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Abstract. Advances in privacy-enhancing technologies, such as context-
aware and personalized privacy models, have paved the way for successful
management of the data utility-privacy trade-off. However, significantly
lowering the level of data protection when balancing utility-privacy to
meet the individual’s needs makes subsequent protected data more pre-
cise. This increases the adversary’s ability to reveal the real values of the
previous correlated data that needed more protection, making existing
privacy models vulnerable to inference attacks. To overcome this prob-
lem, we propose in this paper a stochastic gradient descent solution for
privacy-preserving during protection transitions, denoted P-SGD. The
goal of this solution is to minimize the precision gap between sequential
data when downshifting the protection by the privacy model. P-SGD
intervenes at the protection descent phase and performs an iterative pro-
cess that measures data dependencies, and gradually reduces protection
accordingly until the desired protection level is reached. It considers also
possible changes in protection functions and studies their impact on the
protection descent rate. We validated our proposal and evaluated its per-
formance. The results show that P-SGD is fast, scalable, and maintains
low computational and storage complexity.

Keywords: Data privacy + Data protection transitions - Stochastic
gradient descent methods - Context-awareness + Internet of Things

1 Introduction

The rapid expansion of cyber-physical systems and the technological advances in
sensing technologies and data mining techniques have contributed to the tremen-
dous development of smart people-driven applications. These applications tend
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to reshape the lives of people in many domains by providing them with advanced
services (e.g., increasing comfort, monitoring patients and elderlies). Delivering
such services requires collecting and processing massive amounts of data (e.g.,
location data, health data) to discover underlying patterns and trends. How-
ever, privacy concerns hinder the wider use of these data especially as data pro-
cessing may give rise to serious privacy risks for individuals, such as disclosing
their health conditions, habits and daily activities [4]. Consequently, balancing
the trade-off between data utility and privacy protection has been subject to
intense study in recent years [2,5,6,15,16]. Current context-aware privacy solu-
tions [2,13,16,20] and personalized privacy solutions [6,17,24] aim to maximize
the usefulness of data by optimizing the level of protection according to data
sensitivity in the current context or/and user preferences. However, these solu-
tions do not consider the effect of temporal correlations between sequential data
values on privacy loss. They assign the appropriate level of protection to the data
according to the user’s context (e.g., privacy risks involved) or/and preferences.
Nonetheless, continuously balancing the protection levels without considering
previous protection patterns may entail temporal privacy leakage. In particu-
lar, this leakage occurs when the protection level significantly decreases, which
widens the precision gap between prior/subsequent correlated data and makes
subsequent data more precise. The large gap in precision improves the capa-
bilities of an adversary, when using advanced mining techniques, to reveal the
real values of prior data pieces that required more protection. This makes exist-
ing privacy-preserving solutions vulnerable to data inference attacks. A data
inference attack is a data mining attack in which adversaries are capable of
estimating/inferring real values of protected data with high confidence. One of
the possible solutions to address this vulnerability is to integrate a gradient
descent mechanism at the protection descent phase. This helps to reduce the
precision gap between sequential protected data when downshifting the protec-
tion level. Gradient descent is a general paradigm that underlies algorithms for
solving optimization problems [8]. It has been widely applied to many fields such
as location-based applications for predicting moving destination [23], differen-
tial privacy [18], and personalized privacy [14]. Nonetheless, to the best of our
knowledge, there has not been any work on securing data protection transitions
using gradient descent.

The implementation of a gradual descent process for the protection level is
challenging, as the corresponding deviation rate depends on several dynamic
factors. First, the temporal correlations between sequential data values, which
may vary from sequence to sequence as the data can be generated in regular or
irregular time series. Second, the dynamicity of the protection function chosen
by the system to be executed on data values. In fact, the system can change
the data protection function at the protection transition phases with a view to
improving protection, reducing the cost of protection (i.e., computational costs),
or due to errors in function operations. However, the protection functions can
share similarities in their operations (e.g., generalization and random-noise func-
tions add noise to the real value of data), making it important to consider their



P-SGD: A Privacy-Preserving Stochastic Gradient Descent Solution 39

dependence and its impact on the protection deviation rate. What makes it
more challenging is the need for a fast and low complex solution, which makes
it re-usable by various privacy models, including those offering real-time protec-
tion, and operational even for resource-constrained devices. Finally, the solution
should follow a non-deterministic descent to avoid revealing the deviation rate
by adversaries in case of repeated descent patterns.

To answer these challenges, this paper introduces P-SGD, a stochastic gra-
dient descent solution for privacy-preserving during protection transitions. P-
SGD empowers existing privacy models against data inference attacks, by min-
imizing the precision gaps of sequential protected data values during the pro-
tection descent phase. It follows an iterative process to identify the appropri-
ate protection level to be assigned to each transitional data until the targeted
level is reached. Computed protection levels consider the temporal dependen-
cies between data values and the dependencies between protection functions (in
case of change). Our solution is generic (i.e., it handles attributes with differ-
ent data types and formats), and supports simultaneous reasoning over multiple
attributes. We validated our proposal and evaluated its performance. Results
show that P-SGD is fast, scalable, and maintains low computational and storage
complexity.

The rest of the paper is organized as follows. Section 2 presents the motivating
scenario. Section 3 details our proposal and provides formal definitions of the key
terms used. Section4 outlines the experiments and results. Sectionb discusses
existing privacy models and data protection functions. Finally, Sect. 6 concludes
the paper and discusses future research directions.

2 DMotivating Scenario

To motivate our proposal, we investigate a real-life scenario of Alice, a can-
cer patient who shares her location data with a remote monitoring platform
for cancer care. Alice shares also her location data with several other service
providers through applications and social media platforms to benefit from their
services (e.g., Facebook, Google Maps). The trust relationship between Alice
and the providers may vary greatly due to many factors, such as the privacy
risks associated with the sharing of data, the sensitivity of her context (e.g.,
private meeting), or the third parties with whom her data is communicated.
Alice may therefore want to protect her privacy in some situations but without
completely losing associated services. To do so, she uses a context-aware privacy-
preserving system that optimizes the data protection according to her contexts
and preferences. Consider that Alice has a medical appointment at the Belharra-
Ramsay center for her cancer treatment. She takes the road from her home to
the treatment center. However, locating Alice in the cancer center can entail
the disclosure of her health conditions, which involves privacy concerns for her.
Accordingly, assume that the privacy system increases data protection to 80%
when Alice arrives at the center, and then shifts the level of protection to 20%
when she leaves. The system protects sensed data using a generalization-based
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protection function. In the following, three cases are considered to highlight the
impact of the second protection transition phase (from 80% to 20%) on privacy
loss.

In case-1, represented in Fig. 1, the system shifts the level of protection to 20%
and continues to perform the same protection function on generated data (i.e.,
the generalization function). The location data are generated at a regular time
interval. When processing and analyzing protected data values, an adversary can
notice a significant gap in the level of precision between transitional/correlated
data (see in Fig. 1). The precision gap limits the range for estimating previous
user locations where protection was critical (e.g., Alice’s presence in the medical
center), which entails privacy problems. This consequently underlines the need
for a gradual descent in the protection level in order to overcome vulnerabilities
that may arise during protection transitions.
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As previously mentioned in Sect. 1, the system can change the protection
function to be executed on data at the protection transition phase. In case-2,
illustrated in Fig. 2, the system changes the function when the protection level
shifts to 20%, and adopts a randomization-based function that adds random
noise to the real location positions. However, the generalization and randomiza-
tion functions share similarities. They both add noise to the data, which makes
them dependent, and the privacy issues related to lowering the protection level
persist. This highlights the need to examine dependencies between protection
functions and their impact on the protection deviation rate.

In the previous two cases we considered regular time series data. How-
ever, data can be also collected in irregular time series, i.e., the data
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collected follow a temporal sequence, but the measurements may not occur at
regular time intervals. For instance, case-3 assumes that after leaving the medi-
cal center, the system has stopped sharing (protected) location data only for a
specific time interval due to loss of connectivity with the GPS sensor (cf. Fig. 3).
When data sharing started again, the temporal distance between the last data
shared and the current one has already exceeded the temporal granularity of
the attribute (i.e., location). The two data pieces are thus independent and the
adversary will not be able to link previous and subsequent location patterns. It
is thereby important to measure the temporal correlations between sequential
data and study its impact on data protection. Consequently, building up the
gradient descent solution requires addressing the following challenges:

— Challenge 1. Data Dependency: How to track and measure the temporal
dependencies of sequential data values and study their impact on the protec-
tion descent rate?

— Challenge 2. Protection Function Dependency: How to compute the
similarity between transitional protection functions (in case of change) and
adjust the downshifting mechanism accordingly?

— Challenge 3. Non-deterministic Solution: The protection level can fluc-
tuate between two same values for several transitions. This may entail the
disclosure of the deviation rate by adversaries if the executed process is deter-
ministic (cf. Fig.4). The solution should therefore be non-deterministic to
overcome the vulnerabilities arising from repeated transition patterns.

— Challenge 4. Scalability € Efficiency: The solution must be scalable,
i.e., handles simultaneous reasoning over an increasing number of attributes.
Moreover, it should maintain computational and storage efficiency, which
increases its re-usability to also include privacy models subject to real-time
constraints, and makes it operational on a variety of devices, including those
with limited resources.



42 K. Bou-Chaaya et al.

Protection
A
Transition-1 Transition-2  Transition-3

i Static Descent : Static Descent

80% ;

20%

Time

Fig. 4. Repeated protection transition patterns

3 P-SGD Proposal

Current privacy-preserving models, such as context-aware and personalized pri-
vacy models, enable data protection variation according to the individual’s needs
or/and situations (e.g., privacy risks involved in the data sharing, preferences)
in order to optimize the balancing of data utility-privacy. However, these models
perform direct shifting of the data protection level, which may lead in certain
cases to temporal privacy leakage due to data correlations. In particular, the
data privacy leakage occurs when significantly decreasing the level of protec-
tion, creating a significant gap in the level of precision between previous and
subsequent data. This increases the ability of an adversary to reveal the real val-
ues of previous correlated data that needed more protection, entailing privacy
concerns for the individual. To overcome this vulnerability, we propose P-SGD,
a privacy-based stochastic gradient descent solution that operates during pro-
tection descent phases to minimize precision gaps between sequential protected
data values. P-SGD addresses the challenges mentioned in Sect.2. It features
an iterative protection descent process that identifies the appropriate level of
protection to be assigned to each data prior to its release until the final level is
reached (i.e., the lowest desired level). The proposed solution supports attribute
diversity, i.e., it handles attributes with different data types and formats (e.g.,
scalar data such as location and temperature data, as well as multimedia data
such as camera recordings). This makes it therefore generic and compatible with
numerous existing privacy models in different application domains. The P-SGD
process can be plugged into the privacy model, as shown in Fig. 5, to provide an
additional layer of protection against inference attacks. Let w denotes the user
(or data subject as defined by the General Data Protection Regulation [21]). In
what follows, we formally define an attribute and a data node.

Definition 1. (Attribute). Let A be the set of spatio-temporal attributes
{a1,az2,...,a,} shared by u with data consumers. a € A is defined as follows:

a: {desc; access ; source ; Deconsumer ; T 3 LO where:
b 9 b b b b

— desc is the textual description of a (e.g., location, heart-rate, temperature)

— access € {r;r/w} denotes the access rights of the privacy model to the
data values of a, which can be read or read/write

— source € DN is a data node (cf. Definition 2) expressing the data source
from which the data of a is collected (e.g., GPS sensor)
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— Dionsumer is the set of data consumers (i.e., service providers and third
parties) with whom a is shared, such that:

Dconsumer = { dcl 5 dCZ 3 oeee s dcn } U {J-} ) where:

e dc; € DN is a data node expressing a data consumer
® D.onsumer = @ indicates that data consumers are unknown
® Dionsumer = {-L} denotes that a is a public attribute
— 7 denotes the standard time period during which two data values of a are
said to be time-dependent
— Log = {(d; M )} is the set of data values of a where:
e d denotes the data value
e M is the set of metadata characterizing d (e.g., time/location of capture,
data-type, format) [ |

Definition 2. (Data Node). Let DN be the set of source/destination data
nodes {ny,...,n, }. Source nodes are data sources from which the data is col-
lected. Destination nodes are data consumers with whom the data is shared.

Vn € DN, n: (desc; id ), where:

— desc is the textual description of n (e.g., gps-sensor, health-provider)
— 4d is the identity of n, expressed as a uniform resource identifier (URI) W

Example 1. The location attribute shared by Alice can be represented as follows:

- a1 : (desc : Location ; access : r/w ; source : sensor-1 ; Deonsumer =
{prov-1} ; tgran : 86400 ; tgen : 1; Log = {( (-33.0534, 16.3103) ; M1)})

- sensor-1: {desc : GPS-sensor ; id : 46.89.1.47)

- prov-1: {(desc : Healthcare-provider ; id : 58.17.37.23)

- My {tcapture :15:17:00 ; diype = float 5 dformar : (longitude, latitude)}

We consider here that tyrqn s provided as an input parameter. The challenges of
identifying the temporal granularity of attributes will be explored in future work.
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P-SGD also supports protection function diversity. In fact, existing protection
functions vary from data anonymization, data perturbation using noise addition,
privacy-aware access control to encryption (cf. Sect.5). Each of these functions
achieves differently the desired protection level. We provide in what follows for-
mal definitions of a protection function and protection level.

Definition 3. (Protection Function). A protection function, f € PF, is a
protection method performed by the privacy model on data values of an attribute
a € A prior to their release to consumers. f € PF is formalized as follows:

f: (name ; class ; Feature ; Param ), where:

— name denotes the textual name of f (e.g., generalization, random-noise)
class represents the class to which f belongs, such that:

class € {noiseAddition ; anonymization ; accessControl ; encryption}

— Feature is the set of features characterizing f, including at least: cost, the
computational cost of f in terms of processing time and memory overhead
— Param represents the set of input parameters of f, including at least:
e A’ C A is the set of attributes on which f is performed
e P is the set of protection levels to reach for all a € A’ [ |

Definition 4. (Protection Level). A protection level, p, expresses the amount
of protection to be achieved for the data values of an attribute a € A. p is
probabilistic with a value between [0, 1], where 0 means that data is shared
without any protection, and 1 means that data is not shared. A value between 0
and 1 indicates the level of protection that should be reached when executing a
protection function f € PF on the data of a. Knowing that the way to achieve
p depends on the selected protection function. |

A stochastic gradient descent method is generally defined as an iterative
method for optimizing an objective function with suitable smoothness proper-
ties [1]. It has been widely adopted mainly for high-dimensional optimization
problems as it reduces the computational burden, achieving faster iterations in
trade for a lower convergence rate. This agrees with our needs listed in Chal-
lenge 4. Consequently, we detail in the following our proposed P-SGD method.
According to Fig. 6, let:

— piem9 vefers to the targeted protection level, i.e., the next protection level

specified by the privacy model for data of attribute a; € A. This level indicates
the target level that must be reached in order to complete the P-SGD process
- pfi’ld denotes the level of protection of the previous data value of attribute
a; € A
— pgurrent expresses the protection level to be assigned to the current data
value of attribute a; € A, such that p§* et € [pi*"9°"; pold]
The iterative process followed by P-SGD is thus defined by the following
formula:

current

p = p — |, where: (1)
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Fig. 6. P-SGD process

— m represents the deviation rate of the protection level (the quantification of
7 is provided in the following subsection)
— < € [051] expresses the random noise added to n

We consider in this study that attributes are independent. The P-SGD pro-
cess is thus performed on the data values of each attribute separately. In order
to track and measure the correlations in sequential data and the dependencies
between their associated protection functions (cf. Challenges 1 and 2), we define
a transition matriz, Trans, that contains only the properties of the last data
value (d2'?) of each shared attribute a; € A. We store only the properties of the
last data values since the process operates iteratively. This helps reduce storage
overhead and allows for scalability in attribute number (cf. Challenge 4). Trans
denotes therefore the cache, and can be represented as follows:

old ,,old gold
AL, 0,
[ 2 £

Trans = , where: (2)

old ,,old pold
tn 24 fn

- tfld denotes the time of capture of df’d of attribute a;
- fiold is the protection function associated to dg’ld of attribute a;

3.1 Deviation Rate Quantification

1 depends on (1) the temporal dependency of previous and current data values
of a;, i.e., d;’ld and d§*""¢™t; and (2) the level of dependency of their related
protection functions, i.e., fi"ld and frurrent,

Definition 5. (Time Dependency of Data). Let depend; denotes the temporal
dependency score of two data values, d?!¢ and d$“"me"t, of an attribute a; € A.
depend; has a value between 0 and 1, where 0 means that the data are time-
independent, and 1 means that the data are fully dependent (time-wise), which
typically occurs only when t2/¢ and #§“"7"t are similar. The higher the temporal
distance between the two data values is, the lower their time dependency is. The
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two data values are said to be time-dependent only if their temporal distance
is less than the standard time period of their attribute a; (i.e., a;.7). depend; is
therefore computed as follows:

1_ tf“rr”w"t—t,(;ld if (tcur'r'ent _ tOld) < a;
depend, (d§'?, dsvrment) = a;.T i i ) S GT
(e} -

0 otherwise

Definition 6. (Protection Function Dependency). Let ffld and frurrent
denotes two protection functions. fi"ld and ff4"me™ are said to be dependent
only if their similarity score is above or equal 0.

sim(fi"ld, ff“"e"t) — [0; 1], where:

— stm is a unit similarity function that checks the exact matching between the
classes and the lists of features of the two protection functions, and returns
a value between 0 and 1, such that:

sim(f21, feerrenty = 1 only if:
ffld.class = frurrent class and ff’ld.Feature = ffurrent Feature |

The P-SGD process will be therefore executed only if the sequential data
values are dependent and their associated protection functions are also depen-
dent (i.e., depend # 0 and sim # 0). The higher the temporal distance between
previous/current data is, the lower is their time dependency, and the higher is
71 (i-e., the larger can be the protection gap between the two data). As well, the
higher is the similarity between protection functions, the lower is 1. Accordingly,
7 is quantified as follows:

= i x sim(fOU, FEUTTN) X depend, (d7', 45O (3)

— ¢; € C is a system parameter that expresses the maximum deviation value
of data protection for attribute a; € A. It therefore controls the convergence
. target
speed of the protection level towards p;
— sim(fP4, feurrent) —]051] is the similarity score

— depend; (d?'¢, dsvrment) € 10;1] is the temporal dependency score

3.2 P-SGD Algorithm

We present here the reasoning algorithm of our solution.
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Algorithm 1. Presents the algorithm of our P-SGD solution that takes as input
the concerned attribute a, the properties of the current data value (i.e., t¢¥rment
and feurrent) and the targeted protection level pt@”9¢t. It outputs the calculated
protection level to be assigned to the current data value, i.e. p¢“""¢™. The process
starts by computing the dependency score of previous/current data values and
the similarity score of associated protection functions (lines 3-4). If data or/and
associated functions are independent (line 12), the gradual descent process is
not executed, and the protection level is downshifted directly to p!e"9¢t (line
13). Else, this means that data and associated functions are dependent (line 5).
The process calculates the random noise 37 to be appended to 7, the value of
n, and then the value of pc“ ™™ (lines 7-9). It checks after the validity of the
peurrent value (lines 10-11). Finally, the properties of the relevant attribute are
updated in the transition matrix Trans|][] (line 14) and the process is ended.

Algorithm 1: P-SGD Process

tcu'rrent fcur'rent
)

s pmrgd; // attribute, default deviation value, time of

Input: a, c, i
deTTe™t and the targeted protection level;

capture and protection function of
current,

Output: p ; // the protection level to be assigned to d““""¢"t;

1 Variables: Trans[][], depend;, simScore, Vs 7; // transition matrix, dependency
score of data, similarity score of prot-functions, random noise and deviation rate;

2 begin

3 depend; == 1 — w; // Trans[][0] is the t°'¢ column of d°'? values;
4 simScore «— sim(f“" " Trans[a][2]); // Trans[][2] is the £°'¢ column
associated to d°!? values;
5 if (depend; # 0 AND simScore # 0) then
6 // dependent data values and dependent protection functions;
7 YV < randomNumber(O, 1); // returns a random value between 0 and 1;
8 n = c X simScore x dependy;;
9 pcu'rrent = pold —nv;
10 if (pcurrent S ptarget) then
11 L pgum‘ent = pmrgm; // check the validity of the calculated p°“""¢™" value ;
12 else
13 L pcum‘em = ptar'get; // data values or/and protection functions are independent;
14 Trans «— updateTransMatriz(a, t et peurrent  peurrenty,

current

15 return p

This paper presents only the pseudo-code of the main P-SGD process due to
space limitations. The pseudo-codes of the aforementioned functions are detailed
in the prototype source code provided in Sect. 4.

4 Experimental Validation and Evaluation
In order to implement and validate our approach, we developed a Java-based
prototype (the source code is available online through this link!). We illustrate

in the following the prototype operation by considering the scenario of Alice

! https://spider.sigappfr.org/research-projects/psgd/ (P-SGD Prototype).
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described in Sect.2. We focus on the second protection transition (i.e., from
80% to 20%), and assume that the protection function remains unchanged. We
repeated the descent process three times to emphasize the non-deterministic
nature of the solution in the case of repeated transition patterns (cf. Challenge
3). We consider here regular time series data with a data generation time of
1s, and we fix ¢ at 0.5 (i.e., the maximum protection deviation is 50%). As
shown in Fig. 7, the proposed P-SGD process is able to iteratively and gradually
decrease the protection level until reaching the targeted one (i.e., 20%), with an
average of 35 ms per iteration. The deviation pattern varied between the three
similar transition cases, as well as the number of data values required to achieve
protection convergence (7 for transitions 1-2 and 8 for transition 3). This is
due to the noise value associated with the deviation rate (i.e., v7), which varies
randomly with each iteration.

Protection Transition using P-SGD Process

100
90
80
70
60
50
40
30
20
10

Protection Level (%)

Data Values

—-—Transition1 —#-Transition2 —@-Transition3

Fig. 7. Securing protection transitions using the P-SGD process

4.1 Performance Evaluation

The objective here is to evaluate the approach’s effectiveness, in terms of per-
formance, to operate in different scenarios. The approach is said to be effective
if it meets the needs outlined in Challenge 4: (1) fast; (2) scalable (i.e., supports
multi-attribute handling); and (3) low-complex in time and space (i.e., in terms
of memory overhead and storage). To do so, we start by considering two cases
to study the impact of the following two metrics on performance: (i) the com-
plexity of the protection functions dependency; and (ii) the number of attributes
handled simultaneously. Then, we formally study the storage complexity of the
proposal. The performance is evaluated based on two criteria: the total execution
time of one iteration and the memory overhead. The tests were conducted on a
machine equipped with an Intel i7 2.80 GHz processor and 16 GB of RAM. The
chosen execution value for each scenario is an average of 10 sequenced values.
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Case 1: We consider two dimensions to study the complexity of the functions
dependency: the first increases the number of features and the second increases
the diversity in features between the two functions. We execute the P-SGD pro-
cess 13 times, taking into account the following number of features for each
iteration: 1, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90 and 100. For each of these
scenarios, we consider three sub-scenarios where we vary respectively the per-
centage of diverse features from 0%, 50% to 100%. As shown in Fig. 8 and 9, the
number and diversity of the features have no impact on the function dependency
procedure, and thus on performance. This is due to the fact that the procedure
verifies only the exact matching of the features’ names and values. The process
is executed in all scenarios with an average time of 35 ms and 10 MB of RAM
usage.

Impact of PF dependency on Execution Time Impact of PF dependency on Memory Usage
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Fig. 8. Case-1: execution time Fig. 9. Case-1: memory usage

Case 2: To study the impact of multi-attribute handling, we incorporate mul-
tithreading features in order to perform parallel execution of the process on
an increasing number of attributes. We consider the following number for each
iteration: 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. Figure 10 shows that
increasing the number of attributes has a quasi-linear impact on the total exe-
cution time, with an average time of 35 ms for 5 attributes and up to 100 ms
for 100 attributes. The RAM usage remains constant with an average of 10 MB
(cf. Fig. 11). This highlights the importance of integrating a low-cost transition
matrix.

Multi-attribute Impact on Execution Time Multi-attribute Impact on Memory Usage
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Fig. 10. Case-2: execution time Fig.11. Case-2: memory usage
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Theorem 1. The P-SGD process maintains low storage complexity.

PROOF. Let n denotes the maximum number of attributes that could be shared
by the user with data consumers. As previously mentioned in Sect. 3, the solu-
tion stores only the three properties of the last data value for each attribute
in Trans, and the values of ¢; € C, resulting in a linear storage complexity of
O(4n). However, the number of attributes shared by the user will not practically
exceed 100, which makes the storage complexity low. (I

Discussion. The experiments conducted show that P-SGD is scalable and effi-
cient in time and space (cf. Challenge 4). The solution is able to maintain effective
performance in different scenarios, including worst-case ones. This increases its
re-usability to also include privacy models that require real-time reasoning, and
allows it to operate on a variety of devices, including resource-constrained ones.

5 Related Work

Several approaches have been proposed in the literature to address the chal-
lenges of security and privacy in the fields of pervasive Internet of Things (IoT)
environments, also known as connected environments. However, to the best of
our knowledge, this is the first work to tackle the problem of preserving user pri-
vacy against data inference attacks during protection transitions. Therefore, we
discuss in this section existing privacy-preserving models to which our solution
could be connected. Then, we introduce a classification of existing protection
functions that could be used by these models.

5.1 Context-Aware and Personalized Privacy Models

Balancing data utility-privacy has received extensive attention in the last decade.
Existing approaches vary from context-aware to personalized privacy-preserving.
Bou-Chaaya et al. [2] introduced CaPMan, a user-centric context-aware model
for privacy management in connected environments that meets current privacy
standards (i.e., Privacy by Design and ISO/IEC 27701 standards). Matos et al.
[13] proposed a context-aware security approach, that provides authentication,
authorization, access control, and privacy-preserving to fog and edge computing
environments. Gheisari et al. [7] introduced a context-aware privacy-preserving
approach for IoT-based smart city using Software Defined Networking. Sylla
et al. [20] presented a context-aware security and privacy as a service (CASPaaS)
architecture to inform the user about the contextual risks involved. Gao et al. [6]
proposed a personalized anonymization model for balancing trajectory privacy
and data utility. Qiu et el. [17] provided a semantic-aware personalized privacy
model that studies user requirements and location’s privacy sensitivity to adapt
the trajectory construction accordingly. Xiong et al. [24] proposed a personalized
privacy protection model based on game theory and data encryption.
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5.2 Privacy Protection Functions

Existing functions for data protection vary from data perturbation (anonymiza-
tion and noise-addition), to data restriction (access control and encryption). On
this basis, we introduce a new classification of these functions based on their
perspective for data protection. The first category consists of data perturba-
tion functions, which comprises two sub-categories: anonymization and noise-
addition. Anonymization functions focus on masking user’s identity from gen-
erated data by removing explicit identifiers, and decreasing the granularity of
quasi-identifiers using operations such as generalization and suppression (e.g.,
k-Anonymity [19], l-Diversity [12], CASTLE [3]). Noise-addition functions focus
on perturbating original data values instead of protecting the owner identity,
and that by injecting additive noise (e.g., Generalization [10], Random-noise
[9]). The second category regroups data restriction functions that aim at limit-
ing data use by blocking access or encrypting inputs. This category is composed
of two sub-categories: access control and encryption. Access control functions
(e.g., [11]) achieves privacy protection through authorization models and access
control policy operations. Encryption functions applies encryption mechanisms
on data values (e.g., Secure Multi-party Computation [22]).

6 Conclusion and Future Work

This paper introduces a privacy-based stochastic gradient descent solution (P-
SGD) that can be integrated into numerous existing privacy models in order
to provide an additional layer of protection against data inference attacks dur-
ing protection transitions. P-SGD features an iterative non-deterministic process
that gradually decreases the data protection level during the protection descent
phases. This allows preserving an appropriate precision gap between sequential
protected data values to avoid potential data leakages. However, several improve-
ments still need to be considered for this solution and addressed in future work.
First, sensor data are spatio-temporal in nature, which means they also hold
spatial dependencies that must be considered when measuring data dependency.
In addition, the spatial and temporal distances between sequential data vary
according to the user’s context. For example, distances between location data
vary whether the user is driving a vehicle, running, or walking. Consequently,
we aim to improve the data dependency measurement by introducing a three-
dimensional dependency graph that considers temporal, spatial, and contextual
dimensions. Second, we want to improve the protection function dependency pro-
cedure to further consider the semantic similarity of the features. Finally, we aim
to connect P-SGD to an existing privacy model in order to test its applicability
in real-life scenarios.
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