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Abstract. One target of process analysis, monitoring, and prediction is
the process outcome, e.g., the quality of a produced part. The process
outcome is affected by process execution data, including (external) sensor
data streams, e.g., indicating an overheating machine. Challenges are to
select the “right” sensors –possibly a multitude of sensors is available–
and to specify how the sensor data streams are aggregated and used
to calculate the impact on the outcome. This paper introduces process
task annotations to specify the selected sensors, their aggregation, and
initial impact functions. The initial impact functions are then refined,
e.g., threshold values and the impact of sensor data streams are deter-
mined. The approach is prototypically implemented. Its applicability is
demonstrated based on a real-world manufacturing scenario.
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1 Introduction

Companies want to execute processes efficiently by exploiting all available possi-
bilities to avoid undesired outcomes. However, data from sensors and machines
being used in the process is often not taken into account, for example, when it
does not directly contribute to the control flow of a process. Nonetheless, such
data might determine the outcome of tasks or the process itself. This leads to
a situation where experienced process operators can anticipate the progression
and (final or intermediate) results of a process because they know (1) what they
should pay attention to and (2) which behaviour signalises which outcomes.

To formalise the knowledge of experienced process operators and make it
available at run-time for outcome prediction, we introduce the concept of Impact
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Factors. Impact factors can be derived from process data and external data, e.g.,
sensor data. The latter is implicitly connected to process tasks and can hold the
key to predict the process outcome (see Fig. 1). In most cases, sensor data occurs
in the form of a series of data points because machines and sensors measure
continuously [7].
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Fig. 1: Deduction of Impact Factors From Sensor Data

Determining impact factors based on sensor data raises several challenges.
At first, in realistic settings, one has to possibly choose relevant sensors from a
multitude of sensors. Secondly, the accessibility of the information, especially at
the presence of many sensor streams is crucial. Third, the first and second point
require to compare the impact of single sensors vs. the impact of a combination
of sensors. Fourth, run-time deviations in sensor information might occur.

These challenges lead to the following research questions. (RQ1) How to
annotate process models with data sources that are relevant in the context of
process task execution? (RQ2) How to aggregate and contextualise sensor data
for arbitrary process tasks at run-time? (RQ3) How to deduce impact factor
predictions from the aggregated sensor data?

To tackle RQ1 – RQ3, this paper provides a method for the structured col-
lection, classification, and correlation of sensor-based impact factors to compare
process instances and track their progression. The proposed method works along
the following steps: (1) Annotating process tasks to define the extraction of se-
ries of data points from data streams (e.g., from sensors) that occur during the
execution of those tasks. (2) Annotating process tasks to enable aggregation of
the extracted data series. (3) The semi-automatic extraction of impact factors
from the collected data. Steps (1) – (3) are implemented in a manufacturing
scenario and evaluated based on the corresponding data set. The manufacturing
process includes a comprehensible quality assurance as last step, thus allowing
for the assessment of the quality of the approach presented in this paper.

The structure is as follows: Section 2 annotates sensors to process tasks and
identifies impact factors. Section 3 evaluates the approach. Section 4 discusses
the results and Sect. 5 related work. The paper is concluded in Sect. 6.



Title Suppressed Due to Excessive Length 3

2 Approach

Manufacturing Scenario: The case presented in this paper is a manufactur-
ing process carried out in the “Pilot Factory Industry 4.0” (http://pilotfab
rik.tuwien.ac.at/en/). The steps of the manufacturing process are enacted
by a number of machines, humans, and software systems. The orchestration of
the steps is defined in a BPMN process model which is executed by a workflow
engine. In addition to process data, (sensor-)data is collected. Considering both
allows for a deeper analysis of the process along with the possibility for improve-
ments. The manufacturing process used for this paper consists of the following
steps on a high abstraction level: (1) Manufacturing with a turning machine. (2)
Automated optical quality control measurement directly after part production
- fast (∼ 20 seconds) but imprecise measurement. (3) Automated final quality
control measurement - precise but slow (∼ 480 seconds) measurement.
The Solution Design aims at annotating process tasks with sensor data.

Sensors define what is extracted from associated data streams and how. As
machine and sensor data is often not represented in processes, it must be col-
lected in individual tasks. Therefore, defining how to handle these data streams
is necessary, e.g., split data from one machine (like temperature and noise level)
or merge data from different sensors (like partial temperature readings).

Aggregators describe how to aggregate the extracted data for analysis. This is
necessary because it has to be taken into account that sensors measure differently
and therefore different characteristics of a measurement need to be used. For
example, measuring a part might result in a massive point-cloud, describing a
set of different properties that a part has. An aggregator might (a) throw some
data away, and (b) group data so that it becomes accessible for later analysis.

Impact Functions operate on aggregated data, and define how to calculate
the deviation between current data and expected data. Expected data leads
to the desired outcome, current data might not. An impact function consists
of two parts: (1) an expected target value or data pattern, and (2) a function
that describes how much a deviation affects the overall process. For example for
measurements there may be a certain tolerance until which a part is accepted
but when the tolerance is exceeded, the part is considered faulty.

These three types of annotations can be used to derive an impact value (IV)
by using an aggregation (A) for a particular sensor (S). Based on one or more
impact values together with an impact function (IFU) it can be defined how
the impact value(s) are combined to retrieve an impact factor (IF):

IV = (S,A) and IF = (IV +, IFU)

One or more impact factors can then be used to build impact profiles, either
for individual tasks (TIP) or for the whole process (PIP). The combination of
the impact factors into impact profiles is facilitated by an impact profile function
(IPF), which works similar to the IFU introduced above.

TIP = (IF+, IPF ) and PIP = ((IF,A)+, IPF )

http://pilotfabrik.tuwien.ac.at/en/
http://pilotfabrik.tuwien.ac.at/en/
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While impact profiles of tasks (TIP) only use IFs of one task, impact profiles
of a process (PIP) use IFs from multiple tasks. PIPs therefore need to handle
the aggregation of impact factors differently, because an impact factor can be
encountered more than once (e.g., in a loop).

When trying to find relevant impact factors for specific outcomes, several
pieces of information need to be provided by a human. Firstly, the sensors and
data handling have to be specified. E.g., as multiple sensors might be contained
in one stream, it has to be split into different data series. This holds for the
real-world data set used in this paper, as the turning machine delivers a total of
27 sensors in one data stream. Secondly, one or more aggregation methods that
define how the extracted data is interpreted (e.g., is only a specific segment of
the measurement important, is only the average of all values important, ...) need
to be specified. Lastly, the general impact function (telling how the aggregation
of sensor data behaves compared to one where a desired result is achieved) needs
to be defined by the user. However, the first interaction of an impact function is
seldom the optimum. Thus the impact function is typically refined after enough
instances of a process are executed. Furthermore, the actual influence of an
impact factor on an outcome is not given, as it is also unknown at design time.
The presented approach tries to determine these two missing values based on
executed process traces.

Process outcome: Impact factors have to be refined by determining the op-
timal impact function parameters as well as the influence of a specific impact
factor on the outcome. This refinement requires the following steps: (1) Describe
the characteristics of different sensors, i.e., how to aggregate individual values
and initial impact functions. (2) Based on executed process traces calculate for
each sensor for a specific outcome (a) the ROC curve and AUC value and (b)
the impact function parameters to achieve the maximum accuracy. (3) Calculate
the influence of individual impact factors on an outcome by using (a) the AUC
value or (b) the accuracy achieved with the optimal impact function parame-
ters. (4) Based on the refined impact factors, traces can now be assigned a value
showing the severity of dissatisfied impact factors. This value makes it possible
to distinguish between different results of the analysed outcome.

The impact of individual factors on the outcome can be determined by higher
AUC or accuracy values. Using the share of the majority class for the accuracy or
a diagonal ROC curve for the AUC value as a baseline (i.e., minimum expectation
for the influence of an impact factor) rewards influential factors and penalises
bad ones, thus compensating classes with a high share compared to other classes.

3 Evaluation

The log traces of two batches, referred to as batch 143 (38 parts) and 154 (41
parts), are used for the evaluation. Both batches contain a valve lifter for a gas
turbine (Fig. 2a), produced in a real-world factory setting. The part is produced

3 http://cpee.org/~demo/DaSH/batch14.zip [Online; accessed 02-April-2021]
4 http://cpee.org/~demo/DaSH/batch15.zip [Online; accessed 02-April-2021]

http://cpee.org/~demo/DaSH/batch14.zip
http://cpee.org/~demo/DaSH/batch15.zip
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in a turning machine and taken out by a robot (Fig. 2b). Then the diameter of
the part’s silhouette is measured by a Keyence measuring machine 5. Based on
semantic knowledge, different segments of the measurement time-series can be
identified (Fig. 2c). Finally, a slow but more precise measurement is performed.

(a) Part Without Chip (b) Part Held by Robot
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Fig. 2: Relationship Between Physical Parts and Optical Measurement

We use data from a measuring machine yielding the diameter of the part’s
silhouette and a measuring machine yielding multiple time-series: the workload
of the drive (aaLoad) in percent and the axis speed (aaVactB) in millimeters per
minute for X, Y, and Z axis alongside the actual speed of the spindle (actSpeed)
in turns per minute and the workload of the spindle (driveLoad) in percent. Five
aggregation methods are used: min, max, avg, wgtdAvg and wgtdAvgSeg4. To
handle different measurement intervals, weighted average (wgtdAvg) assumes
that a value is valid until a new one is measured. “Segment 4” (wgtdAvgSeg4,
see Fig. 2c) uses only values occurring 5200 to 9600 milliseconds after the first
data point. All five aggregation methods are used for analysing the optical mea-
surement and the weighted average is used for the eight sensors observed during
machining. A threshold which defines a boundary between different outcome
classes is used as method for detecting violations of aggregated sensor data.

The evaluation examines (1) the occurrence of chips (only batch 15) and (2)
the result of the “Zylinder Ø4,5-B – Durchmesser” quality control test.

Chip Prediction Using minimum, average, weighted average, and weighted
average of “Segment 4” of the faster but less precise “Keyence” measurement
leads to results with a high sensitivity and specificity while the maximum has
less impact (Fig. 3a). It can be seen that using the weighted average of machining
data (Fig. 3b) does not influence if there is a chip.

Quality Control Test Prediction When ignoring parts with chips, the weighted
average of “Segment 4” has the highest impact (see Fig. 4a). For machining data
(see Fig. 4b), actSpeed is the most promising impact factor. Using batch 14 leads
to the results shown in Fig. 4c again highlighting actSpeed. “Keyence” measure-
ments are not used because there is no possibility to exclude parts with chips
which leads to bad optical measurements.

5 https://www.keyence.com/products/measure/micrometer/ls-9000/ [Online;
accessed 02-April-2021]

https://www.keyence.com/products/measure/micrometer/ls-9000/
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(a) Based on Keyence Data
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Fig. 3: ROC Curves for Predicting Chip Occurrence for Batch 15
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Fig. 4: ROC Curves for Predicting Quality Control Test

Using Impact Factors For Outcome Anticipation The result of calculating
the overall impact with the available sensor data is shown in Figs. 5a and 5b for
batch 14 and 15. Furthermore, Fig. 5c shows batch 14 results using a training
set (75%/27 parts) and test set (25%/9 parts). Due to the low number of parts,
data is only split to validate the results achieved and not for all analysis steps.

The results show the overall dissatisfied impact factors (DIF) using different
methods (see Sect. 2). The weighted average in segment 4 of the “Keyence”
measurement and the weighted average of the machining data are used as impact
factors. Although not perfectly separated, higher overall sums of dissatisfied
impact factors are calculated for parts being not ok (regarding the quality control
test). The effect of using a baseline can be seen in Fig. 5. It has a stronger effect
on batch 15 (nearly two-thirds of the part belong to one class) than on batch
14 (classes are evenly distributed). Identifying and combining impact factors as
discussed above, is the basis for creating impact profile functions as defined in
Sect. 2. The source-code used for the evaluation is available at gitlab 6.

6 https://gitlab.com/me33551/impact-factor-determination [Online; accessed
02-April-2021]

https://gitlab.com/me33551/impact-factor-determination
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(a) Batch 14
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(c) Batch 14 Test set

Fig. 5: Dissatisfied Impact Factors (DIF) for Quality Control Test

4 Discussion

Overall, the presented approach uses sensor data collected during process exe-
cution to identify impact factors influencing certain process outcomes. Only the
impact of individual sensors on outcomes is examined, a next step would be
to consider interdependent impact factors. Also the combination of impact fac-
tors to anticipate the outcome should be further examined as only one method
(assigning weights representing the influence on the outcome) is exemplary used.

This paper focused on manufacturing processes. However, transferring the
approach to other domains would be interesting. The goal of the approach is to
predict the outcome of a process by using sensor data collected throughout the
process. A similar use case is the medical domain: the results of examinations or
the dosing of administered medication can be collected as data while the health
condition of the patient or the costs of the overall therapy process represent
outcomes. Another application domain is logistics where sensors measuring tem-
perature, speed, or concussion e.g, in vehicles can be used to find out how long
the delivery of a product will take and in which condition it will arrive.

5 Related Work

Process mining mainly focuses on the control-flow perspective [1]. Some ap-
proaches examine further perspectives, also referred to as multi-perspective pro-
cess mining [4], for example, process data [6]. The analysis of time sequence data
for explaining concept drifts during run-time is tackled in [6,7]. By contrast, the
presented approach aims at including data stream information into the process
model to make it usable. [8] compares different outcome-oriented predictive pro-
cess monitoring techniques. However, the real-life event logs used in [8] do not
contain detailed sensor data meaning there is no need to annotate process tasks.

The presented approach can also be positioned in the context of IoT and
BPM based on the challenges provided in [3]. The annotation of process tasks
with sensor data contributes to C3 (Connection of analytical processes with IoT).
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Furthermore, C1 (Placing sensors in a process-aware way) is addressed because
only explicitly represented sensors allow sensor-aware placement of new ones.

Building on the ideas of [5], this paper focuses on data collection in the con-
text of the enacted process. Earlier work in this field includes [2] which analyses
the log files of manufacturing processes containing contextualised data. This pa-
per goes beyond this by explicitly representing data streams in the process model
and analysing them with respect to different outcomes of the overall process.

6 Conclusion

This paper presents a way to annotate process tasks for contextualised data col-
lection using (1) “Sensors” defining which data is collected and how this is done,
(2) “Aggregators” describing how to aggregate it, and (3) “Impact Functions”
allowing to detect the violation from expected sensor behaviour. This provides a
basis for finding impact factors. Furthermore, different aggregation methods are
evaluated and the conclusion that generic methods like minimum, maximum, or
average can already reveal some characteristics is reached. However, advanced
aggregations adjusted to the domain and specific case can yield in-depth analysis
results. Finally, different methods to determine the impact of aggregated sen-
sor data utilising accuracy and AUC value are presented. After classifying the
aggregated data based on a threshold, the overall number of dissatisfied impact
factors can then be obtained by combining them based on their influence on the
outcome. The evaluation, based on a real-world data set, shows that deducing
impact factors allows the prediction of quality variations. Supporting users in
defining impact factors depends on domain knowledge, further automating this
to improve prediction quality will be the subject of future work.
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