Hungarian
algorithm [g].

3.4 Moving and Evaluating

After allocating the tasks, each robot corresponds to a newly generated position
in the environment. They will move to the assigned position and evaluate the fit-
ness values along the path. Due to obstacles and other robots in the environment,
the robot needs a suitable motion planning method to move to the target point
as much as possible. Here we use a relatively simple modified Bug Algorithm to
achieve the corresponding motion planning [2I]. When encountering obstacles,
the robot will move along the edges of the obstacles. The evaluating procedure
for each robot is as shown in Algorithm [3] During the process of a member
robot moves towards the target, it will evaluate the target signal strength at
the current position. As mentioned earlier, if the signal strength of the current
position is higher than the pre-defined threshold, it will enter the target handling
operations. After the target is processed, the will continue to participate in
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subsequent tasks. To avoid the uncertainty caused by individual robots’ motion
and possible failures, and to ensure the searching process, two termination
conditions are set here: one is for all robots to reach the assigned positions,
the other is the moving steps reach a maximum movement step ms.

Algorithm 3 Signal Evaluating Precedure in RBSO
1: Inputs: Goal position and pbest for each robot, maximum moving steps ms;
2: for all robot in the swarm do
3: while not terminated do

4: Move forward one step to the goal;

5: Evaluate the target strength of current position;
6: if s > o then

T Target Handling;
4 Results

Using the above method, we have obtained some preliminary results. The simu-
lation environment is as shown in Fig[2] where 20 member robots and 10 targets
are randomly distributed in a 1000x 1000 2-D environment with obstacles. The
member robots are represented by the hollow circles, the targets are represented
by the solid circles, and the obstacles are shown as black rectangles. The range
of influence of the target signal is marked with R. The signal influence region is

shown in [2(b)]
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Fig. 2. The simulation environment.

The parameters configurations is shown in Table |Z[, where pone and Peenter
are parameters in BSO algortihms for new positon generation. Other parameters
such as signal attenuation coefficient a, maximum groups mg, maximum iteration
generations T, maximum inter-group mean distance mg, and maximum moving
steps my for each round of evaluation are RBSO parameters. The sampling time
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for each moving step is set to 0.1s. The simulations are conducted with mobile
robot toolbox in Matlab 2020a on an iMac with 3.6 GHz Intel Core i9, 40GB
DDR4 memory. The preliminary simulated results is shown in Fig[3] where he

Table 2. Simulation Configurations

BSO Parameters| RBSO Parameters
Pone Pcenter a Mmy Tg Md|Ms

0.4 0.8 10 % 20000{250{500

hollow circle represents the robot, and the solid circle represents the target to
be searched. When it is not found, it is marked in green and displayed in red
after handling. The solid line in the figures are pathes of the member robots.
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Fig. 3. The simulation results
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Fig shows the initialization distribution of robots and targets, the green
dots are the targets to be searched. It will be marked in red when reached.
The followed FigFig show the iterative search process. It can be seen
that after a certain number of iterations, 10 targets in the environment can be
all found. Since the robot needs to arrive at the newly generated location or
reach the targets before a stop, the paths in the graph are in polygonal lines. We
further test massive times, the proposed method can find all the targets under the
above configurations. The proposed method maps the clustering operation of the
original BSO to the grouping operation, which produces the same utility as the
original algorithm, i.e., to ensure the convergence of the search process. Besides,
the operation of new location generation not only considers the members with the
largest fitness value in the group but also according to the members with smaller
fitness value with a certain probability, which ensures diversity of the searching
process. Furthermore, since each generated position needs to be accessed by a
robot, the newly added task allocation module allocates the generated positions
to each robot in an optimal way without conflicts. The above results indicate the
effectiveness of the proposed method, which is worthy of further development.

5 Conclusion

In this paper, the Robotic Brain Storm Optimization (RBSO) for cooperative
search tasks of swarm robotics is proposed. In this method, individuals in the
BSO algorithm are mapped to the members in robotics swarms. Relevant con-
straints are introduced for the multi-target cooperative search task of swarm
robot systems. The proposed method imitates the optimal searching process of
the original BSO algorithm with the considerations of robot physical limits and
motion constraints. In the BSO optimization algorithm, the position update of
the individuals in the solution space is neither restricted by physical limita-
tions such as movement velocity nor restricted by requirements such as collision
avoidance. The proposed paradigm takes both of the above into consideration.
The preliminary results show that the proposed method inherits the multi-mode
optimization performance of the BSO algorithm, which can be applied in multi-
target searching problems. In the future, we will further evaluate its statistical
performance and perform more comparative research with other methods.
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