Skip to main content

On the Computational Complexity of Reaction Systems, Revisited

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12730))

Abstract

We study the computational complexity of some important problems on reaction systems (RSs), a biologically motivated model introduced by Ehrenfeucht and Rozenberg in [7], that were overseen in the literature. To this end we focus on the complexity of (i) equivalence and multi-step simulation properties, (ii) special structural and behavioural RS properties such as, e.g., isotonicity, antitonicity, etc., and minimality with respect to reactant and/or inhibitor sets, and (iii) threshold properties. The complexities vary from deterministic polynomial time solvability to coNP- and PSPACE-completeness. Finally, as a side result on the complexity of threshold problems we improve the previously known threshold values for the no-concurrency, the comparability, and the redundancy property studied in [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    If the RS has to be strict the threshold for TOT is \((2^n-1)(3^n-3\cdot 2^n+2^{\lceil \frac{n}{2}\rceil }+2^{\lfloor \frac{n}{2}\rfloor })+1\), see [2].

References

  1. Azimi, S., Iancu, B., Petre, I.: Reaction system models for the heat shock response. Fund. Inform. 131(3–4), 299–312 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Dennunzio, A., Formenti, E., Manzoni, L.: Reaction systems and extremal combinatorics properties. Theoret. Comput. Sci. 598, 138–149 (2015)

    Article  MathSciNet  Google Scholar 

  3. Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E.: Complexity of the dynamics of reaction systems. Inform. Comput. 267, 96–109 (2019)

    Article  MathSciNet  Google Scholar 

  4. Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Minimal reaction systems. In: Priami, C., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems Biology XIV. LNCS, vol. 7625, pp. 102–122. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35524-0_5

    Chapter  MATH  Google Scholar 

  5. Ehrenfeucht, A., Main, M., Rozenberg, G.: Combinatorics of life and death for reaction systems. Internat. J. Found. Comput. Sci. 21(3), 345–356 (2010)

    Article  MathSciNet  Google Scholar 

  6. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fund. Inform. 75, 263–280 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Ehrenfeucht, A., Rozenberg, G.: Introducing time in reaction systems. Theoret. Comput. Sci. 410, 310–322 (2009)

    Article  MathSciNet  Google Scholar 

  8. Manzoni, L., Poças, D., Porreca, A.E.: Simple reaction systems and their classification. Internat. J. Found. Comput. Sci. 25(4), 441–457 (2014)

    Article  MathSciNet  Google Scholar 

  9. Nair, M.: On Chebyshev-type inequalities for primes. Amer. Math. Mon. 89(2), 126–129 (1982)

    Article  MathSciNet  Google Scholar 

  10. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)

    Google Scholar 

  11. Salomaa, A.: Functions and sequences generated by reaction systems. Theoret. Comput. Sci. 466, 87–96 (2012)

    Article  MathSciNet  Google Scholar 

  12. Salomaa, A.: Functional constructions between reaction systems and propositional logic. Internat. J. Found. Comput. Sci. 24(1), 147–159 (2013)

    Article  MathSciNet  Google Scholar 

  13. Salomaa, A.: Two-step simulations of reaction systems by minimal ones. Acta Cybernet. 22, 247–257 (2015)

    Article  MathSciNet  Google Scholar 

  14. Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. System Sci. 4(2), 177–192 (1970)

    Article  MathSciNet  Google Scholar 

  15. Teh, W.C., Atanasiu, A.: Minimal reaction system revisited and reaction system rank. Internat. J. Found. Comput. Sci. 28(3), 247–261 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Holzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Holzer, M., Rauch, C. (2021). On the Computational Complexity of Reaction Systems, Revisited. In: Santhanam, R., Musatov, D. (eds) Computer Science – Theory and Applications. CSR 2021. Lecture Notes in Computer Science(), vol 12730. Springer, Cham. https://doi.org/10.1007/978-3-030-79416-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79416-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79415-6

  • Online ISBN: 978-3-030-79416-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics