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Foreword

Industrialisation is an essential part of global economic development. Central to this
development is technology; creating of new ways of doing things to enhance
quality, repeatability and to discover new frontiers of value creation.

The automotive and aerospace industries have been prime movers in the
advancement of the application of technology to improve lives and generate wealth.
Both the outputs of these industries, and the environments in which they are pro-
duced, require a continual application and adaptation of technology to make our
activities safer, more affordable and ultimately more sustainable, as the global
community becomes aware of our collective need to reduce the consumption of
increasingly scarce natural resources.

Thus, innovation is one of our primary tools to address current and future
challenges. Innovation gives the ability to respond rapidly to emergent situations
and to make reasoned sense of historical experience, so that we can learn from the
past to inform the future.

Data has always been central to industry; without measurements, quantities,
reporting and accounting, we would not have been able to make the advancements
that have been witnessed through industrialisation.

However, it is more recent developments in computing technologies that are
creating new ways to use data to create even more value and more advanced
products.

Through widespread application of wireless sensor networks, embedded sys-
tems, cloud computing and ubiquitous high speed network infrastructure, we can
identify hidden patterns in operational data, store and process vast quantities of data
and constantly refine computational algorithms to search, categorise and predict
new behaviours in a complex, inter-connected world.

This use of technology to collect, organise, process and consume data provides
industry with the ability to monitor performance, automate decision making through
condition monitoring and predictive maintenance, create seamless supply chain
linkages through the close integration of industrial processes and logistics, leads us
to discover and release value streams that were not seen prior to the adoption of
analytics technologies. These technologies are key as we enter into a more
model-based engineering (MBSE) approach to industrial innovation.

vii
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The 2017 UK Government Industrial Strategy' has been a catalyst of technology
awareness. While the ‘Tier 1° leaders of industry have understood that technology is
central to their competitive advantage, other suppliers further down the supply
chain have not always been able to keep pace with the early adopters.

Financial constraints such as limited investment have restricted the extent by
which small and medium sized enterprises (SME) can explore the benefits of
technological innovation until the technology itself becomes more affordable.

We are now at the beginning of an exciting era where technology is relatively
inexpensive and the key differentiator between a business that is agile and fit for the
future, and one that may struggle to remain sustainable, is the knowledge of how to
use data—specifically the techniques of analytics—to maintain their competitive
edge.

April 2021 Dr. Paul Needham, Ph.D. CEng FIET
Visiting Professor

University of Huddersfield

Huddersfield, UK

1https://www. gov.uk/government/publications/industrial-strategy-building-a-britain-fit-for-the-
future.
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Preface

Overview and Goals

Technology is a key enabler of business, and as computation and storage costs
become lower, what was once a vision of computing as a utility is now becoming
the reality. Cloud computing models have illustrated how new business value and
competitive advantage can be created from new ways of collaboration; inexpensive
microprocessors and pervasive broadband networks are facilitating processing
power that can be embedded into a constant stream of new applications.

As we start to see the possibilities of physical objects, that are inter-connected to
share data, we can start to contemplate the potential of what an Internet of Things
(IoT) environment might look like. From an industrial perspective, and especially
manufacturing, there is the need to process and move physical objects to create
business value.

As organisations strive to differentiate themselves from their competition, new
ideas to increase sales revenue places hitherto unrecognisable demands upon the
whole manufacturing supply chain.

What were once complex, but manageable challenges in planning, scheduling,
production control and logistics, are rapidly becoming situations that are impossible
to supervise without automation.

How we automate our industrial processes, to some extent assumes that we
know what needs to be automated and that we have the necessary experience and
skills to be able to bring the automation to fruition in a reliable way.

At the heart of any investigation into industrial operations is an understanding
of:

. what data is required;

. what data is available;

. what data processing needs to take place;

. how to communicate the results of the analysis to a business audience.

AW N =

Guide to Industrial Analytics: Making sense of data science for manufacturing
and the Industrial Internet of Things is an attempt to address the need of organi-
sations who can see the possibilities of an inter-connected industrial world but do
not know how to make effective use of their data. It is commonplace for software
vendors to sell ‘black box’ solutions that only solve one specific problem, yet many
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industrial challenges can be solved with some knowledge of specific techniques that
are commonly utilised in the field of data science.

Often, guides to data science target audiences that are fluent in abstract math-
ematics. This serves little purpose for busy professionals who need to concentrate
on their business needs.

This book has deliberately focused on the need to understand the practical
application of data science techniques to solve industrial challenges, with minimal
knowledge of mathematics required. Where the mathematics is essential, a detailed
explanation is provided.

As such, the key objectives for this book include:

e to present an understanding of the fundamental approaches to analysing data
that is commonly found in industrial environments;

e to understand the procedures and thinking around the selection and cleaning of
industrial data;

e to demonstrate how we can apply different aspects of data science to discover
interesting insight within data, using commonly available tools;

e to explore ways in which we can use existing data to make predictions about the
future;

e to explore the ways in which visualisation can be used to enable the improved
comprehension of industrial data;

¢ to understand the application of simple techniques to common situations, while
also being aware of their limitations;

e to identify areas of further study in what is a fast-moving domain.

Target Audiences

The use of data to obtain new value and create opportunities for industrial busi-
nesses has a broad appeal. We have deliberately focused on delivering a book that
shows how to apply data science techniques to industrial scenarios, and therefore
the text is couched as a set of learn-by-doing exercises.

We have also taken a pragmatic stance in terms of the tools used to illustrate the
examples. All software used is either freely available (open source) or is generally
regarded as pervasive; it is likely that industrial organisations will have access to
spreadsheets such as Microsoft Excel, or alternatives, for instance.

As such, business leaders, industrial managers and supervisors will find the
combination of just enough mathematics and extensive practical explanations of
value to them. Many traditional texts are long on theory and short on application.
The know-how in this book will help them make more informed operational
decisions, which in turn will improve the quality of data available for strategic
planning.
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Application developers who work on industrial enterprise IT systems will also be
able to observe the type of analysis that industrial personnel want to do, and it is
hoped that this book will inform the design and specification of updates and
modifications to such systems infuture.

University instructors will find that this book is a suitably concise volume that
can help get advanced undergraduate and postgraduate students applying data
science techniques quickly. Many new university courses are including data sci-
ence, or aspects of it as part of the curricula, but it is the real-world application
of these techniques that is often lacking.

Finally, technical consultants and commercially oriented researchers, who work
directly with industry to deliver tangible improvements, will find the collection of
how-to articles for common scenarios of use to them in their business, especially the
section on visualisation, in order to successfully communicate insight and con-
clusions to their clients.

Organisation and Suggested Use

This book is organised into three parts:

e Part I introduces the concepts of manufacturing analytics and data science.
Part 1T describes a range of techniques and approaches to solving problems.
Part III illustrates the application of methods and processes by way of industrial
examples.

Guide to Industrial Analytics should be used as a comprehensive introduction to
the use of data science techniques in real-world situations. Part 1 of the book
provides the general foundation of the important concepts and is a good place to
start for readers new to the topics.

Since our presentation of topics is rooted firmly in practicality, we recommend
that Part I is reviewed by all readers. While there are countless texts on the specifics
of data analytics, our presentation of the application of these techniques is relatively
unique and there is much to be learned by reading about a topic or concept int he
context of the industrial environment.

Part II should be seen as a walkthrough in the application of analytics techniques
that have been proven to work. While many more exotic techniques exist, we have
focused on approaches where there is the most return for the effort expended. These
approaches have wide applicability and will significantly enhance the reader’s
ability to conduct useful and profitable industrial analytics.

Part IIT looks at the wider context of industrial acceptance of analytics,
demonstrating that the barriers to successful adoption are not always limited by
technical prowess.

A series of appendices present essential technical material to support the bulk
of the text.
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The book is designed to help readers acquaint themselves with practical tech-
niques for dealing with industrial data, before becoming a reference text when the
important processes are practised and understood.

For university instructors, we suggest the following program of study for a
12-week semester delivery pattern:

Weeks 1-2: Part 1;
Weeks 3-7: Part 1II;
Weeks 8-11: Part III;
Week 12: Assessment.

Part I explores the context of industrial data, how it is used and what we can
achieve with it. It provides a practical definition of data science and explores how
we might apply techniques to different situations. There is also an introduction to
the tools that can be used to perform the analysis.

Part II is a more in-depth look at a range of techniques that we use to find insight
from data. Using a tutorial-based approach, there are specific examples that
demonstrate data science skills in practice. There are also exercises for the readers
to complete and reinforce their own knowledge.

Part III demonstrates the application of approaches and techniques to real life.
These examples help illustrate how we can combine different techniques to solve a
particular industrial query.

Learning Activities

Each chapter concludes with a set of review questions and learning activities that
make specific reference to the material in each chapter. There is also an additional
set of more open questions that will require further investigation from the reader.
Such questions help embed the material that has been learned, so that it can be
applied to a number of different situations. These questions will be useful to uni-
versity instructors who can set them as homework activities outside of class.

Hands-on Exercises

Much of the application of this work requires proficiency in the use of tools. Much
of the mystique of data analytics is knowing what tool works in what set of cir-
cumstances and we have deliberately focused upon the use of tools that are com-
monly available in the industrial environment. Exercises are used throughout the
book to illustrate not only the ‘what’ but also the ‘how’ of data analytics. Our
intention is for readers to develop sufficient skills to use the techniques as tools
when they are faced with an industrial analytics job in the future, hence the strong
thread of learning-by-doing.
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