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Abstract

The minimum circuit size problem (MCSP) is a string compression problem with a
parameter s in which, given the truth table of a Boolean function over inputs of length n,
one must answer whether it can be computed by a Boolean circuit of size at most s(n) ≥ n.
Recently, McKay, Murray, and Williams (STOC, 2019) proved a hardness magnification result
for MCSP involving (one-pass) streaming algorithms: For any reasonable s, if there is no
poly(s(n))-space streaming algorithm with poly(s(n)) update time for MCSP[s], then P 6= NP.
We prove an analogous result for the (provably) strictly less capable model of shrinking
cellular automata (SCAs), which are cellular automata whose cells can spontaneously delete
themselves. We show every language accepted by an SCA can also be accepted by a streaming
algorithm of similar complexity, and we identify two different aspects in which SCAs are
more restricted than streaming algorithms. We also show there is a language which cannot be
accepted by any SCA in o(n/ logn) time, even though it admits an O(logn)-space streaming
algorithm with O(logn) update time.

1 Introduction
The ongoing quest for lower bounds in complexity theory has been an arduous but by no means
unfruitful one. Recent developments have brought to light a phenomenon dubbed hardness
magnification [5, 6, 7, 17, 22, 23], giving several examples of natural problems for which even
slightly non-trivial lower bounds are as hard to prove as major complexity class separations
such as P 6= NP. Among these, the preeminent example appears to be the minimum circuit size
problem:

Definition 1 (MCSP). For a Boolean function f : {0, 1}n → {0, 1}, let tt(f) denote the truth
table representation of f (as a binary string in {0, 1}+ of length |tt(f)| = 2n). For s : N+ → N+,
the minimum circuit size problem MCSP[s] is the problem where, given such a truth table tt(f),
one must answer whether there is a Boolean circuit C on inputs of length n and size at most s(n)
that computes f , that is, C(x) = f(x) for every input x ∈ {0, 1}n.

It is a well-known fact that there is a constant K > 0 such that, for any function f on n
variables as above, there is a circuit of size at most K · 2n/n that computes f ; hence, MCSP[s] is
only non-trivial for s(n) < K · 2n/n. Furthermore, MCSP[s] ∈ NP for any constructible s and,
since every circuit of size at most s(n) can be described by a binary string of O(s(n) log s(n))
length, if 2O(s(n) log s(n)) ⊆ poly(2n) (e.g., s(n) ∈ O(n/ log n)), by enumerating all possibilities we
have MCSP[s] ∈ P. (Of course, such a bound is hardly useful since s(n) ∈ O(n/ log n) implies
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the circuit is degenerate and can only read a strict subset of its inputs.) For large enough
s(n) < K ·2n/n (e.g., s(n) ≥ n), it is unclear whether MCSP[s] is NP-complete (under polynomial-
time many-one reductions); see also [13, 21]. Still, we remark there has been some recent progress
regarding NP-completeness under randomized many-one reductions for certain variants of MCSP
[12].

Oliveira and Santhanam [23] and Oliveira, Pich, and Santhanam [22] recently analyzed hardness
magnification in the average-case as well as in the worst-case approximation (i.e., gap) settings of
MCSP for various (uniform and non-uniform) computational models. Meanwhile, McKay, Murray,
and Williams [17] showed similar results hold in the standard (i.e., exact or gapless) worst-case
setting and proved the following magnification result for (single-pass) streaming algorithms (see
Definition 2), which is a very restricted uniform model; indeed, as mentioned in [17], even string
equality (i.e., the problem of recognizing {ww | w ∈ {0, 1}+}) cannot be solved by streaming
algorithms (with limited space).

Theorem 1 ([17]). Let s : N+ → N+ be time constructible and s(n) ≥ n. If there is no poly(s(n))-
space streaming algorithm with poly(s(n)) update time for (the search version of) MCSP[s], then
P 6= NP.

In this paper, we present the following hardness magnification result for a (uniform) computa-
tional model which is provably even more restricted than streaming algorithms: shrinking cellular
automata (SCAs). Here, Blockb refers to a slightly modified presentation of MCSP[s] that is only
needed due to certain limitations of the model (see further discussion as well as Section 3.1).

Theorem 2. For a certain m ∈ poly(s(n)), if Blockb(MCSP[s]) 6∈ SCA[n · f(m)] for every
f ∈ poly(m) and b ∈ O(f), then P 6= NP.

Furthermore, we show every language accepted by a sublinear-time SCA can also be accepted
by a streaming algorithm of comparable complexity:

Theorem 3. Let t : N+ → N+ be computable by an O(t)-space random access machine (as in
Definition 2) in O(t log t) time. Then, if L ∈ SCA[t], there is an O(t)-space streaming algorithm
for L with O(t log t) update and O(t2 log t) reporting time.

Finally, we identify and prove two distinct limitations of SCAs compared to streaming
algorithms (under sublinear-time constraints):

1. They are insensitive to the length of long unary substrings in their input (Lemma 8), which
means (standard versions of) fundamental problems such as parity, modulo, majority, and
threshold cannot be solved in sublinear time (Proposition 9 and Corollary 11).

2. Only a limited amount of information can be transferred between cells which are far apart
(in the sense of one-way communication complexity; see Lemma 13).

Both limitations are inherited from the underlying model of cellular automata. The first can
be avoided by presenting the input in a special format (the previously mentioned Blockn) that
is efficiently verifiable by SCAs, which we motivate and adopt as part of the model (see the
discussion below). The second is more dramatic and results in lower bounds even for languages
presented in this format:

Theorem 4. There is a language L1 for which Blockn(L1) 6∈ SCA[o(N/ logN)] (N being the
instance length) can be accepted by an O(logN)-space streaming algorithm with Õ(logN) update
time.
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From the above, it follows that any proof of P 6= NP based on a lower bound for solving
MCSP[s] with streaming algorithms and Theorem 1 must implicitly contain a proof of a lower
bound for solving MCSP[s] with SCAs. From a more “optimistic” perspective (with an eventual
proof of P 6= NP in mind), although not as widely studied as streaming algorithms, SCAs are thus
at least as good as a “target” for proving lower bounds against and, in fact, should be an easier one
if we are able to exploit their aforementioned limitations. Refer to Section 6 for further discussion
on this, where we take into account a recently proposed barrier [5] to existing techniques and
which also applies to our proof of Theorem 4.

From the perspective of cellular automata theory, our work furthers knowledge in sublinear-
time cellular automata models, a topic seemingly neglected by the community at large (as pointed
out in, e.g., [19]). Although this is certainly not the first result in which complexity-theoretical
results for cellular automata and their variants have consequences for classical models (see, e.g.,
[15, 24] for results in this sense), to the best of our knowledge said results address only necessary
conditions for separating classical complexity classes. Hence, our result is also novel in providing
an implication in the other direction, that is, a sufficient condition for said separations based on
lower bounds for cellular automata models.

1.1 The Model
(One-dimensional) cellular automata (CAs) are a parallel computational model composed of
identical cells arranged in an array. Each cell operates as a deterministic finite automaton (DFA)
that is connected with its left and right neighbors and operates according to the same local rule.
In classical CAs, the cell structure is immutable; shrinking CAs relax the model in that regard by
allowing cells to spontaneously vanish (with their contents being irrecoverably lost). The array
structure is conserved by reconnecting every cell with deleted neighbors to the nearest non-deleted
ones in either direction.

SCAs were introduced by Rosenfeld, Wu, and Dubitzki in 1983 [25], but it was not until
recent years that the model received greater attention by the CA community [16, 20]. SCAs are a
natural and robust model of parallel computation which, unlike classical CAs, admit (non-trivial)
sublinear-time computations.

We give a brief intuition as to how shrinking augments the classical CA model in a significant
way. Intuitively speaking, any two cells in a CA can only communicate by signals, which necessarily
requires time proportional to the distance between them. Assuming the entire input is relevant
towards acceptance, this imposes a linear lower bound on the time complexity of the CA. In SCAs,
however, this distance can be shortened as the computation evolves, thus rendering acceptance in
sublinear time possible. As a matter of fact, the more cells are deleted, the faster distant cells
can communicate and the computation can evolve. This results in a trade-off between space (i.e.,
cells containing information) and time (i.e., amount of cells deleted).

Comparison with Related Models. Unlike other parallel models such as random access
machines, SCAs are incapable of random access to their input. In a similar sense, SCAs are
constrained by the distance between cells, which is an aspect usually disregarded in circuits and
related models except perhaps for VLSI complexity [4, 28], for instance. In contrast to VLSI
circuits, however, in SCAs distance is a fluid aspect, changing dynamically as the computation
evolves. Also of note is that SCAs are a local computational model in a quite literal sense of
locality that is coupled with the above concept of distance (instead of more abstract notions such
as that from [30], for example).

These limitations hold not only for SCAs but also for standard CAs. Nevertheless, SCAs are
more powerful than other CA models capable of sublinear-time computation such as ACAs [11,
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19], which are CAs with their acceptance behavior such that the CA accepts if and only if all
cells simultaneously accept. This is because SCAs can efficiently aggregate results computed in
parallel (by combining them using some efficiently computable function); in ACAs any such form
of aggregation is fairly limited as the underlying cell structure is static.

Block Words. As mentioned above, there is an input format which allows us to circumvent
the first of the limitations of SCAs compared to streaming algorithms and which is essential in
order to obtain a more serious computational model. In this format, the input is subdivided into
blocks of the same size and which are separated by delimiters and numbered in ascending order
from left to right. Words with this structure are dubbed block words accordingly, and a set of
such words is a block language. There is a natural presentation of any (ordinary) word as a block
word (by mapping every symbol to its own block), which means there is a block language version
to any (ordinary) language. (See Section 3.1.)

The concept of block words seems to arise naturally in the context of sublinear-time (both
shrinking and standard) CAs [11, 19]. The syntax of block words is very efficiently verifiable
(more precisely, in time linear in the block length) by a CA (without need of shrinking). In
addition, the translation of a language to its block version (and its inverse) is a very simple map;
one may frame it, for instance, as an AC0 reduction. Hence, the difference between a language
and its block version is solely in presentation.

Block words coupled with CAs form a computational paradigm that appears to be substantially
diverse from linear- and real-time CA computation (see [19] for examples). Often we shall describe
operations on a block (rather than on a cell) level and, by making use of block numbering, two
blocks with distinct numbers may operate differently even though their contents are the same;
this would be impossible at a cell level due to the locality of CA rules. In combination with
shrinking, certain block languages admit merging groups of blocks in parallel; this gives rise
to a form of reduction we call blockwise reductions and which we employ in a manner akin to
downward self-reducibility as in [1].

An additional technicality which arises is that the number of cells in a block is fixed at the
start of the computation; this means a block cannot “allocate extra space” (beyond a constant
multiple of the block length). This is the same limitation as that of linear bounded automata
(LBAs) compared to Turing machines with unbounded space, for example. We cope with this
limitation by increasing the block length in the problem instances as needed, that is, by padding
each block so that enough space is available from the outset.1 This is still in line with the
considerations above; for instance, the resulting language is still AC0 reducible to the original one
(and vice-versa).

1.2 Techniques
We give a broad overview of the proof ideas behind our results.

Theorem 2 is a direct corollary of Theorem 14, proven is Section 5. The proof closely follows
[17] (see the discussion in Section 5 for a comparison) and, as mentioned above, bases on a scheme
similar to self-reducibility as in [1].

The lower bounds in Section 3.2 are established using Lemma 8, which is a generic technical
limitation of sublinear-time models based on CAs (the first of the two aforementioned limitations
of SCAs with respect to streaming algorithms) and which we also show to hold for SCAs.

1An alternative solution is allowing the CA to “expand” by dynamically creating new cells between existing
ones; however, this may result in a computational model which is dramatically more powerful than standard CAs
[18, 20].
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One of the main technical highlights is the proof of Theorem 3, where we give a streaming
algorithm to simulate an SCA with limited space. Our general approach bases on dynamic
programming and is able to cope with the unpredictability of when, which, or even how many
cells are deleted during the simulation. The space efficiency is achieved by keeping track of only
as much information as needed as to determine the state of the SCA’s decision cell step for step.

A second technical contribution is the application of one-way communication complexity to
obtain lower bounds for SCAs, which yields Theorem 4. Essentially, we split the input in some
position i of our choice (which may even be non-uniformly dependent on the input length) and
have A be given as input the symbols preceding i while B is given the rest, where A and B
are (non-uniform) algorithms with unbounded computational resources. We show that, in this
setting, A can determine the state of the SCA’s decision cell with only O(1) information from
B for every step of the SCA. Thus, an SCA with time complexity t for a language L yields a
protocol with O(t) one-way communication complexity for the above problem. Applying this
in the contrapositive, Theorem 4 then follows from the existence of a language L1 (in some
contexts referred to as the indexing or memory access problem) that has nearly linear one-way
communication complexity despite admitting an efficient streaming algorithm.

1.3 Organization
The rest of the paper is organized as follows: Section 2 presents the basic definitions. In Section 3
we introduce block words and related concepts and discuss the aforementioned limitations of
sublinear-time SCAs. Following that, in Section 4 we address the proof of Theorem 3 and in
Section 5 that of Theorem 2. Finally, Section 6 concludes the paper.

2 Preliminaries
We denote the set of integers by Z, that of positive integers by N+, and N+ ∪ {0} by N0. For
a, b ∈ N0, [a, b] = {x ∈ N0 | a ≤ x ≤ b}. For sets A and B, BA is the set of functions A→ B.

We assume the reader is familiar with cellular automata as well as with the fundamentals of
computational complexity theory (see, e.g., standard references [2, 8, 10]). Words are indexed
starting with index zero. For a finite, non-empty set Σ, Σ∗ denotes the set of words over Σ, and
Σ+ the set Σ∗ \{ε}. For w ∈ Σ∗, we write w(i) for the i-th symbol of w (and, in general, wi stands
for another word altogether, not the i-th symbol of w). For a, b ∈ N0, w[a, b] is the subword
w(a)w(a+1) · · ·w(b−1)w(b) of w (where w[a, b] = ε for a > b). |w|a is the number of occurrences
of a ∈ Σ in w. binn(x) stands for the binary representation of x ∈ N0, x < 2n, of length n ∈ N+

(padded with leading zeros). poly(n) is the class of functions polynomial in n ∈ N0. REG denotes
the class of regular languages, and TISP[t, s] (resp., TIME[t]) that of problems decidable by a
Turing machine (with one tape and one read-write head) in O(t) time and O(s) space (resp.,
unbounded space). Without restriction, we assume the empty word ε is not a member of any of
the languages considered.

An ω-word is a map N0 → Σ, and a ωω-word is a map Z→ Σ. We write Σω = ΣN0 for the
set of ω-words over Σ. For x ∈ Σ, xω denotes the (unique) ω-word with xω(i) = x for every
i ∈ N0. To each ωω-word w corresponds a unique pair (w−, w+) of ω-words w−, w+ ∈ Σω with
w+(i) = w(i) for i ≥ 0 and w−(i) = w(−i− 1) for i < 0. (Partial) ω-word homomorphisms are
extendable to (partial) ωω-word homomorphisms as follows: Let f : Σω → Σω be an ω-word
homomorphism; then there is a unique fωω : ΣZ → ΣZ such that, for every w ∈ ΣZ, w′ = fωω(w)
is the ωω-word with w′+ = f(w+) and w′− = f(w−).

For a circuit C, |C| denotes the size of C, that is, the total number of gates in C. It is
well-known that any Boolean circuit C can be described by a binary string of O(|C| log|C|) length.
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Definition 2 (Streaming algorithm). Let s, u, r : N+ → N+ be functions. An s-space streaming
algorithm A is a random access machine which, on input w, works in O(s(|w|)) space and, on
every step, can either perform an operation on a constant number of bits in memory or read the
next symbol of w. A has u update time if, for every w, the number of operations it performs
between reading w(i) and w(i + 1) is at most u(|w|). A has r reporting time if it performs at
most r(|w|) operations after having read w(|w| − 1) (until it terminates).

Our interest lies in s-space streaming algorithms that, for an input w, have poly(s(|w|)) update
and reporting time for sublinear s (i.e., s(|w|) ∈ o(|w|)).

2.1 Cellular Automata
We consider only CAs with the standard neighborhood. The symbols of an input w are provided
from left to right in the cells 0 to |w| − 1 and are surrounded by inactive cells, which conserve
their state during the entire computation (i.e., the CA is bounded). Acceptance is signaled by
cell zero (i.e., the leftmost input cell).

Definition 3 (Cellular automaton). A cellular automaton (CA) C is a tuple (Q, δ,Σ, q, A) where:
Q is a non-empty and finite set of states ; δ : Q3 → Q is the local transition function; Σ ( Q is the
input alphabet of C; q ∈ Q \ Σ is the inactive state, that is, δ(q1, q, q2) = q for every q1, q2 ∈ Q;
and A ⊆ Q \ {q} is the set of accepting states of C. A cell which is not in the inactive state is
said to be active. The elements of QZ are the (global) configurations of C. δ induces the global
transition function ∆: QZ → QZ of C by ∆(c)(i) = δ(c(i− 1), c(i), c(i+ 1)) for every cell i ∈ Z
and configuration c ∈ QZ.

C accepts an input w ∈ Σ+ if cell zero is eventually in an accepting state, that is, there
is t ∈ N0 such that (∆t(c0))(0) ∈ A, where c0 = c0(w) is the initial configuration (for w):
c0(i) = w(i) for i ∈ [0, |w| − 1], and c0(i) = q otherwise. For a minimal such t, we say C accepts
w with time complexity t. L(A) ⊆ Σ+ denotes the set of words accepted by C. For t : N+ → N0,
CA[t] is the class of languages accepted by CAs with time complexity O(t(n)), n being the input
length.

For convenience, we extend ∆ in the obvious manner (i.e., as a map induced by δ) so it is
also defined for every (finite) word w ∈ Q∗. For |w| ≤ 2, we set ∆(w) = ε; for longer words,
|∆(w)| = |w| − 2 holds.

Some remarks concerning the classes CA[t]: CA[poly] = TISP[poly, n] (i.e., the class of
polynomial-time LBAs), and CA[t] = CA[1] ( REG for every sublinear t. Furthermore, CA[t] ⊆
TISP[t2, n] (where t2(n) = (t(n))2) and TISP[t, n] ⊆ CA[t].

Definition 4 (Shrinking CA). A shrinking CA (SCA) S is a CA with a delete state ⊗ ∈
Q \ (Σ ∪ {q}). The global transition function ∆S of S is given by applying the standard CA
global transition function ∆ (as in Definition 3) followed by removing all cells in the state ⊗;
that is, ∆S = Φ ◦∆, where Φ: QZ → QZ is the (partial) ωω-word homomorphism resulting from
the extension to QZ of the map ϕ : Q → Q with ϕ(⊗) = ε and ϕ(x) = x for x ∈ Q \ {⊗}. For
t : N+ → N0, SCA[t] is the class of languages accepted by SCAs with time complexity O(t(n)),
where n denotes the input length.

Note that Φ is only partial since, for instance, any ωω-word in ⊗ω · Σ∗ · ⊗ω has no proper
image (as it is not mapped to a ωω-word). Hence, ∆S is also only a partial function (on QZ);
nevertheless, Φ is total on the set of ωω-words in which ⊗ occurs only finitely often and, in
particular, ∆S is total on the set of configurations arising from initial configurations for finite
input words (which is the setting we are interested in).
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q 0 1 0 1 0 0 qc

q 0′ ⊗ ⊗ ⊗ ⊗ 0′ q∆(c)

q 0′ 0′ q∆S(c) = Φ(∆(c))

q a 0′ q∆S(∆S(c)) X

Figure 1: Computation of an SCA that recognizes L = {w ∈ {0, 1}+ | w(0) = w(|w| − 1)} in O(1)
time. Here, the input word is 010100 ∈ L.

The acceptance condition of SCAs is the same as in Definition 3 (i.e., acceptance is dictated
by cell zero). Unlike in standard CAs, the index of one same cell can differ from one configuration
to the next; that is, a cell index does not uniquely determine a cell on its own (rather, only in
conjunction with a time step). This is a consequence of applying Φ, which contracts the global
configuration towards cell zero. More precisely, for a configuration c ∈ QZ, the cell with index
i ≥ 0 in ∆(c) corresponds to that with index i + di in c, where di is the number of cells with
index ≤ i in c that were deleted in the transition to ∆(c). This also implies the cell with index
zero in ∆(c) is the same as that in c with minimal positive index that was not deleted in the
transition to ∆(c); thus, in any time step, cell zero is the leftmost active cell (unless all cells are
inactive; in fact, cell zero is inactive if and only if all other cells are inactive). Granted, what
indices a cell has is of little importance when one is interested only in the configurations of an
SCA and their evolution; nevertheless, they are relevant when simulating an SCA with another
machine model (as we do in Sections 3.3 and 4).

Naturally, CA[t] ⊆ SCA[t] for every function t, and SCA[poly] = CA[poly]. For sublinear
t, SCA[t] contains non-regular languages if, for instance, t ∈ Ω(log n) (see below); hence, the
inclusion of CA[t] in SCA[t] in strict. In fact, this is the case even if we consider only regular
languages. One simple example is L = {w ∈ {0, 1}+ | w(0) = w(|w| − 1)}, which is in SCA[1]
and regular but not in CA[o(n)] = CA[O(1)]. One obtains an SCA for L by having all cells
whose both neighbors are active delete themselves in the first step; the two remaining cells then
compare their states, and cell zero accepts if and only if this comparison succeeds or if the input
has length 1 (which it can notice immediately since it is only for such words that it has two
inactive neighbors). Formally, the local transition function δ is such that, for z1, z3 ∈ {0, 1, q}
and z2 ∈ {0, 1}, δ(z1, z2, z3) = ⊗ if both z1 and z3 are in {0, 1}, δ(z1, z2, z3) = z′2 if z1 = q or
z3 = q, and δ(q, z′2, z′2) = δ(q, z′2, q) = a; in all other cases, δ simply conserves the cell’s state. See
Figure 1 for an example.

Using a textbook technique to simulate a (bounded) CA with an LBA (simply skipping deleted
cells), we have:

Proposition 5. For every function t : N+ → N+ computable by an LBA in O(n · t(n)) time,
SCA[t] ⊆ TISP[n · t(n), n].

The inclusion is actually proper (see Corollary 10). Using the well-known result that
TIME[o(n log n)] = REG [14], it follows that at least a logarithmic time bound is needed for
SCAs to recognize languages which are not regular:

Corollary 6. SCA[o(log)] ( REG.

This bound is tight: It is relatively easy to show that any language accepted by ACAs in t(n)
time can also be accepted by an SCA in t(n) +O(1) time. Since there is a non-regular language
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recognizable by ACAs [11] in O(log n) time, the same language is recognizable by an SCA in
O(log n) time.

For any finite, non-empty set Σ, we say a function f : Σ+ → Σ+ is computable in place by
an (S)CA if there is an (S)CA S which, given x ∈ Σ+ as input (surrounded by inactive cells),
produces f(x). Additionally, g : N+ → N+ is constructible in place by an (S)CA if g(n) ≤ 2n and
there is an (S)CA S which, given n ∈ N0 in unary, produces binn(g(n) − 1) (i.e., g(n) − 1 in
binary). Note the set of functions computable or constructible in place by an (S)CA in at most
t(n) time, where n is the input length and t : N+ → N+ is some function, includes (but is not
limited to) all functions computable by an LBA in at most t(n) time.

3 Capabilities and Limitations of Sublinear-Time SCAs

3.1 Block Languages
Let Σ be a finite, non-empty set. For Σε = Σ∪ {ε} and x, y ∈ Σ+,

(
x
y

)
denotes the (unique) word

in (Σε × Σε)
+ of length max{|x|, |y|} for which

(
x
y

)
(i) = (x(i), y(i)), where x(i) = y(j) = ε for

i ≥ |x| and j ≥ |y|.

Definition 5 (Block word). Let n,m, b ∈ N+ be such that b ≥ n and m ≤ 2n. A word w is
said to be an (n,m, b)-block word (over Σ) if it is of the form w = w0#w1# · · ·#wm−1 and
wi =

(
binn(xi)

yi

)
, where x0 ≥ 0, xi+1 = xi + 1 for every i, xm−1 < 2n, and yi ∈ Σb. In this context,

wi is the i-th block of w.

Hence, every (n,m, b)-block word w has m many blocks of length b, and its total length is
|w| = (b+ 1) ·m− 1 ∈ Θ(bm). For example,

w =

(
01

0100

)
#

(
10

1100

)
#

(
11

1000

)
is a (2, 3, 4)-block word with x0 = 1, y0 = 0100, y1 = 1100, and y2 = 1000. n is implicitly encoded
by the entries in the upper track (i.e., the xi) and we shall see m and b as parameters depending
on n (see Definition 6 below), so the structure of each block can be verified locally (i.e., by
inspecting the immediate neighborhood of every block). Note the block numbering starts with an
arbitrary x0; this is intended so that, for m′ < m, an (n,m, b)-block word admits (n,m′, b)-block
words as infixes (which would not be the case if we required, say, x0 = 0).

When referring to block words, we use N for the block word length |w| and reserve n for
indexing block words of different block length, overall length, or total number of blocks (or any
combinations thereof). With m and b as parameters depending on n, we obtain sets of block
words:

Definition 6 (Block language). Let m, b : N+ → N+ be non-decreasing and constructible in
place by a CA in O(m(n) + b(n)) time. Furthermore, let b(n) ≥ n and m(n) ≤ 2n. Then, Bm

b

denotes the set of all (n,m(n), b(n))-block words for n ∈ N+, and every subset L ⊆ Bm
b is an

((n,m, b)-)block language (over Σ).

An SCA can verify its input is a valid block word in O(b(n)) time, that is, locally check that
the structure and contents of the blocks are consistent (i.e., as in Definition 5). This can be
realized using standard CA techniques without need of shrinking (see [11, 19] for constructions).
Recall Definition 4 does not require an SCA S to explicitly reject inputs not in L(S), that is,
the time complexity of S on an input w is only defined for w ∈ L(S). As a result, when L(S) is
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a block language, the time spent verifying that w is a block word is only relevant if w ∈ L(S)
and, in particular, if w is a (valid) block word. Provided the state of every cell in S eventually
impacts its decision to accept (which is the case for all constructions we describe), it suffices to
have a cell mark itself with an error flag whenever a violation in w is detected (even if other
cells continue their operation as normal); since every cell is relevant towards acceptance, this
eventually prevents S from accepting (and, since w 6∈ L(S), it is irrelevant how long it takes for
this to occur). Thus, for the rest of this paper, when describing an SCA for a block language, we
implicitly require that the SCA checks its input is a valid block word beforehand.

As stated in the introduction, our interest in block words is as a special input format. There
is a natural bijection between any language and a block version of it, namely by mapping each
word z to a block word w in which each block wi contains a symbol z(i) of z (padded up to the
block length b) and the blocks are numbered from 0 to |z| − 1:

Definition 7 (Block version of a language). Let L ⊆ Σ+ be a language and b as in Definition 6.
The block version Blockb(L) of L (with blocks of length b) is the block language for which, for
every z ∈ Σ+, z ∈ L holds if and only if we have w ∈ Blockb(L) where w is the (n,m, b(n))-block
word (as in Definition 5) with m = |z|, n = dlogme, x0 = 0, and yi = z(i)0b(n)−1 for every
i ∈ [0,m− 1].

Note that, for any such language L, Blockb(L) 6∈ REG for any b (since b(n) ≥ n is not constant);
hence, Blockb(L) ∈ SCA[t] only for t ∈ Ω(log n) (and constructible b). For b(n) = n, Blockn(L) is
the block version with minimal padding.

For any two finite, non-empty sets Σ1 and Σ2, say a function f : Σ+
1 → Σ+

2 is non-stretching
if |f(x)| ≤ |x| for every x ∈ Σ+

1 . We now define k-blockwise maps, which are maps that operate
on block words by grouping k(n) many blocks together and mapping each such group (in a
non-stretching manner) to a single block of length at most (b(n) + 1) · k(n)− 1.

Definition 8 (Blockwise map). Let k : N+ → N+, k(n) ≥ 2, be a non-decreasing function and
constructible in place by a CA in O(k(n)) time. A map g : Bkm

b → Bm
b is a k-blockwise map if

there is a non-stretching g′ : Bk
b → Σ+ such that, for every w ∈ Bkm

b (as in Definition 5) and
w′i = wik# · · ·#w(i+1)k−1:

g(w) =

(
binn(x0)

g′(w′0)

)
# · · ·#

(
binn(xm−1)

g′(w′m−1)

)
.

Using blockwise maps, we obtain a very natural form of reduction operating on block words
and which is highly compatible with sublinear-time SCAs as a computational model. The
reduction divides an (n, km, b)-block word in m many groups of k many contiguous blocks and,
as a k-blockwise map, maps each such group to a single block (of length b):

Definition 9 (Blockwise reducible). For block languages L and L′, L is (k-)blockwise reducible
to L′ if there is a computable k-blockwise map g : Bkm

b → Bm
b such that, for every w ∈ Bkm

b , we
have w ∈ L if and only if g(w) ∈ L′.

Since every application of the reduction reduces the instance length by a factor of approximately
k, logarithmically many applications suffice to produce a trivial instance (i.e., an instance consisting
of a single block). This gives us the following computational paradigm of chaining blockwise
reductions together:

Lemma 7. Let k, r : N+ → N0 be functions, and let L ⊆ Bkr

b be such that there is a series
L = L0, L1, . . . , Lr(n) of languages with Li ⊆ Bkr−i

b and such that Li is k(n)-blockwise reducible
to Li+1 via the (same) blockwise reduction g. Furthermore, let g′ be as in Definition 8, and let
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tg′ : N+ → N+ be non-decreasing and such that, for every w′ ∈ Br
b , g

′(w′) is computable in place
by an SCA in O(tg′(|w′|)) time. Finally, let Lr(n) ∈ SCA[t] for some function t : N+ → N+. Then,
L ∈ SCA[r(n) · tg′(O(k(n) · b(n))) +O(b(n)) + t(b(n))].

Proof. We consider the SCA S which, given w ∈ Bkr

b , repeatedly applies the reduction g, where
each application of g is computed by applying g′ on each group of relevant blocks (i.e., the w′i
from Definition 8) in parallel.

One detail to note is that this results in the same procedure P being applied to different
groups of blocks in parallel, but it may be so that P requires more time for one group of blocks
than for the other. Thus, we allow the entire process to be carried out asynchronously but require
that, for each group of blocks, the respective results be present before each execution of P is
started. (One way of realizing this, for instance, is having the first block in the group send a
signal across the whole group to ensure all inputs are available and, when it arrives at the last
block in the group, another signal is sent to trigger the start of P .)

Using that tg′ is non-decreasing and that g′ is non-stretching, the time needed for each
execution of P is tg′(|w′i|) ∈ tg′(O(k(n) · b(n))) (which is not impacted by the considerations
above) and, since there are r(n) reductions in total, we have r(n) · tg′(O(k(n) · b(n))) time in total.
Once a single block is left, the cells in this block synchronize themselves and then behave as in
the SCA S′ for Lr(n) guaranteed by the assumption; using a standard synchronization algorithm,
this requires O(b(n)) for the synchronization, plus t(b(n)) time for emulating S′.

3.2 Block Languages and Parallel Computation
In this section, we prove the first limitation of SCAs discussed in the introduction (Lemma 8)
and which renders them unable of accepting the languages PAR, MODq, MAJ, and THRk (defined
next) in sublinear time. Nevertheless, as is shown in Proposition 12, the block versions of these
languages can be accepted quite efficiently. This motivates the block word presentation for inputs;
that is, this first limitation concerns only the presentation of instances (and, hence, is not a
computational limitation of SCAs).

Let q > 2 and let k : N+ → N+ be constructible in place by a CA in at most tk(n) time
for some tk : N+ → N+. Additionally, let PAR (resp., MODq; resp., MAJ; resp., THRk) be the
language consisting of every word w ∈ {0, 1}+ for which |w|1 is even (resp., |w|1 = 0 (mod q);
resp., |w|1 ≥ |w|0; resp., |w|1 ≥ k(|w|)).

The following is a simple limitation of sublinear-time CA models such as ACAs (see also [26])
which we show also to hold for SCAs.

Lemma 8. Let S be an SCA with input alphabet Σ, and let x ∈ Σ be such that there is a minimal
t ∈ N+ for which ∆t

S(y) = ε, where y = x2t+1 (i.e., the symbol x concatenated 2t+ 1 times with
itself). Then, for every z1, z2 ∈ Σ+, w = z1yz2 ∈ L(S) holds if and only if for every i ∈ N0 we
have wi = z1yx

iz2 ∈ L(S).

Proof. Given w and i as above, we show wi ∈ L(S); the converse is trivial. Since w and wi
both have z1y as prefix and ∆t′

S (y) 6= ε for t′ < t, if S accepts w in t′ steps, then it also accepts
wi in t′ steps. Thus, assume S accepts w in t′ ≥ t steps, in which case it suffices to show
∆t

S(w) = ∆t
S(wi). To this end, let αj for j ∈ [0, t] be such that α0 = x and αj+1 = δ(αj , αj , αj).

Hence, ∆(αk+2
j ) = αkj+1 holds for every k ∈ N+ (and j < t) and, by an inductive argument as well

as by the assumption on y (i.e., αt = ⊗), ∆t
S(yxi) = ∆t

S(α2t+i+1
0 ) = ε. Using this along with |y| ≥ t

and y ∈ {x}+, we have ∆t
S(qtz1yx

i) = ∆t
S(qtz1y) and ∆t

S(yxiz2q
t) = ∆t

S(xiyz2q
t) = ∆t

S(yz2q
t);

hence, ∆t
S(w) = ∆t

S(wi) follows.
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An implication of Lemma 8 is that every unary language U ∈ SCA[o(n)] is either finite or
cofinite. As PAR ∩ {1}+ is neither finite nor cofinite, we can prove:

Proposition 9. PAR 6∈ SCA[o(n)] (where n is the input length).

Proof. Let S be an SCA with L(S) = PAR. We show S must have Ω(n) time complexity on
inputs from the infinite set U = {12m | m ∈ N+} ⊂ PAR. If ∆t

S(12t+1) = ε for some t ∈ N0,
then, by Lemma 8, L(S) ∩ {1}+ is either finite or cofinite, which contradicts L(S) = PAR. Hence,
∆t

S(12t+1) 6= ε for every t ∈ N0. In this case, the trace of cell zero on input w = 112t+11 in the
first t steps is the same as that on input w′ = 112t+111. Since w ∈ PAR if and only if w′ 6∈ PAR,
it follows that S has Ω(t) = Ω(n) time complexity on U .

Corollary 10. REG 6⊆ SCA[o(n)].

The argument above generalizes to MODq, MAJ, and THRk with k ∈ ω(1). For MODq,
consider U = {1qm | m ∈ N+}. For MAJ and THRk, set U = {0m1m | m ∈ N+} and U =
{0n−k(n)1k(n) | n ∈ N+}, respectively; in this case, U is not unary, but the argument easily
extends to the unary suffixes of the words in U .

Corollary 11. MODq,MAJ 6∈ SCA[o(n)]. Also, THRk ∈ SCA[o(n)] if and only if k ∈ O(1).

The block versions of these languages, however, are not subject to the limitation above:

Proposition 12. For L ∈ {PAR,MODq,MAJ}, Blockn(L) ∈ SCA[(logN)2], where N = N(n) is
the input length. Also, Blockn(THRk) ∈ SCA[(logN)2 + tk(n)].

Proof. Given L ∈ {PAR,MODq,MAJ,THRk}, we construct an SCA S for L′ = Blockn(L) with
the purported time complexity. Let w ∈ Bm

n be an input of S. For simplicity, we assume that,
for every such w, m = m(n) = 2n is a power of two; the argument extends to the general case in
a simple manner. Hence, we have N = |w| = n ·m and n = logm ∈ Θ(logN).

Let L0 ⊂ Bm
n be the language containing every such block word w ∈ Bm

n for which, for yi
as in Definition 5 and y =

∑m−1
i=0 yi, we have fL(y) = fL,n(y) = 0, where fPAR(y) = y mod 2,

fMODq
(y) = y mod q, fMAJ(y) = 0 if and only if y ≥ 2n−1, and fTHRk

(y) = 0 if and only if
y ≥ k(n). Thus, (under the previous assumption) we have L0 = L′ (and, in the general case,
L0 = L′ ∩B2n

n ).
Then, L0 is 2-blockwise reducible to a language L1 ⊆ B

m/2
n by mapping every (n, 2, n)-block

word of the form
(

binn(2x)
y2x

)
#
(

binn(2x+1)
y2x+1

)
with x ∈ [0, 2n−1− 1] to

(
binn(x)

y2x+y2x+1

)
. To do so, it suffices

to compute binn(x) from binn(2x) and add the y2x and y2x+1 values in the lower track; using
basic CA arithmetic and cell communication techniques, this is realizable in O(n) time. Repeating
this procedure, we obtain a chain of languages L0, . . . , Ln such that Li is 2-blockwise reducible
to Li+1 in O(n) time. By Lemma 7, L′ ∈ SCA[n2 + t(n)] follows, where t : N+ → N0 is such that
Ln ∈ SCA[t]. For L ∈ {PAR,MODq,MAJ}, checking the above condition on fL(y) can be done in
t(n) ∈ O(n) time; as for L = THRk, we must also compute k, so we have t(n) ∈ O(n+ tk(n)).

The general case follows from adapting the above reductions so that words with an odd
number of blocks are also accounted for (e.g., by ignoring the last block of w and applying the
reduction on the first m− 1 blocks).

3.3 An Optimal SCA Lower Bound for a Block Language
Corollary 10 already states SCAs are strictly less capable than streaming algorithms. However,
the argument bases exclusively on long unary subwords in the input (i.e., Lemma 8) and, therefore,
does not apply to block languages. Hence Theorem 4, which shows SCAs are more limited than
streaming algorithms even considering only block languages:
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Theorem 4. There is a language L1 for which Blockn(L1) 6∈ SCA[o(N/ logN)] (N being the
instance length) can be accepted by an O(logN)-space streaming algorithm with Õ(logN) update
time.

Let L1 be the language of words w ∈ {0, 1}+ such that |w| = 2n is a power of two and, for
i = w(0)w(1) · · ·w(n− 1) (seen as an n-bit binary integer), w(i) = 1. It is not hard to show that
its block version Blockn(L1) can be accepted by an O(logm)-space streaming algorithm with
Õ(logm) update time.

The O(N/ logN) upper bound for Blockn(L1) is optimal since there is an O(N/ logN) time
SCA for it: Shrink every block to its respective bit (i.e., the yi from Definition 5), reducing the
input to a word w′ of O(N/ logN) length; while doing so, mark the bit corresponding to the n-th
block. Then shift the contents of the first n bits as a counter that decrements itself every new
cell it visits and, when it reaches zero, signals acceptance if the cell it is currently at contains a 1.
Using counter techniques as in [27, 29], this requires O(|w′|) time.

The proof of Theorem 4 bases on communication complexity. The basic setting is a game
with two players A and B (both with unlimited computational resources) which receive inputs
wA and wB , respectively, and must produce an answer to the problem at hand while exchanging
a limited amount of bits. We are interested in the case where the concatenation w = wAwB of
the inputs of A and B is an input to an SCA and A must output whether the SCA accepts w.
More importantly, we analyze the case where only B is allowed to send messages, that is, the
case of one-way communication.2

Definition 10 (One-way communication complexity). Let m, f : N+ → N+ be functions with 0 <
m(N) ≤ N . A language L ⊆ Σ+ is said to have (m-)one-way communication complexity f if there
are families of algorithms (with unlimited computational resources) (AN )N∈N+ and (BN )N∈N+

such that the following holds for every w ∈ Σ∗ of length |w| = N , where wA = w[0,m(N)− 1]
and wB = w[m(N), N − 1]:

1. |BN (wB)| ≤ f(N); and

2. AN (wA, B(wB)) = 1 (i.e., accept) if and only if w ∈ L.

Cmow(L) indicates the (pointwise) minimum over all such functions f .

Note that AN and BN are nonuniform, so the length N of the (complete) input w is known
implicitly by both algorithms.

Lemma 13. For any computable t : N+ → N+ and m as in Definition 10, if L ∈ SCA[t], then
Cmow(L)(N) ∈ O(t(N)).

The proof idea is to have A and B simulate the SCA for L simultaneously, with A maintaining
the first half cA of the SCA configuration and B the second half cB. (Hence, A is aware of the
leftmost active state in the SCA and can detect whether the SCA accepts or not.) The main
difficulty is guaranteeing that A and B can determine the states of the cells on the right (resp.,
left) end of cA (resp., cB) despite the respective local configurations “overstepping the boundary”
between cA and cB . Hence, for each step in the simulation, B communicates the states of the two
leftmost cells in cB ; with this, A can compute the states of all cells of cA in the next configuration
as well as that of the leftmost cell α of cB , which is added to cA. (See Figure 2 for an illustration.)
This last technicality is needed due to one-way communication, which renders it impossible for B

2One-way communication complexity can also been defined as the maximum over both communication directions
(i.e., B to A and A to B; see [9] for an example in the setting of CAs). Since our goal is to prove a lower bound on
communication complexity, it suffices to consider a single (arbitrary) direction (in this case B to A).
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A B

Figure 2: Simulating an SCA with low one-way communication complexity. (For simplicity, in
this example the SCA does not shrink.) B communicates the states of the cells marked with “•”.
The colors indicate which states are computed by each player.

to determine the next state of α (since its left neighbor is in cA and B cannot receive messages
from A). As the simulation requires at most t(N) steps and B sends O(1) information at each
step, this yields the purported O(t(N)) upper bound.

The attentive reader may have noticed this discussion does not address the fact that the SCA
may shrink; indeed, we shall also prove that shrinking does not interfere with this strategy.

Proof. Let S be an SCA for L with time complexity O(t). Furthermore, let Q be the state set of
S and q ∈ Q its inactive state. We construct algorithms AN and BN as in Definition 10 and such
that |BN (wB)| ≤ 2 log(|Q|) · t(N).

Fix N ∈ N+ and an input w ∈ ΣN . For w0
B = wBq

2t(N)+2 and wi+1
B = ∆S(wiB) for i ∈ N0,

BN computes and outputs the concatenation

BN (wB) = w0
B(0)w0

B(1)w1
B(0)w1

B(1) · · ·wt(N)
B (0)w

t(N)
B (1).

Similarly, let w0
A = q2t(N)+2wA and wi+1

A = ∆S(wiAw
i
B(0)wiB(1)) for i ∈ N0. A computes t(N)

and wiA for i ∈ [0, t(N)] and accepts if there is any j such that wiA(j) is an accept state of S and
wiA(j′) = q for all j′ < j; otherwise, A rejects.

To prove the correctness of A, we show by induction on i ∈ N0: wiAw
i
B = ∆i

S(q2t(n)+2wq2t(n)+2).
Hence, the wiA(j) of above corresponds to the state of cell zero in step i of S, and it follows
that A accepts if and only if S does. The induction basis is trivial. For the induction step, let
w′ = ∆S(wiAw

i
B). Using the induction hypothesis, it suffices to prove wi+1

A wi+1
B = w′. Note

first that, due to the definition of wi+1
A and wi+1

B , we have w′ = ∆S(wiA)αβ∆S(wiB), where
α, β ∈ Q ∪ {ε}. Let α1 = wiA(|wiA| − 2), α2 = wiA(|wiA| − 1), and α3 = wiB(0) and notice
α = δ(α1, α2, α3); the same is true for β and β1 = α2, β2 = α3, and β3 = wiB(1). Hence, we have
wi+1
A = ∆S(wiA)αβ, and the claim follows.

We are now in position to prove Theorem 4.

Proof of Theorem 4. We prove that, for our language L1 of before and m(n) = n(n + 1) (i.e.,
AN receives the first n input blocks), Cmow(Blockn(L1))(N) ≥ 2n − n. Since the input length is
N ∈ Θ(n · 2n), the claim then follows from the contrapositive of Lemma 13.

The proof is by a counting argument. Let AN and BN be as in Definition 10, and let
Y = {0, 1}2n−n. The basic idea is that, for the same input wA, if BN is given different inputs
wB and w′B but BN (wB) = BN (w′B), then w = wAwB is accepted if and only if w′ = wAw

′
B

is accepted. Hence, for any y, y′ ∈ Y with y 6= y′, we must have BN (wB) 6= BN (w′B), where
wB , w

′
B ∈ B2n−n

n are the block word versions of y and y′, respectively; this is because, letting
j ∈ [0, 2n − n] be such that y(j) 6= y′(j) and z = binn(n+ j), precisely one of the words zy and
zy′ is in L1 (and the other not). Finally, note there is a bijection between Y and the set Y ′ of
block words in B2n−n

n whose block numbering starts with n+ 1 (i.e., x0 = n+ 1, where x0 is as
in Definition 5) and with block entries of the form a0n−1 where a ∈ {0, 1} (i.e., Y ′ is essentially
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the block version of Y as in Definition 7 but where we set x0 = n + 1 instead of x0 = 0). We
conclude Cmow(Blockn(L1))(N) ≥ |Y ′| = |Y | = 2n − n, and the claim follows.

4 Simulation of an SCA by a Streaming Algorithm
In this section, we recall and prove:

Theorem 3. Let t : N+ → N+ be computable by an O(t)-space random access machine (as in
Definition 2) in O(t log t) time. Then, if L ∈ SCA[t], there is an O(t)-space streaming algorithm
for L with O(t log t) update and O(t2 log t) reporting time.

Before we state the proof, we first introduce some notation. Having fixed an input w, let
ct(i) denote the state of cell i in step t on input w. Note that here we explicitly allow ct(i)
to be the state ⊗ and also disregard any changes in indices caused by cell deletion; that is,
ct(i) refers to the same cell i as in the initial configuration c0 (of Definition 3; see also the
discussion following Definition 4). For a finite, non-empty I = [a, b] ⊆ Z and t ∈ N0, let
nndclt(I) = max{i | i < a, ct(i) 6= ⊗} denote the nearest non-deleted cell to the left of I; similarly,
nndcrt(I) = min{i | i > b, ct(i) 6= ⊗} is the nearest such cell to the right of I.

Proof. Let S be an O(t)-time SCA for L. Using S, we construct a streaming algorithm A
(Algorithm 1) for L and prove it has the purported complexities.

Construction. Let w be an input to A. To decide L, A computes the states of the cells of S
in the time steps up to t(|w|). In particular, A sequentially determines the state of the leftmost
active cell in each of these time steps (starting from the initial configuration) and accepts if and
only if at least one of these states is accepting. To compute these states efficiently, we use an
approach based on dynamic programming, reusing space as the computation evolves.

A maintains lists leftIndex, leftState, centerIndex, and centerState and which are in-
dexed by every step j starting with step zero and up to the current step τ . The lists leftIndex and
centerIndex store cell indices while leftState and centerState store the states of the respective
cells, that is, leftState[j] = cj(leftIndex[j]) and centerState[j] = cj(centerIndex[j]).

Recall the state cj+1(y) of a cell y in step j + 1 is determined exclusively by the previous
state cj(y) of y as well as the states cj(x) and cj(z) of the left and right neighbors x and z
(respectively) of y in the previous step j (i.e., x = nndclj(y) and z = nndcrj(y)). In the variables
maintained by A, x and cj(x) correspond to leftIndex[j] and leftState[j], respectively, and
y and cj(y) to centerIndex[j] and centerState[j], respectively. z and cj(z) are not stored in
lists but, rather, in the variables rightIndex and rightState (and are determined dynamically).
The cell indices computed (i.e., the contents of the lists leftIndex and centerIndex and the
variables rightIndex and newRightIndex) are not actually used by A to compute states and are
inessential to the algorithm itself; we use them only to simplify the proof of correctness below
(and, hence, do not count them towards the space complexity of A).

In each iteration of the for loop, A determines cτ+1(zτ0 ), where zτ0 is the leftmost active cell
of S in step τ , and stores it centerState[τ + 1]. next is the index of the next symbol of w to be
read (or |w| once every symbol has been read), and j0 is the minimal time step containing a cell
whose state must be known to determine cτ+1(zt0) and remains 0 as long as next < |w|. Hence,
the termination of A is guaranteed by the finiteness of w, that is, next can only be increased a
finite number of times and, once all symbols of w have been read (i.e., the condition in line B no
longer holds), by the increment of j0 in line D.

In each iteration of the while loop, the algorithm starts from a local configuration in step j
of a cell y = centerIndex[j] with left neighbor x = leftIndex[j] = nndclj(y) and right neighbor
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Algorithm 1: Streaming algorithm A

Compute t(|w|);
Initialize lists leftIndex, centerIndex, leftState, and centerState;
leftIndex[0]← −1; leftState[0]← q;
centerIndex[0]← 0; centerState[0]← w(0);
next← 1;
j0 ← 0;
for τ ← 0, . . . , t(|w|)− 1 do

A j ← j0;
B if next < |w| then
C rightIndex← next; rightState← w(next);

next← next + 1;
else

D rightIndex← |w|; rightState← q;
j0 ← j0 + 1;

end
while j ≤ τ do

E newRightIndex← centerIndex[j];
newRightState← δ(leftState[j], centerState[j], rightState);
leftIndex[j]← centerIndex[j]; leftState[j]← centerState[j];
centerIndex[j]← rightIndex; centerState[j]← rightState;
rightIndex← newRightIndex; rightState← newRightState;

F if rightState = ⊗ then goto A;
j ← j + 1;

end
leftIndex[τ + 1]← −1; leftState[τ + 1]← q;
centerIndex[τ + 1]← rightIndex; centerState[τ + 1]← rightState;

G if centerState[τ + 1] = a then accept;
end
reject;

z = rightIndex[j] = nndclj(y). It then computes the next state cj+1(y) of y and sets y as the
new left cell and z as the new center cell for step j. As long as it is not deleted (i.e., cj+1(y) 6= ⊗),
y then becomes the right cell for step j+ 1. In fact, this is the only place (line F) in the algorithm
where we need to take into consideration that S is a shrinking (and not just a regular) CA. The
strategy we follow here is to continue computing states of cells to the right of the current center
cell (i.e., y = centerIndex[j]) until the first cell to its right which has not deleted itself (i.e.,
nndcrj(y)) is found. With this non-deleted cell we can then proceed with the computation of the
state of centerIndex[j + 1] in step j + 1. Hence, if y has deleted itself, to compute the state of
the next cell to its right we must either read the next symbol of w or, if there are no symbols left,
use quiescent cell number |w| as right neighbor in step j0, computing states up until we are at
step j again (hence the goto instruction).

Correctness. The following invariants hold for both loops in A:

1. centerIndex[τ ] = min{z ∈ N0 | cτ (z) 6= ⊗}, that is, centerIndex[τ ] is the leftmost active
cell of S in step j.
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2. If j ≤ τ , then rightIndex = nndcrj(centerIndex[j]) and rightState = cj(rightIndex).

3. For every j′ ∈ [j0, τ ]:

• leftIndex[j′] = nndclj′(centerIndex[j′]),

• leftState[j′] = cj′(leftIndex[j′]); and

• centerState[j′] = cj′(centerIndex[j′]).

These can be shown together with the observation that, following the assignment of newRightIndex
and newRightState in line E, we have newRightState = cj+1(newRightIndex) and, in case
newRightState 6= ⊗ and j < τ , then also newRightIndex = nndcrj(centerIndex[j + 1]). Using
the above, it follows that after the execution of the while loop we have j = τ + 1, rightState 6=
⊗, and rightState = cτ+1(rightIndex). Since then rightIndex = centerIndex[j − 1] =
centerIndex[τ ], we obtain rightIndex = min{z ∈ N0 | cτ+1(z) 6= ⊗}. Hence, as centerState[τ+
1] = rightState = cτ+1(rightIndex) holds in line G, if A then accepts, so does S accept w in
step τ . Conversely, if A rejects, then S does not accept w in any step τ ≤ t(|w|).

Complexity. The space complexity of A is dominated by the lists leftState and centerState,
which has O(t(|w|)) many entries of O(1) size. As mentioned above, we ignore the space used by
the lists leftIndex and centerIndex and the variables rightIndex and newRightIndex since
they are inessential (i.e., if we remove them as well as all instructions in which they appear, the
algorithm obtained is equivalent to A).

As for the update time, note each list access or arithmetic operation costs O(log t(|w|)) time
(since t(|w|) upper bounds all numeric variables). Every execution of the while loop body
requires then O(log t(|w|)) time and, since, there are at most O(t(|w|)) executions between any
two subsequent reads (i.e., line C), this gives us the purported O(t(|w|) log t(|w|)) update time.

Finally, for the reporting time of A, as soon as i = |w| holds after execution of line C (i.e., A
has completed reading its input) we have that the while loop body is executed at most τ − j + 1
times before line C is reached again. Every time this occurs (depending on whether line C is
reached by the goto instruction or not), either j0 or both j0 and τ are incremented. Hence, since
τ ≤ t(|w|), we have an upper bound of O(t(|w|)2) executions of the while loop body, resulting
(as above) in an O(t(|w|)2 log t(|w|)) reporting time in total.

5 Hardness Magnification for Sublinear-Time SCAs
Let K > 0 be constant such that, for any function s : N+ → N+, every circuit of size at most s(n)
can be described by a binary string of length at most `(n) = Ks(n) log s(n). In addition, let ⊥
denote a string (of length at most `(n)) such that no circuit of size at most s(n) has ⊥ as its
description. Furthermore, let Merge[s] denote the following search problem (adapted from [17]):

Given: the binary representation of n ∈ N+, the respective descriptions (padded to length `(n))
of circuits C0 and C1 such that |Ci| ≤ s(n), and α, β, γ ∈ {0, 1}n with α ≤ β ≤ γ < 2n.

Find: the description of a circuit C with |C| ≤ s(n) and such that ∀x ∈ [α, β− 1] : C(x) = C0(x)
and ∀x ∈ [β, γ − 1] : C(x) = C1(x); if no such C exists or Ci = ⊥ for any i, answer with ⊥.

Note that the decision version of Merge[s], that is, the problem of determining whether a solution
to an instance Merge[s] exists is in Σp

2. Moreover, Merge[s] is Turing-reducible (in polynomial
time) to a decision problem very similar to Merge[s] and which is also in Σp2, namely the decision
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version of Merge[s] but with the additional requirement that the description of C admits a given
string v of length |v| ≤ s(n) as a prefix.3

We now formulate our main theorem concerning SCAs and MCSP:

Theorem 14. Let s : N+ → N+ be constructible in place by a CA in O(s(n)) time. Furthermore,
let m = m(n) denote the maximum instance length of Merge[s], and let f, g : N+ → N+ with
f(m) ≥ g(m) ≥ m be constructible in place by a CA in O(f(m)) time and O(g(m)) space. Then,
for b(n) = bg(m)/2c, if Merge[s] is computable in place by a CA in at most f(m) time and g(m)
space, then the search version of Blockb(MCSP[s]) is computable by an SCA in O(n · f(m)) time,
where the instance size of the latter is in Θ(2n · b(n)).

We are particularly interested in the repercussions of Theorem 14 taken in the contrapositive.
Since P = NP implies P = Σp

2, it also implies there is a poly-time Turing machine for Merge[s];
since a CA can simulate a Turing machine with no time loss, for m as above we obtain:

Theorem 2. For a certain m ∈ poly(s(n)), if Blockb(MCSP[s]) 6∈ SCA[n · f(m)] for every
f ∈ poly(m) and b ∈ O(f), then P 6= NP.

We now turn to the proof of Theorem 14, which follows [17] closely. First, we generalize
blockwise reductions (see Definition 9) to search problems:

Definition 11 (Blockwise reducible (for search problems)). Let L and L′ be block languages
that correspond to search problems S and S′, respectively. Also, for an instance x, let S(x) (resp.,
S′(x)) denote the set of solutions for x under the problem S (resp., S′). Then L is said to be
(k-)blockwise reducible to L′ if there is a computable k-blockwise map g : Bkm

b → Bm
b such that,

for every w ∈ Bkm
b , we have S(w) = S′(g(w)).

Notice Lemma 7 readily generalizes to blockwise reductions in this sense.
Next, we describe the set of problems that we shall reduce Blockb(MCSP[s]) to. Let r : N+ → N+

be a function. There is a straightforward 1-blockwise reduction from Blockb(MCSP[s]) to (a
suitable block version of) the following search problem Merger[s]:

Given: the binary representation of n ∈ N+ and the respective descriptions (padded to length
`(n)) of circuits C1, . . . , Cr, where |Ci| ≤ s(n) for every i and r = r(n).

Find: (the description of) a circuit C with |C| ≤ s(n) and such that, for every i and every
x ∈ [(i− 1) · 2n/r, i · 2n/r− 1], C(x) = Ci(x); if no such C exists or Ci = ⊥ for any i, answer
with ⊥.

In particular, for the reduction mentioned above, we shall use r = 2n. Evidently, Merger[s] is a
generalization of the problem Merge[s] defined previously and, more importantly, every instance
of Merger[s] is simply a concatenation of r/2 many Merge[s] instances where α, β, and γ are
given implicitly. Using the assumption that Merge[s] is computable by a CA in at most f(m)
time and g(m) space, we can solve each such instance in parallel, thus producing an instance
of Merger/2[s] (i.e., halving r). This yields a 2-blockwise reduction from (the respective block
versions of) Merger[s] to Merger/2[s] (cnf. the proof of Proposition 12). Using Lemma 7 and that
Merge1[s] is trivial, we obtain the purported SCA for Blockb(MCSP[s]).

Proof. Let n be fixed, and let r = 2n. First, we describe the 1-blockwise reduction from
Blockb(MCSP[s]) to a block version of Merger[s] (which we shall describe along with the reduction).

3This is a fairly common construction in complexity theory for reducing search to decision problems; refer to
[10] for the same idea applied in other contexts.
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Let Ta denote the (description of the) trivial circuit that is constant a ∈ {0, 1}, that is, Ta(x) = a

for every x ∈ {0, 1}n. Then we map each block
( binn(x)
y0b(n)−1

)
with y ∈ {0, 1} to the block

(
binn(x)
Tyπ

)
,

where π ∈ {0}∗ is a padding string so that the block length b(n) is preserved. (This is needed to
ensure enough space is available for the construction; see the details further below.) It is evident
this can be done in time O(b(n)) and (since we just translate the truth-table 0 and 1 entries
to the respective trivial circuits) that the reduction is correct, that is, that every solution to
the original Blockb(MCSP[s]) instance must also be a solution of the produced instance of (the
resulting block version of) Merger[s] and vice-versa.

Next, maintaining the block representation described above, we construct the 2-blockwise
reduction from the respective block versions of Mergeρ[s] to Mergeρ/2[s], where ρ = 2k for some
k ∈ [1, n]. Let A denote the CA that, by assumption, computes a solution to an instance of
Merge[s] in place in at most f(m) time and g(m) space. Then, for j ∈ [0, ρ/2− 1], we map each
pair

(
binn(2j)
C0π0

)
#
(

binn(2j+1)
C1π1

)
of blocks (where π0, π1 ∈ {0}∗ again are padding strings) to

(
binn(j)
Cπ

)
,

where π ∈ {0}∗ is a padding string (as above) and C is the circuit produced by A for α = 2j ·2n/ρ,
β = (2j + 1) · 2n/ρ, and γ = (2j + 2) · 2n/ρ.

To actually execute A, we need g(m) space (which is guaranteed by the block length b(n))
and, in addition, to prepare the input so it is in the format expected by A (i.e., eliminating the
padding between the two circuit descriptions and writing the representations of α, β, and γ),
which can be performed in O(b(n)) ⊆ O(g(m)) ⊆ O(f(m)) time. For the correctness, suppose
the above reduces an instance of Mergeρ[s] with circuits C1, . . . , Cρ to an instance of Mergeρ/2[s]
with circuits D1, . . . , Dρ/2 (and no ⊥ was produced). Then, a circuit E is a solution to the
latter if and only if E(x) = Di(x) for every i and x ∈ [(i− 1) · 2n/(ρ/2), i · 2n/(ρ/2)− 1]. Using
the definition of Merge[s], every Di must satisfy Di(x) = C2i−1(x) and Di(y) = C2i(y) for
x ∈ [(2i− 2) · 2n/ρ, (2i− 1) · 2n/ρ− 1] and y ∈ [(2i− 1) · 2n/ρ, 2i · 2n/ρ− 1]. Hence, E agrees
with C1, . . . , Cρ if and only if it agrees with D1, . . . , Dρ/2 (on the respective intervals).

Since s(n) ≥ n and Merge1[s] is trivial (i.e., it can be accepted in O(b(n)) time), applying the
generalization of Lemma 7 to blockwise reductions for search problems completes the proof.

Comparison with [17]. We conclude this section with a comparison of our result and proof
with [17]. The most evident difference between the statements of Theorems 2 and 14 and the
related result from [17] (i.e., Theorem 1) is that our results concern CAs (instead of Turing
machines) and relate more explicitly to the time and space complexities of Merge[s]; in particular,
the choice of the block length is tightly related with the space complexity of computing Merge[s].
As for the proof, notice that we only merge two circuits at a time, which makes for a smaller
instance size m (of Merge[s]); this not only simplifies the proof but also minimizes the resulting
time complexity of the SCA (as f(m) is then smaller). Also, in our case, we make no additional
assumptions regarding the first reduction from Blockb(MCSP[s]) to Merger[s]; in fact, this step
can be performed unconditionally. Finally, we note that our proof renders all blockwise reductions
explicit and the connection to the self-reductions of [1] more evident. Despite these simplifications,
the argument extends to generalizations of MCSP with similar structure and instance size (e.g.,
MCSP in the setting of Boolean circuits with oracle gates as in [17] or MCSP for multi-output
functions as in [12]).

6 Concluding Remarks
Proving SCA Lower Bounds for MCSP[s]. Recalling the language L1 from the proof of
Theorem 4, consider the intersection L1[s] = L1 ∩MCSP[s]. Evidently, L1[s] is comparable in
hardness to MCSP[s] (e.g., it is solvable in polynomial time using a single adaptive query to
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MCSP[s]). By adapting the construction from the proof of Theorem 14 so the SCA additionally
checks the L1 property at the end in poly(s(n)) time (e.g., using the circuit C produced to check
whether C(x) = 1 for x = C(0) · · ·C(n− 1)), we can derive a hardness magnification result for
L1[s] too: If Blockb(L1[s]) 6∈ SCA[poly(s(n))] (for every b ∈ poly(s(n))), then P 6= NP. Using
the methods from Section 3.3 and that there are 2Ω(s(n)) many (unique) circuits of size s(n)
or less,4 this means that, if Blockb(L1[s]) ∈ SCA[t(n)] for some b ∈ poly(n) and t : N+ → N+,
then t ∈ Ω(s(n)). Hence, for an eventual proof of P 6= NP based on Theorem 2, one would need
to develop new techniques (see also the discussion below) to raise this bound at the very least
beyond poly(s(n)).

Seen from another angle, this demonstrates that, although we can prove a tight SCA worst-case
lower bound for L1 (Theorem 4), establishing similar lower bounds on instances of L1 with low
circuit complexity (i.e., instances which are also in MCSP[s]) is at least as hard as showing P 6= NP.
In other words, it is straightforward to establish a lower bound for L1 using arbitrary instances,
but it is absolutely non-trivial to establish similar lower bounds for easy instances of L1 where
instance hardness is measured in terms of circuit complexity.

The Proof of Theorem 14 and the Locality Barrier. In a recent paper [5], Chen et al.
propose the concept of a locality barrier to explain why current lower bound proof techniques (for
a variety of non-uniform computational models) do not suffice to show the lower bounds needed
for separating complexity classes in conjunction with hardness magnification (i.e., in our case
above a poly(s(n)) lower bound that proves P 6= NP). In a nutshell, the barrier arises from proof
techniques relativizing with respect to local aspects of the computational model at hand (in [5],
concretely speaking, oracle gates of small fan-in), whereas it is known that a proof of P 6= NP
must not relativize [3].

The proof of Theorem 14 confirms the presence of such a barrier also in the uniform setting
and concerning the separation of P from NP. Indeed, the proof mostly concerns the construction
of an SCA where the overall computational paradigm of blockwise reductions (using Lemma 7) is
unconditionally compatible with the SCA model (as exemplified in Proposition 12); the P = NP
assumption is needed exclusively so that the local algorithm for Merge[s] in the statement of the
theorem exists. Hence, the result also holds unconditionally for SCAs that are, say, augmented
with oracle access (in a plausible manner, e.g., by using an additional oracle query track and
special oracle query states) to Merge[s]. (Incidentally, the same argument also applies to the proof
of the hardness magnification result for streaming algorithms (i.e., Theorem 1) in [17], which also
builds on the existence of a similar locally computable function.) In particular, this means the
lower bound techniques from the proof of Theorem 4 do not suffice since they extend to SCAs
having oracle access to any computable function.

Open Questions. We conclude with a few open questions:

• By weakening SCAs in some aspect, certainly we can establish an unconditional MCSP
lower bound for the weakened model which, were it to hold for SCAs, would imply the
separation P 6= NP (using Theorem 2). What forms of weakening (conceptually speaking)
are needed for these lower bounds? How are these related to the locality barrier discussed
above?

4Let K > 0 be constant such that every Boolean function on m variables admits a circuit of size at most
K · 2m/m. Setting m = blog s(n)c, notice that, for sufficiently large n (and s(n) ∈ ω(1) ∩O(2n/n)), this gives us
s(n) ≥ K · 2m/m, thus implying that every Boolean function on m ≤ n variables admits a circuit of size at most
s(n). Since there are 22m

many such (unique) functions, it follows there are 2Ω(s(n)) (unique) circuits of size at
most s(n).
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• Secondly, we saw SCAs are strictly more limited than streaming algorithms. Proceeding
further in this direction, can we identify further (natural) models of computation that are
more restricted than SCAs (whether CA-based or not) and for which we can prove results
similar to Theorem 14?

• Finally, besides MCSP, what other (natural) problems admit similar SCA hardness magnifi-
cation results? More importantly, can we identify some essential property of these problems
that would explain these results? For instance, in the case of MCSP there appears to be
some connection to the length of (minimal) witnesses being much smaller than the instance
length. Indeed, one sufficient condition in this sense (disregarding SCAs) is sparsity [6];
nevertheless, it seems rather implausible that this would be the sole property responsible
for all hardness magnification phenomena.

Acknowledgments. I would like to thank Thomas Worsch for the helpful discussions and
feedback.
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