Skip to main content

Evaluating Fidelity of Explainable Methods for Predictive Process Analytics

  • Conference paper
  • First Online:
Intelligent Information Systems (CAiSE 2021)

Abstract

Predictive process analytics focuses on predicting the future states of running instances of a business process. While advanced machine learning techniques have been used to increase the accuracy of predictions, the resulting predictive models lack transparency. Explainable machine learning methods can be used to interpret black-box models. However, it is unclear how fit for purpose these methods are in explaining process predictive models. In this paper, we aim to investigate the capabilities of two explainable methods, LIME and SHAP, in reproducing the decision-making processes of black-box process predictive models. We focus on fidelity metrics and propose a method to evaluate the faithfulness of LIME and SHAP when explaining process predictive models built on a Gradient Boosting Machine classifier. We conduct the evaluation using three real-life event logs and analyze the fidelity evaluation results to derive insights. The research contributes to evaluating the trustworthiness of explainable methods for predictive process analytics as a fundamental and key step towards human user-oriented evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du, M., Liu, N., Yang, F., Ji, S., Hu, X.: On attribution of recurrent neural network predictions via additive decomposition. In: The World Wide Web Conference, WWW 2019, pp. 383–393. ACM (2019)

    Google Scholar 

  2. Galanti, R., Coma-Puig, B., de Leoni, M., Carmona, J., Navarin, N.: Explainable predictive process monitoring. In: 2nd International Conference on Process Mining, pp. 1–8. IEEE (2020)

    Google Scholar 

  3. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 93:1-93:42 (2019)

    Article  Google Scholar 

  4. Kindermans, P.-J., et al.: The (un)reliability of saliency methods. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 267–280. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_14

    Chapter  Google Scholar 

  5. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: Annual Conference on Neural Information Processing Systems, pp. 4765–4774 (2017)

    Google Scholar 

  6. Messalas, A., Kanellopoulos, Y., Makris, C.: Model-agnostic interpretability with shapley values. In: 10th International Conference on Information, Intelligence, Systems and Applications, IISA 2019, pp. 1–7. IEEE (2019)

    Google Scholar 

  7. Rahnama, A.H.A., Boström, H.: A study of data and label shift in the lime framework (2019). arXiv: 1910.14421

  8. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  9. Sindhgatta, R., Ouyang, C., Moreira, C.: Exploring interpretability for predictive process analytics. In: Kafeza, E., Benatallah, B., Martinelli, F., Hacid, H., Bouguettaya, A., Motahari, H. (eds.) ICSOC 2020. LNCS, vol. 12571, pp. 439–447. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65310-1_31

    Chapter  Google Scholar 

  10. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: Review and benchmark. ACM Trans. Knowl. Discov. Data 13(2), 17:1-17:57 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mythreyi Velmurugan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Velmurugan, M., Ouyang, C., Moreira, C., Sindhgatta, R. (2021). Evaluating Fidelity of Explainable Methods for Predictive Process Analytics. In: Nurcan, S., Korthaus, A. (eds) Intelligent Information Systems. CAiSE 2021. Lecture Notes in Business Information Processing, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-030-79108-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79108-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79107-0

  • Online ISBN: 978-3-030-79108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics