Skip to main content

Detection of Suboptimal Conditions in Photovoltaic Installations for Household-Prosumers

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 253))

Abstract

Advancements in photovoltaics and information technology makes it possible for cities to produce a fraction, if not everything, of the electrical power they require. Power generation in cities can be mainly achieved by photovoltaic installations located in the roofs of houses and buildings unevenly distributed among large areas. Suboptimal conditions such as soling, partial shadowing and electrical faults, are common in PV installations, decreasing their efficiency. It is advisable to detect when these suboptimal conditions occur to correct them and improve the overall performance of the PV installation. Nevertheless, the majority of suboptimal-detection techniques reported in the literature only consider large PV systems, neglecting rooftop PV installations. In this paper a low-cost embedded system suitable for detecting suboptimal conditions in small PV installation is presented. This system was validated for the detection of partial shadow that may occur due to strange objects in a specific region of the PV array. The system obtained a sensitivity of 87%, specificity of 87.9% and accuracy of 87.6%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fina, B., Auer, H., Friedl, W.: Profitability of pv sharing in energy communities: Use cases for different settlement patterns. Energy 189(116), 148 (2019)

    Google Scholar 

  2. Parag, Y., Sovacool, B.K.: Electricity market design for the prosumer era. Nat. Energy 1(4), 1–6 (2016)

    Article  Google Scholar 

  3. Li, Z., Ma, T.: Peer-to-peer electricity trading in grid-connected residential communities with household distributed photovoltaic. Appl. Energy 278(115), 670 (2020)

    Google Scholar 

  4. González-Romera, E., et al.: Advantages of minimizing energy exchange instead of energy cost in prosumer microgrids. Energies 12(4), 719 (2019)

    Article  Google Scholar 

  5. Appiah, A.Y., Zhang, X., Ayawli, B.B.K., Kyeremeh, F.: Review and performance evaluation of photovoltaic array fault detection and diagnosis techniques. Int. J. Photoenergy 2019, 1–19 (2019)

    Article  Google Scholar 

  6. Tyutyundzhiev, N., Lovchinov, K., Martínez-Moreno, F., Leloux, J., Narvarte, L.: Advanced PV modules inspection using multirotor UAV. In: 31st European Photovoltaic Solar Energy Conference and Exhibition, Hamburg (2015)

    Google Scholar 

  7. Chaudhary, A.S., Chaturvedi, D.: Thermal image analysis and segmentation to study temperature effects of cement and bird deposition on surface of solar panels. Int. J. Image Graph. Signal Process. 9(12), 12–22 (2017)

    Article  Google Scholar 

  8. Köntges, M.: Reviewing the practicality and utility of electroluminescence and thermography (2014)

    Google Scholar 

  9. Leva, S., Aghaei, M., Grimaccia, F.: PV power plant inspection by UAS: correlation between altitude and detection of defects on PV modules. In: 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). IEEE (2015)

    Google Scholar 

  10. Cardinale-Villalobos, L., Rimolo-Donadio, R., Meza, C.: Solar panel failure detection by infrared UAS digital photogrammetry: a case study. Int. J. Renew. Energy Res. (IJRER) 10(3), 1154–1164 (2020)

    Google Scholar 

  11. Figueroa-García, J.C., Garay-Rairán, F.S., Hernández-Pérez, G.J., Díaz-Gutierrez, Y. (eds.): WEA 2020. CCIS, vol. 1274. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61834-6

    Book  Google Scholar 

  12. Murillo-Soto, L., Meza, C.: Fault detection in solar arrays based on an efficiency threshold. In: 2020 IEEE 11th Latin American Symposium on Circuits Systems (LASCAS), pp. 1–4 (2020)

    Google Scholar 

  13. Cardinale-Villalobos, L., Meza, C., Murillo-Soto, L.D.: Experimental comparison of visual inspection and infrared thermography for the detection of soling and partial shading in photovoltaic arrays. In: Nesmachnow, S., Hernández Callejo, L. (eds.) ICSC-CITIES 2020. CCIS, vol. 1359, pp. 302–321. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69136-3_21

    Chapter  Google Scholar 

  14. Mellit, A., Tina, G., Kalogirou, S.: Fault detection and diagnosis methods for photovoltaic systems: a review. Renew. Sustain. Energy Rev. 91, 1–17 (2018)

    Article  Google Scholar 

  15. Mäki, A., Valkealahti, S.: Power losses in long string and parallel-connected short strings of series-connected silicon-based photovoltaic modules due to partial shading conditions. IEEE Trans. Energy Conv. 27(1), 173–183 (2012)

    Article  Google Scholar 

  16. Maghami, M.R., Hizam, H., Gomes, C., Radzi, M.A., Rezadad, M.I., Hajighorbani, S.: Power loss due to soiling on solar panel: a review. Renew. Sustain. Energy Rev. 59, 1307–1316 (2016)

    Article  Google Scholar 

  17. Javed, W., Wubulikasimu, Y., Figgis, B., Guo, B.: Characterization of dust accumulated on photovoltaic panels in doha, qatar. Solar Energy 142, 123–135 (2017)

    Article  Google Scholar 

  18. Quater, P.B., Grimaccia, F., Leva, S., Mussetta, M., Aghaei, M.: Light unmanned aerial vehicles (uavs) for cooperative inspection of pv plants. IEEE J. Photovolt. 4(4), 1107–1113 (2014)

    Article  Google Scholar 

  19. Mekki, H., Mellit, A., Salhi, H.: Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules. Simul. Model. Pract. Theory 67, 1–13 (2016)

    Article  Google Scholar 

  20. Ma, J., Pan, X., Man, K.L., Li, X., Wen, H., Ting, T.O.: Detection and assessment of partial shading scenarios on photovoltaic strings. IEEE Trans. Ind. Appl. 54(6), 6279–6289 (2018)

    Article  Google Scholar 

  21. Bastidas-Rodriguez, J.D., Franco, E., Petrone, G., Ramos-Paja, C.A., Spagnuolo, G.: Model-based degradation analysis of photovoltaic modules through series resistance estimation. IEEE Trans. Ind. Electron. 62(11), 7256–7265 (2015)

    Article  Google Scholar 

  22. Mellit, A., Chine, W., Massi Pavan, A., Lughi, V.: Fault diagnosis in photovoltaic arrays. In: 2015 International Conference on Clean Power (ICCEP) (2015)

    Google Scholar 

  23. Murillo-Soto, L.D., Figueroa-Mata, G., Meza, C.: Identification of the internal resistance in solar modules under dark conditions using differential evolution algorithm. In: 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), IEEE, pp. 1–9 (2018)

    Google Scholar 

  24. Tango, T.: Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials. Taylor & Francis Group, Tokyo Japan (2017)

    Book  Google Scholar 

  25. Pyzdek, T.: Descriptive statistics. The Lean Healthcare Handbook. MP, pp. 145–149. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69901-7_12

    Chapter  Google Scholar 

  26. Pintea, S., Moldovan, R.: The Receiver-Operating Characteristic (ROC) analysis: fundamentals and applications in clinical psychology. J. Cogn. Behav. Psychother. 9(1), 49–66 (2009)

    Google Scholar 

  27. Tu, W.: Basic principles of statistical inference. In: Ambrosius, W. (ed.) Topics in Biostatistics, vol. 404, pp. 53–72. Humana Press (2007)

    Google Scholar 

  28. Huitema, B.: The Analysis of Covariance and Alternatives: Statistical Methods for Experiments, Quasi-Experiments, and Single-Case Studies, 2nd edn. John Wiley & Sons, Hoboken (2011)

    Book  Google Scholar 

  29. Ruxton, G.D., Beauchamp, G.: Time for some a priori thinking about post hoc testing. Behav. Ecol 19(3), 690–693 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

This paper is part of a project entitled: Fault Identification in Photovoltaic Systems, ID 5402-1360-4201, financed by the Costa Rica Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Cardinale-Villalobos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Corrales, D., Cardinale-Villalobos, L., Meza, C., Murillo-Soto, L.D. (2022). Detection of Suboptimal Conditions in Photovoltaic Installations for Household-Prosumers. In: Corchado, J.M., Trabelsi, S. (eds) Sustainable Smart Cities and Territories. SSCTIC 2021. Lecture Notes in Networks and Systems, vol 253. Springer, Cham. https://doi.org/10.1007/978-3-030-78901-5_3

Download citation

Publish with us

Policies and ethics