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Abstract. The paper extends ideas from data compression by dedu-
plication to the Bioinformatic field. The specific problems on which we
show our approach to be useful are the clustering of a large set of DNA
strings and the search for approximate matches of long substrings, both
based on the design of what we call an approximate hashing function.
The outcome of the new procedure is very similar to the clustering and
search results obtained by accurate tools, but in much less time and with
less required memory.

1 Introduction

A particular form of lossless data compression is known as deduplication, which
is often applied in a scenario in which a large data repository is given and we wish
to store a new, updated, version of it. A case in point would be a backup system,
which regularly saves the entire content of the digital storage of some company,
even though the changes account only for a tiny fraction of the accumulated
information. The idea is then to find duplicated parts and store only one copy
P of them; the second and subsequent occurrences of these parts can then be
replaced by pointers to P . The problem is of course how to define these parts in
a useful way, and then how to locate them efficiently.

One of the approaches to solve the problem is based on hashing and can
be schematically described as follows. The available data is partitioned into
parts called chunks; a cryptographically strong hash function h is applied to
these chunks, and the set S of different hash values, along with pointers to the
corresponding chunks, is kept in a data structure D allowing fast access. These
hash values act as signatures of the chunks, uniquely representing them, but
requiring orders of magnitude less space than the original data. For each new
chunk to be treated, its hash value is searched for in D, and if it appears there,
we know that the given chunk is a duplicate and may be replaced by a pointer to
its earlier occurrence. If the hash value is not in D, the given chunk is considered
new, so it is stored and its hash value is adjoined to the set S [14].

An alternative has been suggested in [2] and is implemented in the IBM Pro-
tecTIER Product [7]. The main idea there is to look for similar , rather than
identical chunks and if such a chunk is located, only the difference is recorded,
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which is generally much smaller than a full chunk. This allows the use of signif-
icantly larger chunks than in identity based systems. However, for similarity, a
classical hashing function cannot be used to produce the signature, since one of
the properties of hashing is yielding uniformly distributed values, regardless of
regularities in the input, so that when changing even a single bit of the file, the
resulting hash value should be completely different.

This lead to the design of what could be called an Approximate Hash (AH)
function, a notion which seems bearing an internal contradiction, since unlike
standard hash functions, their approximate variants should not be sensitive to
“small” changes within the chunk, and yet behave like other hash functions as far
as the close to uniform distribution of their values is concerned. The idea of AH
functions is an extension of the notion of locality-sensitive hashing introduced in
[9]. The approach of using similarity instead of identity has been adapted in [3]
to applications in which the data is more fine grained, such as backup systems.
The current paper is an extension, which applies similar techniques to string
processing problems arising in Bioinformatics.

We concentrate in this paper on the following two problems, clustering and
substring search, though similar ideas can be applied to a wide variety of other
bioinformatic challenges. The first problem is that of clustering a large collection
of DNA strings into sub-collections forming clusters, in the sense that strings
assigned to the same cluster may be considered as similar for practical biological
purposes (e.g., one may be obtained from the other by a limited number of muta-
tions), whereas strings of different clusters are different enough to be judged not
originating from the same source. Many clustering methods have been suggested,
such as cd-hit (CD) [12], or MeShClust2 (MC) [10].

The second problem is that of locating a single string within a large collection
on the basis of one of its fragments, or rather, one of its fragments that has
undergone some limited number of mutations. We show how our notion of an
approximate hash may be adapted to these and similar problems and report on
the experimental setup and its results in the following sections.

2 Design of an approximate hash function

Before trying to cluster a set of strings, one first needs some measure for the
distance d(ω1, ω2) between two given strings ω1 and ω2. If they were of equal
length n, the Hamming distance, counting the number of corresponding posi-
tions in which the strings differ, would be a plausible candidate, and can be
computed in O(n). However, the Hamming distance is biased when insertions
and deletions are allowed and is a reasonable choice only when ω2 can be ob-
tained from ω1 by a series of substitutions. Therefore, in a general setting, one
should rather use the edit distance, defined as the minimal number of single
character insertions, deletions or substitutions necessary to transform one string
into the other. Using dynamic programming, it takes quadratic time O(nm) to
compute the edit distance between strings of lengths n and m. The clustering
problem is thus a difficult one: if a million (p) strings are given, each of length
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about one million (q), the time to evaluate the edit distance between all pairs
of strings would be O(p2q2) = O(280), which is still too much for our current
technology. We therefore suggest a more practical solution as follows.

2.1 Definition of the signature

The idea is, given a collection C of DNA strings ω, to produce a signature en-
capsulating the main features of the strings in as few as possible bits. A first
approach could be to devise what could be called an occurrence map of the
various substrings of length k, called k-mers, for k ≥ 1, of all strings ω in C.
Since our alphabet consists of just four nucleotides represented by the 4 letters,
Σ = {A,C,G,T}, there are 4 1-mers, 16 2-mers, 64 3-mers and generally 4k dif-
ferent k-mers. Depending on the available space, a general approach to devise a
signature could include the following steps:

1. Fix lower and upper limits ` and u for the values of k we wish to include
in the definition of the signatures, each of which will consist of a bitstring
of length 4` + 4`+1 + · · ·+ 4u;

2. iterate over all the DNA strings ω in the given set C and perform for
each string:

(a) Choose a threshold tk for each of the values of k, depending only on
k and the lengths of the given DNA string ω;

(b) sort, separately for each ` ≤ k ≤ u, the 4k k-mers according to some
predefined order, e.g., lexicographically;

(c) for all k in [`, u], the bit indexed i +
∑k−1

j=` 4j , 0 ≤ i < 4k, corre-
sponding to the i-th ordered k-mer, will be set to 1 if and only if the
number of occurrences of this i-th k-mer within the given string ω
is at least tk. For example, AAAA is the first 4-mer in lexicographic
order, so if ` = 2, then the bit indexed 42 + 43 + 0 = 80 will be set
if the number of occurrences of AAAA in the string ω is at least t4.

A reasonable choice for the thresholds tk would be the median of the number
of occurrences of the 4k k-mers within the given string ω, for each k, which would
yield signature strings in which the probability of a 1-bit is about 1

2 . Since this is
only a heuristic, the median can be approximated by setting tk as the expected
number of occurrences, that is, their average, which is easier to evaluate.

As example, consider the input string

ACCTTGAAGTTGGGCCAACTGTTGCCC

of length n = 27 and set ` = u = 2. The number of occurrences of the 16 possible
pairs are:

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT
2 2 1 0 1 4 0 2 1 2 2 2 0 0 4 3



4 Arbitman, Klein, Peterlongo, Shapira

There are n−k+ 1 overlapping k-mers in a string of length n, so the average
number of occurrences for each specific k-mer is (n − k + 1)/4k = 1.63 on our
small example. One could thus set the threshold to t2 = 1, for which the resulting
signature would be 1110 1101 1111 0011, where spaces have been included for
readability. For t2 = 2, one would get 1100 0101 0111 0011.

By concentrating on the distribution of the different k-mers within a string
we try to catch underlying similarities, since DNA strings that are essentially
different not just because of a limited number of mutations, will not tend to
exhibit matching occurrence distributions. On the other hand, the proposed
measure is flexible enough to allow some fluctuations, because the exact number
of occurrences of a given k-mer is not given importance, only the fact whether
or not this number exceeds the given threshold.

The idea of using k-mers to derive features of entire DNA strings is not new
to Bioinformatics, and has been used in [8, 16, 5], to cite just a few, though, our
approach is different.

2.2 Clustering

To extend the approach used for the deduplication of chunks, we shall apply
here the clustering on the signatures rather than on the corresponding DNA
strings, in order to obtain clusters from which the partition of the original set of
strings can be deduced. There is obviously a significant reduction of the required
time complexity, turning the clustering attempt into a feasible one. In particular,
instead of using the edit distance between two strings, the appropriate choice for
the distance between their signatures is the Hamming distance, as the signatures
are of the same length and bits at the same index correspond to identical k-mers.

To check whether one can indeed identify clusters on the basis of using just
the much smaller signatures, we report here on the details of a series of tests we
have performed, first on artificially constructed sets, then real-life data. Even
for the first set, we started with real DNA strings, downloaded from the website
of the National Center for Biotechnology Information1, and only the modified
strings simulating data after mutations, were artificially generated. A sample of
50 different DNA sequences of various lengths and origins was randomly chosen,
with lengths between thousands and millions of nucleotides. For each of the
chosen strings, 15 variants, partitioned into three groups of 5, were generated,
simulating various mutations. The first group consisted of strings derived from
the given one by deleting some of their characters. More precisely, the heuristic
used to produce the strings was:

1. Choose randomly an integer r between 1 and 50;
2. choose randomly a position t within the given string;
3. delete r consecutive characters starting from position t;
4. if the cumulative number of deleted characters does not exceed 7% of

the length of the original string, repeat the process from step 1.

1 https://www.ncbi.nlm.nih.gov/nuccore
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For the second group, a similar heuristic was applied, but instead of deleting,
substrings of length r chosen randomly from the alphabet Σ = {A,C,G,T}
were inserted at position t. The five strings in the third group were obtained by
allowing both deletions and insertions, more precisely, applying first the heuristic
for the deletion and then that of the insertion on the output of the first, until
the cumulative change reaches about 14%. The total number of strings in our
set S was therefore 50 originals plus 50× 15 variants = 800.

Generating artificial DNA strings by inserting or deleting elements is often
used for simulations in Bioinformatics, as, e.g., in [13]. We wish to emphasize
that there is no claim, nor does it really matter, that the 50 chosen elements be
representive of the entire NCBI database of more than 200 million sequences.
We could have just as well started with arbitrarily produced strings.

The aim of the test was to check whether after applying our approximate hash
function ah, the generated signatures ah(ω) for ω ∈ S carry enough information
of the DNA strings ω they were produced from to identify the natural clusters,
each consisting of one of the 50 randomly chosen strings and its 15 variants.
We thus took the 800 signatures and calculated the Hamming distance between
each of the 1

2800 × 799 = 319, 600 pairs. We used ` = 2 and u = 4 on our
tests, yielding signatures of length 42 + 43 + 44 = 336 bits. Choosing u = 5
would already require 1024 more bits for each signature, a significant increase,
for getting only moderately better results. As mentioned above, the thresholds
tk were chosen as the expected number of occurrences of a specific k-mer, which
is (n− k + 1)/4k, where n is the lengths of the string.

A A.i.1 A.i.2 A.d.1 A.d.2 A.di.1 A.di.2 B B.i.1 B.i.2 B.d.1 B.d.2 B.di.1 B.di.2 C C.i.1 C.i.2 C.d.1 C.d.2 C.di.1 C.di.2 D D.i.1 D.i.2 D.d.1 D.d.2 D.di.1 D.di.2 E E.i.1 E.i.2 E.d.1 E.d.2 E.di.1 E.di.2

A 0.5 0.2 0.2 0.8 0.0 1.7 19.6 19.0 19.0 19.0 20.5 19.3 22.0 12.7 12.7 13.0 13.0 13.3 12.7 12.2 13.6 14.2 12.7 13.6 13.3 13.9 13.0 13.0 13.0 13.6 13.0 14.5 13.9 13.9

A.i.1 0.8 0.2 1.4 0.5 2.3 19.6 19.0 19.0 19.0 20.5 19.3 22.0 12.2 12.2 12.5 12.5 12.7 12.2 11.6 13.0 13.6 12.7 13.0 12.7 13.3 12.5 13.0 13.0 13.6 13.0 14.5 13.9 13.9

A.i.2 0.5 1.1 0.2 2.0 19.9 19.3 19.3 19.3 20.2 19.6 21.7 12.5 12.5 12.7 12.7 13.0 12.5 11.9 13.3 13.9 12.5 13.3 13.0 13.6 12.7 13.3 13.3 13.9 13.3 14.8 14.2 14.2

A.d.1 1.1 0.2 2.0 19.3 18.7 18.7 18.7 20.2 19.0 21.7 12.5 12.5 12.7 12.7 13.0 12.5 11.9 13.3 13.9 12.5 13.3 13.0 13.6 12.7 13.3 13.3 13.9 13.3 14.8 14.2 14.2

A.d.2 0.8 0.8 19.9 19.3 19.3 19.3 20.8 19.6 22.3 13.0 13.0 13.3 13.3 13.6 13.0 12.5 13.9 14.5 13.0 13.9 13.6 14.2 13.3 13.9 13.9 14.5 13.9 15.4 14.8 14.8

A.di.1 1.7 19.6 19.0 19.0 19.0 20.5 19.3 22.0 12.7 12.7 13.0 13.0 13.3 12.7 12.2 13.6 14.2 12.7 13.6 13.3 13.9 13.0 13.0 13.0 13.6 13.0 14.5 13.9 13.9

A.di.2 20.8 20.2 19.6 19.6 21.1 20.5 22.0 12.7 12.7 13.0 13.0 13.9 12.7 12.2 14.8 15.4 13.9 14.8 14.5 15.1 13.6 14.2 14.2 14.2 13.6 15.7 14.5 15.1

B 2.88% 1.1 1.7 1.1 2.6 2.0 3.5 19.3 19.9 19.6 20.2 19.9 19.9 20.5 20.2 20.2 19.9 20.2 19.9 20.5 20.8 23.8 23.2 23.2 24.4 23.5 24.1 24.7

B.i.1 1.7 1.1 2.6 1.4 3.5 18.7 19.3 19.0 19.6 19.3 19.3 19.9 20.2 20.2 19.9 20.2 19.9 20.5 20.8 23.2 22.6 22.6 23.8 22.9 23.5 24.1

B.i.2 1.1 2.0 2.0 2.9 19.3 19.9 19.6 20.2 19.9 19.9 20.5 20.2 20.2 19.9 20.2 19.9 20.5 20.2 23.2 22.6 22.6 23.8 22.3 23.5 23.5

B.d.1 2.0 2.0 2.9 18.7 19.3 19.0 19.6 19.3 19.3 19.9 20.2 20.2 19.9 20.2 19.9 20.5 20.2 22.6 22.0 22.0 23.2 22.3 22.9 23.5

B.d.2 2.9 1.4 19.6 20.2 19.9 20.5 20.2 20.2 20.8 20.5 20.5 20.2 20.5 20.2 20.8 20.5 24.1 23.5 23.5 24.7 23.2 24.4 24.4

B.di.1 3.2 19.0 19.6 19.3 19.9 19.6 19.6 20.2 20.5 20.5 20.2 20.5 20.2 20.8 21.1 23.5 23.5 22.9 24.1 23.2 24.4 24.4

B.di.2 20.5 21.1 20.8 21.4 21.1 21.1 21.7 22.0 22.0 21.7 22.0 21.7 22.3 22.0 25.5 25.0 25.0 26.1 24.7 25.8 25.8

C 3.41% 3.31% 1.1 0.2 0.8 1.1 0.5 1.1 8.0 8.6 8.3 8.0 7.7 8.3 8.0 12.2 12.7 11.6 12.2 13.6 13.0 13.6

C.i.1 1.4 0.8 1.1 1.1 2.3 8.0 8.6 7.7 8.0 7.7 8.3 7.4 11.6 12.2 11.0 11.6 13.0 12.5 13.0

C.i.2 1.1 0.8 0.8 1.4 8.3 8.9 8.6 8.3 8.0 8.6 8.3 11.9 12.5 11.3 11.9 13.3 12.7 13.3

C.d.1 0.8 0.2 1.4 7.1 7.7 7.4 7.1 6.8 7.4 7.7 12.5 13.0 11.9 12.5 13.9 13.3 13.9

C.d.2 1.1 2.3 7.4 8.0 7.7 7.4 7.1 7.7 7.4 11.6 12.2 11.6 12.2 13.0 13.0 13.0

C.di.1 1.1 7.4 8.0 7.7 7.4 7.1 7.7 8.0 12.7 13.3 12.2 12.7 14.2 13.6 14.2

C.di.2 8.0 8.6 8.3 8.0 7.7 8.3 8.6 12.2 12.7 12.2 12.2 13.6 13.0 13.6

D 3.94% 3.47% 4.81% 0.5 1.4 0.0 0.2 0.2 1.7 13.6 13.6 13.6 14.2 14.5 14.5 15.1

D.i.1 1.4 0.5 0.8 0.2 2.3 14.2 14.2 14.2 14.8 15.1 15.1 15.7

D.i.2 1.4 1.7 1.7 1.4 13.3 13.3 13.3 13.9 14.2 14.2 14.8

D.d.1 0.2 0.2 1.7 13.6 13.6 13.6 14.2 14.5 14.5 15.1

D.d.2 0.5 2.0 13.9 13.9 13.9 14.5 14.8 14.8 15.4

D.di.1 2.0 13.9 13.9 13.9 14.5 14.8 14.8 15.4

D.di.2 12.5 12.5 12.5 13.0 13.3 13.3 13.9

E 3.25% 2.72% 3.50% 4.15% 1.1 1.1 0.5 1.4 1.4 2.0

E.i.1 1.7 1.1 2.0 1.4 2.0

E.i.2 1.1 2.6 2.0 3.2

E.d.1 2.0 0.8 2.0

E.d.2 1.7 1.7

E.di.1 2.3

E.di.2

Table 1. Sample of normalized Hamming distances between signatures.
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Table 1 displays a sample of these distances, showing, in the upper right
triangle, only the results for the original strings indexed j ∈ {A,B,C,D,E}2,
and for each of these, two variants of each of the 3 groups, identified by j.d.r, j.i.r
and j.di.r for the strings obtained by deletion, insertion and both, respectively,
with r ∈ {1, 2} giving the index of the variant within its group. For a pair
ω1, ω2 ∈ S, the displayed value is the normalized Hamming distance between
ah(ω1) and ah(ω2), that is, the number of 1-bits in ah(ω1) xor ah(ω2) divided
by 336, expressed as percentage. For visibility, cells containing values below 10%
have been shaded in light green and the others in red. The lower left triangle
contains, for each pair, a measure for the similarity of the original DNA strings.
We chose the number of shared canonical 11-mers, as percentage of their total
number, averaged for the two members of the pair.

One can see on this sample, which is representative for the entire 800× 800
matrix, that while the distances between elements within the set of variants of
the same original string are all small, all inter-set distances are much larger,
so that one may conclude that using the signatures instead of the much longer
original strings to perform the clustering process may be justified. A noteworthy
exception are the sets produced by the strings indexed C and D, for which
the pair-wise distances are only about 7–8%. This is in accordance with the
corresponding similarity measure of 4.81%, the only one exceeding a threshold
of 4.5% (in green), and may be explained by the fact that the DNA strings were
similar to begin with, being related to the same parasite.

As a control experiment, we also applied a real hash function instead of our
approximate one. The choice was MD5 [15], for which all the values of the matrix
were between 0.37 and 0.62, so that, as expected from a hash function, MD5 did
not detect any of the clusters and would thus not be useful in this context.

To enable a fair comparison with alternative clustering methods, we took
the same test collection as the one used for MC by [10] as second set of DNA
strings: the top-level FASTA sequences containing one chromosome from Ensembl
Genomes release 35 [6], a set of 3670 bacteria genomes taken from a collection of
about 42,000. The size of the sequences varied from 114KB to 15MB, with an
average of 3.5MB.

We need a measure to compare the outcome of different clusterings A and B.
Note that this measure is not symmetric: A is considered to be the base scenario,
and we shall use MC as defining it, and B is a suggested new clustering method,
one derived from ah in our case, and we wish to assess how much B deviates
from A. It is acceptable that A should be a refinement of B, that is, every cluster
in A is included in one of the clusters of B, but if a cluster of A is split over
several different ones in B, we consider this as an error. Iterating over all the
clusters c of A, we accumulate the error counts of c, defined as the difference
of the size of cluster c with that of the largest intersection of c with one of the

2 the names of these 5 strings in the database are:
A - KV453883.1, B - NZ DS996920.1, C - UPTC01000856.1, D - UPTC01000985.1, E -

VAHF01000278.1
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clusters of B. Finally, we define the normalized error rate by dividing the sum
of the error counts by the number of sequences.

Fig. 1. Comparing two different clusterings A and B

For example, consider 6 sequentially indexed strings. Figure 1 shows the
clustering performed by a clustering A into clusters x, y and z, and by B into
clusters a, b and c. We see that B has merged the clusters x and z into a, but
split the cluster y into b and c. Thus for clusters x, z, which are subsets of a,
there is no error, but cluster y is not a subset of any cluster of B, and the largest
intersection is with cluster b of B. This yields an error rate of 1

6 .
The reason for preferring such an asymmetric measure is that we intend using

the clustering derived from our ah function in a preliminary filtering stage, on the
outcome of which some other clustering can then be applied, with significantly
reduced complexity. If several clusters of A are entirely included in a single
cluster c of B, this is acceptable because the A clustering will anyway be applied
on c after the filtering stage. Table 2 brings the comparative results. All tests
were run on a Dell XPS 15 7590 with 32GB RAM i9-9980HK @ 5.0GHz, running
Ubuntu 18.04.

Method Running Memory Error Number of Max size

time (mm:ss) (MB) rate clusters of cluster

MC 16:25 31744 – 1861 176

ah – CC 1:08 107 0.35% 861 1053

MC after ah 14:12 8200 2.02% 1862 177

Table 2. Comparison of clustering on 3670 strings from a Bacteria database

We see that while there is a significant reduction in both time and required
RAM when replacing MC by a simple Connected Component (CC) clustering3

based on our ah signatures rather than the original DNA strings, this comes at a
price of only marginally hurting the resulting clusters themselves, with an error
rate of less than 1% of falsely assigned sequences. Even if we use ah only as a
preliminary filter, the processing time is improved and the memory consumption

3 each string is a vertex, and vertices are connected by an edge if the distance between
them is smaller than some threshold
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is cut to a quarter, whereas the error rate is just 2%, and 96% of the clusters
match those produced by MC alone. The table shows also that while most clusters
are small, there are also some larger ones. The large difference in the number of
clusters in spite of a low error rate implies that most MC clusters are entirely
included in ah ones. We tried also to apply CD as alternative clustering, but had
to abort its run after 24 hours without results.

To enable also a comparison with CD to run in reasonable time, we limited
the lengths of the strings in our third test set to be between 50 and 100K and
retrieved 4523 strings of viruses from the GenBank database4. The results appear
in Table 3.

Method Running Memory Error Error Number of Max size

time (mm:ss) (MB) vs CD vs MC clusters of cluster

CD 38:44 1500 – – 3774 67

MC 00:54 2200 – – 1934 208

ah – CC 00:04 160 0.71% 0.08% 1158 794

CD after ah 22:04 1115 0.75% – 3804 67

MC after ah 00:45 265 – 0.80% 1945 208

Table 3. Comparison of clustering on 4523 strings of a Virus database

The conclusions are similar to those for the set of bacteria DNA strings. CD
is much slower than MC but requires only 1.5GB of RAM instead of 2.2GB and
produces about twice as many clusters. If ah is used as a preliminary clustering,
99% and 98% of the original clusters are recovered for CD and MC, respectively.

2.3 Searching for a string including some read

In the problem we consider here, a large collection C of strings is given, where
both the size of C and that each of its individual elements may be of the order of
millions and more. In addition, we are given a readR whose length could be in the
thousands, and we wish to retrieve the subset of elements Ci ∈ C for which R is
a substring of Ci. Actually, the notion of being a substring has to be understood
in a broader sense, as we allow a limited number ` of mismatches. If ` = 0, this is
the exact matching problem that has been thoroughly investigated. For general
`, the problem is much more difficult; the best deterministic algorithm has a
complexity proportional to n

√
` log ` [1], which is not reasonable for large values

of `. A faster probabilistic algorithm, running in time O(n log n) can be found
in [4], where n is the total length of the strings.

Our approach here is similar to the Karp-Rabin probabilistic algorithm for
string matching [11], but using our approximate hash function instead of simple

4 https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
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hashing modulo a large prime number. A brute force approach would be to
compare R with the substrings Cj

i = Ci[j]Ci[j+1] · · ·Ci[j+m−1] of length m =
|R| of Ci starting at position j, for all Ci ∈ C and all possible values of j, 1 ≤ j <
ni−m, where ni = |Ci| is the length of Ci. This yields a complexity of mn, with n
the total length of all the strings in C, which may be prohibitive for the intended
application. Instead, we suggest applying the approximate hash function ah to
both R and the substrings Ci and compare the results. A Hamming distance
above some threshold is a clear indication that the pattern R does not occur at
the given position in Ci, yet being below does not guarantee that it does appear
there. Nevertheless, the function ah can serve as a filter, allowing us to restrict
a full comparison of R with substrings of Ci only to indices at which a match
has been declared.

At first sight, for calculating ah(Cj
i ) for all i and j, one needs O(nm) oper-

ations, so there seems to be no gain by applying the approximate hash. Note,
however, that the value of ah(ω) for a string ω is defined as a function of the
statistics of occurrences of the different k-mers forming the string, and it does not
matter where exactly they occur in ω. One can thus easily evaluate ah(Cj+1

i )

as a function of ah(Cj
i ) in constant time, because of the large overlap of size

m − 1 they share, just as in the Karp-Rabin algorithm. The global complexity
may therefore be reduced to O(n+m).

The strategy of replacing comparisons between long reads by comparisons of
the much shorter ah signatures will only be useful if, for DNA string fragments ω1

and ω2, there is a strong enough correlation between the edit distance d(ω1, ω2)
and the corresponding Hamming distance HD(ah(ω1), ah(ω2)). Note that we do
obviously not expect a perfect match and that the edit distance between strings
could be replaced by the HD between their signatures, so that

d(ω1, ω2) < d(ω3, ω4)⇐⇒ HD(ah(ω1), ah(ω2)) < HD(ah(ω3), ah(ω4)).

This is theoretically impossible because the signatures are shorter and thus can-
not carry the same amount of information content. Even requesting just a weak
inequality on the right hand side would not be realistic, and for a fixed edit
distance, the corresponding HD values might fluctuate. We do, however, expect,
that in spite of these fluctuations, the results may be partitioned into regions
allowing to derive some cut-off points, that is, that d is small if and only if
the corresponding HD is small, for some reasonable definition of smallness. The
following experiment illustrates the validity of this assumption.

A sample of s = 200 strings has arbitrarily been chosen from the bacteria
database, and the normalized edit distance has been evaluated for each of the(
s
2

)
pairs. The increasing purple line in Figure 2 shows these values as function

of their rank, after having sorted them in non-decreasing order. The blue line
plots the corresponding Hamming distances between the ah values for the same
pairs. Though these values are strongly fluctuating, one can still identify a clear
cutoff point at about 3200, separating the plot into two regions with distinct
and different extreme values for the Hamming distance. This fact enables the
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Fig. 2. Comparing edit distance between strings with Hamming distance on corre-
sponding signatures. The x-axis is the index in the sorted sequence of 19900 pairs of
strings.

definition of thresholds for both edit and Hamming distances, and we chose 0.3
(in red) for the former, and 0.1 (in yellow) for the latter.

It will be convenient to describe our experiment borrowing the vocabulary
of the Information Retrieval field. We are looking for relevant pairs, defined
here as those for which their edit distance is below the chosen threshold, but
we choose them by means of the Hamming distance between their signatures,
so the retrieved pairs are those for which the HD is below the threshold. The
outcome is color coded in Figure 3 showing the matrix of all the pairs. True
positive results are those for which both distances are below their thresholds and
are shown in light green; true negatives (both distances above their thresholds)
appear in blue. Erroneous outcomes are false positives, shown in red, with a low
HD in spite of a large edit distance, and false negatives (HD above in spite of
edit distance below), which is not shown in this example — not a single pair fell
into this category.

ah edit dist Precision Recall

threshold threshold

0.125 0.275 0.61 1

0.1 0.3 0.82 1

0.075 0.35 0.97 0.99

Table 4: Recall and Precision for various threshold settings.

Table 4 displays the Recall / Precision values obtained for various settings of
the two chosen thresholds. Recall is the fraction of the relevant items that have
actually been retrieved, precision is the fraction of the retrieved items that are
indeed relevant. We see that recall is very close to 1, as there are very few false
negative results, and precision can also be very high for well chosen thresholds.

Our last experiment directly checked the applicability of the approximate
hash approach to searching a long read in a DNA string. An arbitrary string C
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Fig. 3. Comparing pair distances: Blue – true positive; green – true negative;
red – false positive; no false negative
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Fig. 4. Searching for a substring by comparing signatures.

of length about 900K was chosen from the bacteria set, as well as a substring R
of length m = 5000 starting at an arbitrary position (at about 650K), serving as
pattern to be located. Figure 4 plots in green, as function of i, the normalized
Hamming distance between ah(R) and ah(Ci), where Ci is the substring of
length m of C starting at i. We see that there is only a very narrow region for
which the distance is practically zero. As a control experiment, the search for
the same pattern was repeated with a different DNA string C ′ of length about
1M, yielding the purple curve with not a single value even approaching zero.
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The search procedure will thus declare a match if the HD is below some
threshold, symbolized in Figure 4 by the blue line. It should be emphasized that
if there are indeed matches, the procedure will find them all, and the possible
errors are only to declare non-existing matches. However, the validity of the
match can be verified, since we know where to check. We conclude that using
the ah is a powerful tool significantly reducing the amount of work while only
marginally affecting the quality of the results.
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