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Abstract

A classical result of Rothschild and van Lint asserts that if every non-zero Fourier coefficient of a
Boolean function f over Fn

2 has the same absolute value, namely |f̂(α)| = 1/2k for every α in the
Fourier support of f , then f must be the indicator function of some affine subspace of dimension n− k.
In this paper we slightly generalize their result. Our main result shows that, roughly speaking, Boolean
functions whose Fourier coefficients take values in the set {−2/2k,−1/2k, 0, 1/2k, 2/2k} are indicator
functions of two disjoint affine subspaces of dimension n−k or four disjoint affine subspace of dimension
n− k− 1. Our main technical tools are results from additive combinatorics which offer tight bounds on
the affine span size of a subset of Fn

2 when the doubling constant of the subset is small.
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1 Introduction

One of the most fruitful approaches in functional analysis is to represent functions as sums of simple and
well-structured objects, such as sine wave functions and polynomials. Such representations often provide
additional insights on the combinatorial structures of or complexity measures associated with the subjects
under consideration. This paradigm in theoretical computer science has witnessed harmonic analysis on the
cube, or the discrete Fourier transform of Boolean functions, emerged in the past three decades as a powerful
and versatile tool that finds numerous applications in complexity theory (such as PCP and circuit complex-
ity), property testing, learning, cryptography, coding theory, social choice theory and others; see [25] for a
comprehensive survey.

Fourier coefficients and function values are two equivalent ways to represent a function. That is, the
Fourier spectrum of a function completely determines the function-value at any point on the cube. However,
knowing only the values of the Fourier spectrum but without the information of the locations of these values
in the Fourier space in general leaves the function undetermined to a large extent, even restricted to Boolean
functions. To see this, consider the following examples. Generally speaking, we view two Boolean functions
as the same function if they are isomorphic. More formally, we say that two Boolean functions f, g : Fn2 →
{0, 1} are isomorphic to each other if there is an invertible linear transformation L : Fn2 → Fn2 such that
g(x) = Lf(x) for every x ∈ Fn2 , where Lf(x) := f(Lx). Now consider the following two families of
Boolean functions {fk : Fk2 → {0, 1} | k ∈ N, k ≥ 3} and {gk : Fk2 → {0, 1} | k ∈ N, k ≥ 3}, with the
Fourier expansions of fk(x) = 3

4 −
1
4χ{1}(x) − 1

4χ{2}(x) − 1
4χ{1,2}(x) and gk(x) = 3

4 −
1
4χ{1,2}(x) −

1
4χ{1,3}(x) − 1

4χ{2,3}(x). One can check easily that both fk and gk are indeed Boolean functions and
the multisets of non-zero Fourier coefficients are both {34 ,−

1
4 ,−

1
4 ,−

1
4}. On the other hand, the Fourier

dimension — dimension of the subspace spanned by vectors at which the function’s Fourier coefficients
are non-zero — of fk is 2 while the Fourier dimension of gk is 3. Since the Fourier spectrum transforms
according to (LT )−1 when the function undergoes the linear transformation L, it follows that there is no
invertible linear transformation L that maps fk to gk, i.e. they are not isomorphic to each other. Another
such example is the class of address functions fn : Fn2 → {−1, 1}, where n = k + 2k for some positive
integer k, together with the class of functions gn : Fn2 → {−1, 1} formed by tensoring some bent function
on 2k-bits with a δ-function on n − 2k bits. Then both fn and gn have 22k non-zero Fourier coefficients,
with 22k−1 + 2k−1 of them taking value 1/2k and 22k−1 − 2k−1 of them taking value −1/2k; moreover,
since the Fourier dimension of fn is n and the Fourier dimension of gn is 2k < n, these two functions are
not isomorphic to each other.

Nevertheless, there are a few exceptions to the general phenomenon in the sense that knowing only the
values of the Fourier spectrum completely determine the Boolean function, up to an isomorphism. One
such example is the indicator function of an affine subspace, which enjoys a very simple Fourier spec-
trum. Specifically, if f is the indicator function of an affine subspace in Fn2 of dimension n − k, then it is
straightforward to check that every non-zero Fourier coefficient of f is either 1/2k or −1/2k. What about
the converse? Namely, if we know that the non-zero Fourier coefficients of a Boolean function all have
magnitude 1/2k, then what can be said about the function?

1.1 Rothschild and van Lint Theorem

Rothschild and van Lint [28] (see also Chapter 13, Lemma 6 in [24]) proved the following theorem:

Theorem 1.1. Let n ≥ 1 and 0 ≤ k ≤ n. Let f = 1S be the indicator function of a set S ⊆ Fn2 of size
|S| = 2n−k. If for every α ∈ Fn2 , |f̂(α)| is equal to either zero or 1/2k, then S is an affine subspace of
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dimension n− k.

In other words, Rothschild and van Lint Theorem shows that, up to an invertible linear transform, we
have a complete characterization when the Fourier coefficients of a Boolean function are all from the set
{−1/2k, 0, 1/2k}: the Boolean function must be the indicator of some affine subspace of co-dimension k.

A natural question is: how far can we extend such a nice characterization in terms of the values of Fourier
coefficients only? Following [14], for a rational number x, the granularity gran(x) of x is defined to be the
least nonnegative integer k such that x = m/2k, where m is an (odd) integer. A function Fn2 → R is said to
be k-granular if the maximum granularity of its Fourier coefficients is k — that is, k = maxα{gran(f̂(α))}.
For a Boolean function, its granularity is known to be intimately correlated with its Fourier sparsity [14]
— the number of non-zero Fourier coefficients; see discussion in Section 1.4 for more details. Therefore,
one can view Rothschild and van Lint Theorem as a characterization of k-granular Boolean functions with
minimum support size (that is, f̂(0) = |{x : f(x) = 1}|/2n = 1/2k).

1.2 Our results

In this work, we slightly generalize Rothschild and van Lint Theorem to give a complete characterization of
k-granular Boolean functions of support size 2n · 2/2k = 2n−k+1. Roughly speaking, our main theorem is
the following:

Theorem 1.2 (Informal statement). For large enough integers n ≥ k, if a Boolean function f : Fn2 → {0, 1}
has all its Fourier coefficients in the set {0, ±1

2k
, ±2
2k
}, then f is the indicator function of disjoint union of two

affine subspaces of dimension n− k.

Our Main Theorem is based on the following Main Lemma, which deals with the general case of k ≥ 5,
together with case analysis1 for small values of k.

Lemma 1.3 (Main). Let k ≥ 5 and n ≥ k be integers. Let f : Fn2 → {0, 1} be a Boolean function such that
f̂(0) = 1/2k−1 and any other Fourier coefficients are either zero or equal to ± 1

2k
, then f is the indicator

function of a disjoint union of two dimension n− k affine subspaces.

1.3 Proof overview and our techniques

The original form of Rothschild and van Lint Theorem was stated to characterize subspaces in affine geom-
etry and projective geometry. For completeness and more importantly, because the first step in our proof
of the main theorem follows a similar strategy, we present a slightly different proof using the notation of
Fourier analysis.

A proof of Rothschild and van Lint Theorem. We prove the theorem by induction on n. It is trivial to
see that the theorem holds for n = 1 (for both k = 0 and k = 1). Let n ≥ 2. Clearly there is nothing to
prove for k = 0 and k = n, so we assume 0 < k < n. Note that f̂(0) = |S|/2n = 1/2k, then by Parseval’s
identity, there exists a non-zero α such that f̂(α) = 1/2k or −1/2k. Assume that f̂(α) = 1/2k and the case
of f̂(α) = −1/2k is similar. Applying an invertible linear transform L that maps α to e1, where e1 stands
for the standard basis vector (1, 0, . . . , 0). Note that both the Fourier spectrum of f and any affine subspace
are invariant under invertible linear transformations, hence it suffices to argue about g := Lf . Now we have
ĝ(0) = ĝ(e1) = 1/2k. Applying a linear restriction over the first bit of the input to get sub-functions g0 and
g1 (see Proposition 2.3 in Appendix A for details). By (2), ĝ1(0) = ĝ(0) − ĝ(e1) = 0, which implies that

1The need for a nasty case analysis stems from a key lemma in the proof, namely Lemma 3.9, which holds only when k ≥ 5.
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g1 is the zero-function. This implies that S is completely contained in the support of g0 and moreover, by
(3), ĝ0(β) = 2f̂(0, β) for every β ∈ Fn−12 . In other words, g0 is a Boolean function over Fn−12 and |ĝ(β)| is
equal to either zero or 1/2k−1, therefore the induction hypothesis applies to g0. It follows that S is an affine
subspace of dimension n− 1− (k − 1) = n− k. This completes the proof of Theorem 1.1.

Reducing the dimension of the function domain. The proof of the Main Theorem is much more involved
than that of Rothschild and van Lint Theorem. In fact, the proof we described above of Theorem 1.1 is the
first step toward proving the main theorem. The reduction step in the proof of Theorem 1.1 can be regarded
as reducing the dimension of function domain while keeping all the support of the function. Equivalently,
one may view the reduction step as decomposing the original function f as a tensor product between a
“core-function” g and a “δ-function” h (see Section 2 for definition of tensor product of Boolean functions).
Namely, f(x, y) = g(x) ⊗ h(y), where h : Fm2 → {0, 1} is the δ-function: h(y) = 1 if y = 0m and
h(y) = 0 for all other vectors. That is, f is “reduced” to a core-function g with dimension n −m. To this
end, we say a function f : Fn2 → {0, 1} is reducible if there exists an invertible linear transformation L such
that Lf can be decomposed as the tensor product of a function g : Fn−m2 → {0, 1} and a δ-function h over
Fm2 with m ≥ 1. f is said to be irreducible if f is not reducible.2 Now we are ready to present our Main
theorem more precisely.

Theorem 1.4 (Main). Let k ≥ 1, n > k be two integers, and let f : Fn2 → {0, 1} be a non-trivial3 Boolean
function with all its Fourier coefficients taking values in {0, ±1

2k
, ±2
2k
}. Then we have the following complete

characterization

• If f̂(0) = 1
2k

, then f is the indicator function of an affine subspace of dimension n − k (Rothschild
and van Lint Theorem);

• If f̂(0) = 1
2k−1 and f is irreducible, then f is either the indicator function of disjoint union of two

affine subspaces of dimension n−k, or the indicator function of disjoint union of four affine subspaces
of dimension n− k − 1. Moreover, the latter case is only possible when k = 4.

Back to our problem, since f̂(0) = 1/2k−1, it is easy to see that whenever there is a non-zero α such that
|f̂(α)| = 1/2k−1, we can restrict f either to the subspace 〈α, x〉 = 0 or to the affine subspace 〈α, x〉 = 1
while keeping the entire support of f . We repeat this process until we reach a Boolean function f with
f̂(0) = 1/2k−1 and all other non-zero Fourier coefficients have magnitude 1/2k.

Additive structures of the Fourier spectrum. The starting point of our main argument is the following
well-known characterization of Boolean functions in terms of their Fourier spectra: a function f : Fn2 → R
on the cube is Boolean if and only if

f̂(α) =
∑
β∈Fn2

f̂(β)f̂(α+ β)

holds for every α ∈ Fn2 . Our main observation is that, since the non-zero Fourier coefficients f can take only
two values when f is irreducible, denoting A := {α | f̂(α) = 1/2k} and B := {β | f̂(β) = −1/2k}, then
these two sets — viewed as subsets of abelian group Fn2 — must exhibit strong additive structures. Indeed,
one can show that B +B ⊆ A ∪ {0} and consequently |B +B|/|B| ≤ (1 + |A|)/|B|.

2To put it differently, a function f defined on Fn2 is irreducible if and only if the minimum dimension of the affine subspace
containing the support of f is n.

3A Boolean function is trivial if f ≡ 0 or f ≡ 1.
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What can be said about a set B if its doubling constant K := |B + B|/B is small? This is a classical
problem extensively studied in additive combinatorics. Additive combinatorics is a burgeoning mathematics
sub-area which finds exciting applications in theoretical computer science in recent years [30, 3, 2, 5, 1].
Green and Tao [16] proved that, when the underlying ambient group is Fn2 , thenB is contained in a subspace
of size 22K+O(K logK)|B|, which is asymptotically optimal. Unfortunately, such asymptotic “high end”
bounds are not accurate enough to be useful for our problem. In fact, we make crucial use of a “low
end” additive combinatorics result of Even-Zohar [10], which provides tight bounds on the size of affine
span of B in terms of its doubling constant. It is worth noting that all aforementioned applications of
additive combinatorics in theoretical computer science employ theorems regarding asymptotic behaviors of
certain combinatorial objects. We hope researchers may find further applications of such “low end” additive
combinatorics results in other places.

1.4 Motivations and related work

To the best of our knowledge, besides the work of Rothschild and van Lint, there is no previous structural
result on Boolean functions in terms the magnitudes of their Fourier coefficients only. Friedgut [12] showed
that if the total influence of a Boolean function is small, then it is close to some junta — a function that
depends only on a bounded number of variables. Friedgut et al. [13] studied Boolean functions whose
Fourier mass are concentrated on the lowest two levels and proved that such functions are close to parity
functions or negations of parity functions. For a special class of Boolean functions, the so-called linear
threshold functions, a celebrated result of Chow [8] states that these functions are completely determined
by their lowest two level Fourier coefficients; see [26, 9] for recent robust versions as well as algorithmic
versions of Chow’s theorem. Note that all previous structural theorems mentioned above, except Chow’s, are
“robust” in the following sense: the structural results are robust against small perturbations in the Boolean
function’s Fourier spectrum. Our main result is automatically robust: by Parseval’s identity, small distance
in Fourier spectrum implies small distance in function space; consequently, any Boolean function whose
Fourier coefficients are close to being in the form stated in our Main Theorem must also be close to having
the affine subspace structures asserted in the theorem.

Apart from studying to what extent can the values of Fourier coefficients themselves determine a Boolean
function, an important motivation of this research is to study the behaviors of Fourier sparse Boolean func-
tions [14]. Gopalan et al. [14] proved that, if a Boolean function f has only s non-zero Fourier coefficients,
then every Fourier coefficient of f is of the formm/2k, wherem is an integer and k/2 ≤ log s ≤ k. That is,
the granularity and Fourier sparsity of a Boolean function are, up to a constant factor, identical. Our result
may be regarded as characterizing Boolean functions of Fourier granularity k when all Fourier coefficients
of f are between −2/2k and 2/2k.

Probably the most prominent open problem in communication complexity is the so-called Log-rank
Conjecture proposed by Lovász and Saks [21], which asserts that the deterministic communication com-
plexity of any F : Fn2 × Fn2 → {0, 1}, DCC(F ), is upper bounded by a polynomial of the logarithm of
the rank of the communication matrix MF = [F (x, y)]x,y, where the rank is taken over the reals. Even
after more than 30 years of extensive study, we are still very far from resolving it; the current best bound
is Lovett’s DCC(F ) = O(

√
r log r) [22], where r is the rank of MF . Recently, studying the Log-rank

conjecture for a special class of two-party functions, the so-called XOR functions, has attracted much atten-
tion [36, 34, 32, 17, 35, 20, 7]. The corresponding conjecture for this special class of functions is sometimes
called Log-rank XOR conjecture. Specifically, F is an XOR function if there exists an f : Fn2 → {0, 1} such
that for all x and y, F (x, y) = f(x + y). The beautiful connection between the Log-rank XOR conjecture
and Fourier analysis of Boolean functions is that, if F is an XOR function, then the rank of MF is just the
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Fourier sparsity of f [4]. Moreover, it is now known that resolving the Log-rank XOR conjecture is equiva-
lent to finding a parity decision tree of depth polylog(s), or poly(k) for any Boolean function f [36, 34, 17],
where s is the Fourier sparsity and k is the granularity of f .

The parity kill number of a Boolean function f is defined as

C⊕,min(f) := min{co-dim(S) | S is an affine subspace on which f is constant}

Tsang et al. [34] demonstrated that, to resolve the Log-rank XOR conjecture, it is sufficient to prove that the
kill number of any Boolean function f is upper bounded by polylog(s) or poly(k). See [27, 6] for recent
developments on constructing Boolean functions with large kill numbers. Our main result can be regarded
as showing that any Boolean function with granularity k and f̂(0) ≤ 2/2k has kill number at most k+ 1. In
fact, by induction on m and folding f̂(0) with any other non-zero Fourier coefficient, we immediately have
the following corollary.

Corollary 1.5. Let f : Fn2 → {0, 1} be a Boolean function with granularity k and f̂(0) = m/2k. Then the
kill number of f is at most k +m− 1.

Of course, Corollary 1.5 is still very far from showing the desired kill number bound poly(k) as m
can be as large as 2k−1, but it is hoped that further investigations along this approach may lead to more
interesting results.

1.5 Organization

The rest of the paper is organized as follows. Preliminaries and notations that we use throughout the paper
are summarized in Section 2. We prove our Main Lemma, which deals with the cases when k is at least 5 in
Section 3, while the small value cases are discussed in Section 4. Then, by combining these two ingredients,
we prove our Main Theorem in Section 5. Finally we end with a brief section of conclusions and open
questions.

2 Preliminaries

All logarithms in this paper are to the base 2. Let n ≥ 1 be a natural number, then [n] denotes the set
{1, . . . , n}. We use F2 for the field with 2 elements {0, 1}, where addition and multiplication are performed
modulo 2. We view elements in Fn2 as n-bit binary strings, i.e. elements in {0, 1}n, interchangeably. If
x and y are two n-bit strings, then x + y (or x − y) denotes bitwise addition (i.e. XOR) of x and y. For
positive integers m and n, if y ∈ Fm2 and z ∈ Fn2 , then we write x = (y, z) to denote the binary string
x ∈ Fm+n

2 obtained from concatenating y and z together. We view Fn2 as a vector space equipped with an
inner product 〈x, y〉, which we take to be the standard dot product: 〈x, y〉 =

∑n
i=1 xiyi, where all operations

are performed in F2.

2.1 Boolean functions and Fourier analysis

We often use f to denote a real function defined on Fn2 and write supp(f) = {x ∈ Fn2 | f(x) 6= 0} for the
support of f . Sometimes we view f as a 2n-dimensional vector, e.g. write f = 0 and f = 1 to denote the
trivial all-zero function and all-one function, respectively. In this paper, a function f is Boolean if its range
is {0, 1}.
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For every α ∈ Fn2 , one can define a linear function (or parity function) mapping Fn2 to {0, 1} as `α(x) =
〈α, x〉. Let χα = (−1)`α , which are commonly known as characters. For functions f, g : Fn2 → R the inner
product is defined as 〈f, g〉 := Ex∈Fn2 (f(x)g(x)). For α = (α1, . . . , αn) ∈ Fn2 , the corresponding character
function χα is defined as χα(x1, . . . , xn) =

∏
i : αi=1(−1)xi = (−1)〈α,x〉. For α, β ∈ Fn2 , the inner product

between χα and χβ is 1 if α = β, and 0 otherwise. Therefore the characters form an orthonormal basis for
real-valued functions over Fn2 , and we can expand any f defined on Fn2 using {χα}α∈Fn2 as a basis.

Definition 2.1 (Fourier Transform). Let f : Fn2 → R. The Fourier transform f̂ : Fn2 → C of f is defined to
be f̂(α) = Ex(f(x)χα(x)). The quantity f̂(α) is called the Fourier coefficient of f at α.

The Fourier inversion formula is given by f(x) =
∑

α∈Fn2
f̂(α)χα(x), and the Parseval’s identity is∑

α∈Fn2
f̂(α)2 = Ex(f(x)2). The Fourier sparsity of f , denoted by ‖f̂‖0, is the number of nonzero Fourier

coefficients of f .

2.1.1 Fourier characterization of Boolean functions

Our proof crucially relies on the following characterization of Boolean functions in terms of their Fourier
spectra. We give a proof for completeness.

Proposition 2.2 (Folklore). A function f : Fn2 → R defined on the hypercube is Boolean if and only if for
every α ∈ Fn2 ,

f̂(α) =
∑
β∈Fn2

f̂(β)f̂(α+ β). (1)

Proof. This follows from the fact that f is Boolean if and only if f2(x)−f(x) = 0 for every x. Now expand
the left-hand side in terms of Fourier coefficients and notice that, since the right-hand side is the 0-function,
all of its Fourier coefficients all zero. Comparing each pair of the corresponding Fourier coefficients on both
sides gives the desired equality.

2.1.2 Linear restrictions

The following is a folklore theorem regarding the effect of linear restrictions on the Fourier spectrum of a
function defined over the Boolean hypercube. We include a proof in Appendix A for completeness.

Proposition 2.3. Let f : Fn2 → R be a function defined on the Boolean hypercube. Let f0, f1 : Fn−12 → R
be the “sub-functions” obtained from restricting the first bit of the input to 0 and 1, respectively; that is,
f0(y) := f(0, y) and f1(y) := f(1, y) for all y ∈ Fn−12 . Then the Fourier spectra of f0 and f1 satisfy that,
for all β ∈ Fn−12 ,

f̂0(β) = f̂(0, β) + f̂(1, β), f̂1(β) = f̂(0, β)− f̂(1, β). (2)

Conversely, the Fourier spectrum of f satisfies

f̂(0, β) =
1

2
(f̂0(β) + f̂1(β)), f̂(1, β) =

1

2
(f̂0(β)− f̂1(β)). (3)
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2.1.3 Tensor product

The statement as well as the proof of Main Theorem requires the standard notion of tensor products between
functions.

Definition 2.4 (Tensor Product of Boolean Functions). Let f : Fn1
2 → {0, 1} and g : Fn2

2 → {0, 1} be
two Boolean functions on n1 and n2 variables respectively. Then the tensor product of f and g, denoted by
f ⊗ g, is a Boolean function over Fn1+n2

2 such that f ⊗ g(x, y) = f(x) · g(y) for all x ∈ Fn1
2 and y ∈ Fn2

2 .

It is easy to verify the following fact.

Fact 2.5. If h = f⊗g is the tensor product of two Boolean function defined above, then the Fourier spectrum
h satisfies that ĥ(α, β) = f̂(α) · ĝ(β), for every α ∈ Fn1

2 and β ∈ Fn2
2 .

Given a Boolean function f : Fn1
2 → {0, 1}, two commonly used functions to tensor with f are the

all-one function g1 = 1 whose Fourier spectrum is ĝ1(0) = 1 and ĝ1(α) = 0 for any α 6= 0; and the
“δ-function” g2 defined by g2(x) = 1 if and only if x = 0n2 , whose Fourier spectrum is ĝ2(α) = 1/2n2

for every α. Note that tensoring f with g1 is equivalent to setting each to the 2n2 sub-functions, defined by
restricting y to different values in Fn2

2 , to f ; and tensoring f with g1 is to set the sub-function with y = 0 to
f and set all other sub-functions to the all-zero function.

2.1.4 Invertible linear transformations and linear shifts

Let L : Fn2 → Fn2 be an invertible linear transformation. If f : Fn2 → {0, 1} is a Boolean function, then
define g := Lf , the function obtained from applying the linear transformation L to f , as g(x) = f(Lx)
for all x ∈ Fn2 . The Fourier spectrum of g is given by ĝ(α) = f̂((LT )−1α), where LT stands for the
transpose of L viewed as an n × n matrix. One can check that the set of Fourier coefficients as well as the
property of being the indicator function of an (affine) linear subspace are invariant under invertible linear
transformations. If a ∈ Fn2 is a non-zero vector, and let h(x) := f(x + a) be the linear shift of f , then the
Fourier spectrum of h is given by ĥ(α) = χa(α)f̂(α) for every α ∈ Fn2 .

2.2 Additive combinatorics

Additive combinatorics is the sub-field of mathematics concerned with subsets of integers or more generally
abelian groups, and studies the interplay between the structural properties of a subset and its combinatorial
estimates associated with arithmetic operations. Recently additive combinatorics has found many appli-
cations in computer science, see the excellent exposition [23] and the textbook [33] for comprehensive
treatments.

Throughout this paper, G is the abelian group Fn2 for some positive integer n and the underlying field is
F2. If A = {a1, . . . , am} ⊂ G, then span(A) stands for the linear span of A: span(A) = {

∑
i∈S ai | S ⊆

[m]}, where summation over the empty set is understood to be the 0 element by convention. For any x ∈ G
and A ⊂ G, we write x+A to denote the set {x+a | a ∈ A}. If A and B are two subsets of G, then A+B
denotes the sumset {a+ b | a ∈ A and b ∈ B}. Similarly, A−B := {a− b | a ∈ A and b ∈ B}, although
A−B is always the same as A+B in this paper as the underlying ambient group is Fn2 . If A = B then we
write 2A := A+A and in general write kA := A+ · · ·+A︸ ︷︷ ︸

k times

for integer k ≥ 1.

The following Lemma of Laba is useful for our proofs.

Lemma 2.6 ([19], Theorem 2.5). Let G be an abelian group and A ⊂ G be a subset of G such that
|A−A| < 3

2 |A|. Then A−A is a subgroup of G.
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3 Proof of the Main Lemma

First recall our Main Lemma states the following.

Lemma 1.3. Let k ≥ 5 and n ≥ k be integers. Let f : Fn2 → {0, 1} be a Boolean function such that
f̂(0) = 1/2k−1 and any other Fourier coefficients are either zero or equal to ± 1

2k
, then f is the indicator

function of a disjoint union of two dimension n− k affine subspaces.

In Appendix B, we compute the Fourier spectrum of a Boolean function that is supported on two disjoint
affine subspaces such that the two affine subspaces are of the same dimension and their Fourier spectra
have minimum intersection. Our strategy for the proof of the Main Lemma is to show that if the Fourier
coefficients of a Boolean function satisfy the condition prescribed in the Main Lemma, then its Fourier
spectrum matches the one we show in Appendix B.

Let us define
A = {α ∈ Fn2 | f̂(α) =

1

2k
}

and
B = {β ∈ Fn2 | f̂(β) = − 1

2k
}.

Without loss of generality4, from now on, we may assume f(0) = 1. We begin with calculating the
cardinalities of sets A and B.

Claim 3.1. For any k ≥ 1 and n ≥ k, we have |A| = 3t and |B| = t, where t = 2k−1 − 1.

Proof. Since f̂(0) = 1/2k−1, by Parseval’s identity f̂(0) = 1/2k−1 =
∑

α∈Fn2
f̂2(α), we have |A|+ |B| =

2k+1 − 4.
On the other hand,

1 = f(0) =
∑
α∈Fn2

f̂(α)χα(0) =
1

2k−1
+
∑
α∈A

1

2k
+
∑
β∈B

(− 1

2k
),

which gives |A| − |B| = 2k − 2. Therefore we have |A| = 3(2k−1 − 1) and |B| = 2k−1 − 1.

For convenience, we let A = {α1, . . . , α3t} and B = {β1, . . . , βt} in the following.

3.1 Some additive properties of sets A and B

We now study the additive properties of sets A and B. Note that the Fourier coefficients of f are non-zero
only at 0 and in setsA andB; moreover, the Fourier coefficients are uniform for points inA orB. Therefore,
by Proposition 2.2, we expect that there are nice additive structures within A and B.

Definition 3.2. We call (α, β, α + β) a triangle if α, β and α + β are all in the support of f̂ ; that is
α, β, α+ β ∈ A ∪B ∪ {0}.

Lemma 3.3. For any βi ∈ B, there are exactly t triangles passing through βi; namely, the t triangles are
(βi, βi,0) and {(βi, βj , βi + βj)}tj=1,j 6=i. In the language of set addition, we have 2B ⊆ A ∪ {0}.

4This is because if f(0) = 0, then let a ∈ Fn2 be any vector such that f(a) = 1. We can apply a linear shift a to f to get a new
Boolean function, h(x) = f(x + a) for every x, so that h(0) = 1. Note that the conclusions in our Main Theorem are invariant
under linear shifts. Moreover, since ĥ(α) = χa(α)f̂(α) for every α ∈ Fn2 , we have ĥ(0) = 1/2k−1 and |ĥ(α)| = |f̂(α)| for any
other nonzero α. Therefore, the assumptions apply to h as well.
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Proof. For any βi ∈ B, by Proposition 2.2,

f̂(βi) = − 1

2k
=
∑
γ∈Fn2

f̂(γ)f̂(βi + γ)

= 2f̂(0)f̂(βi) +
t∑

j=1
j 6=i

f̂(βj)f̂(βi + βj) +
3t∑
`=1

f̂(α`)f̂(βi + α`)

≥ 2 · 1

2k−1
· (− 1

2k
) + 2(t− 1)(− 1

2k
)(

1

2k
) 5

= − 1

2k
,

where the inequality in the second last line becomes equality if and only if the following two conditions
hold: 1) for every 1 ≤ j ≤ t, j 6= i, βi + βj ∈ A; and 2) there is no triangle of the form (βi, αj , α`). Hence
the lemma follows.

Corollary 3.4. The set B is a sum-free set; namely, for any three elements β1, β2, β3 ∈ B, β1 + β2 6= β3.
Equivalently, 2B ∩B = ∅.

Proof. This follows directly from Lemma 3.3 and the fact sets A and B are disjoint.

Corollary 3.5. We have 2B ∩ 3B = ∅.

Proof. Suppose not, then there exist β1, β2, β3, β4, β5 in B such that β1 + β2 = β3 + β4 + β5. These
five elements must be distinct as otherwise they would give rise to a triangle in B. But then we have a
(α1, α2, β5) triangle, where α1 := β1 + β2 and α2 := β3 + β4, contradicting to Lemma 3.3.

Let us define
R = 2B ∩A = 2B \ {0}

and
L = A \R.

Note that L and R are disjoint and A = L ∪R. For any ρ ∈ R, let

N(ρ) = {βi ∈ B | ∃βj ∈ B s.t. ρ = βi + βj }

be the set of points in B which has a triangle passing through ρ. Define a set Γ ⊂ Fn2 as

Γ = {γ = ρ+ β | ρ ∈ R, β ∈ B and β /∈ N(ρ)}.

Observe that Γ is nonempty: since for every ρ ∈ R, all its β-neighbors can be paired together, so |N(ρ)| is
an even number, but |B| = 2k−1 − 1 is odd.

Claim 3.6. We have Γ = 3B \B.
5There is a factor 2 in the second summation because if βi + βj ∈ A, then the triangle (βi, βj , βi + βj) appears twice in the

summation
∑
γ∈Fn2

f̂(γ)f̂(βi + γ): once with γ = βj and the other with γ = βi + βj .
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Proof. On one hand, by the definition of set Γ, Γ ⊆ 3B; since R and B are disjoint and 0 /∈ R, we have
Γ∩B = ∅, and hence Γ ⊆ 3B \B. On the other hand, let γ be any element in 3B; that is γ = β1 +β2 +β3,
where β1, β2, β3 ∈ B. When will γ actually be in B? This happens only if any two of these three elements
are identical, then γ = βi for some i ∈ {1, 2, 3}, thus γ ∈ B. Moreover, assume that these three elements
are distinct and suppose γ ∈ B, i.e. γ = βj for some j > 3. Let ρ := β1 + β2, then ρ = β3 + γ = β3 + βj ;
that is γ = ρ+β3 and β3 ∈ N(ρ). Therefore, if γ ∈ 3B\B, then we must have β3 /∈ N(ρ) and consequently
γ ∈ Γ. It follows that 3B \B ⊆ Γ. This completes the proof of the claim.

It is easy to see that Γ is disjoint from the Fourier support of f .

Claim 3.7. For every element γ ∈ Γ, we have f̂(γ) = 0.

Proof. Recall that, the support of f̂ is A ∪ B ∪ {0}. Suppose f̂(γ) 6= 0, that is γ ∈ supp(f̂). Since
A = L ∪ R, from Claim 3.6, we know that Γ ∩ B = ∅; from Claim 3.6 and Corollary 3.5, we know that
Γ∩2B = Γ∩ (R∪{0}) = ∅. So there is only one possibility left, which is γ ∈ L. However, if this were the
case, because γ = ρ + β with ρ ∈ R, it would give rise to a (γ, ρ, β)-triangle with γ, ρ ∈ A, contradicting
Lemma 3.3, so γ is not in L, hence f̂(γ) = 0.

3.2 Even-Zohar’s tight bound on F (K)

Let G be an abelian group and A ⊂ G be a subset. The fundamental Freiman theorem [11] in additive
combinatorics states that if G is Z and |A + A| ≤ K|A| for some constant K, then there exist functions
d(K) and `(K) such that A is contained in a d(K)-dimensional arithmetic progression of length at most
`(K)|A|. The ratio σ[A] := |A + A|/|A| is commonly known as the doubling constant of set A. Hence
Freiman theorem asserts that if a set of integers has small doubling constant, then the set is well-structured.
Ruzsa [29] established an analog of Freiman’s theorem for finite abelian groups with torsion r. Specifically,
he proved that any subset A with doubling constant K is contained in a subgroup of G of size at most
K2rK

4 |A|. The question for groups Fn2 was first studied by Green and Ruzsa [15] and the bound was later
improved by Sanders [31]. An asymptotically tight bound was first proved in [16] and [18].

For a subset A ⊂ Fn2 , let 〈A〉 denote the affine span of A; namely, the smallest affine subspace that
contains A. If σ[A] = K, then let F (K) := maxA:σ[A]=K |〈A〉|/|A| denote the maximum relative size of
the affine span of A. Even-Zohar [10] gave the tight bound of F (K) for all values of doubling constant K.

Theorem 3.8 ([10], Theorem 2). Let A be a subset of Fn2 with doubling constant K, i.e. |2A|/|A| ≤ K. If
s is the unique positive integer satisfying the inequalities(

s
2

)
+ s+ 1

s+ 1
≤ K <

(
s+1
2

)
+ s+ 2

s+ 2
, (4)

then |〈A〉|/|A| ≤ F (K), where F (K) is given by

F (K) =


2s

(s2)+s+1
·K if (s2)+s+1

s+1 ≤ K < s2+s+1
2s ,

2s+1

s2+s+1
·K if s

2+s+1
2s ≤ K <

(s+1
2 )+s+2

s+2 .
(5)
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3.3 Characterizing 2B and span(B)

Note that the doubling constant of set B satisfies that

σ[B] =
|R|+ 1

|B|
≤ |A|+ 1

|B|
= 3 +

1

t
, (6)

and recall that t = 2k−1 − 1. Therefore, when k ≥ 5, K = σ[B] ≤ 46
15 . Plugging this K into (4) gives that

s ≤ 5 and consequently F (K) ≤ 2K < 7. That is, we have |〈B〉| < 7|B|.
The most important step in our proof is establishing the following lemma, which almost completely

characterizes the structure of set B.

Lemma 3.9. If k ≥ 5, then | span(B)| = 2k = 2(|B|+ 1) and 2B is a subspace of dimension k − 1.

We prove Lemma 3.9 in the following two subsections, distinguishing between the case when 〈B〉 is an
affine subspace and the case when 〈B〉 is a subspace.

3.3.1 If 〈B〉 is an affine subspace

In the case that 〈B〉 is an affine subspace, let 〈B〉 = a + H be the affine subspace, where H is a subspace
of Fn2 , a ∈ H⊥ and a 6= 0. Therefore span(B) = H ∪ (a + H). Note that we now have 2`B ⊆ H
and (2` − 1)B ⊆ a + H for every integer ` ≥ 1. Moreover, | span(B)| = 2|〈B〉| < 14|B|. Since
span(B) is a subspace and |B| = 2k−1 − 1, so there are only three possibilities: | span(B)| = 8(|B|+ 1),
| span(B)| = 4(|B|+ 1) and | span(B)| = 2(|B|+ 1). In the following, we are going to eliminate the first
two possibilities.

Claim 3.10. Set L is nonempty.

Proof. Suppose not, then 2B = A∪{0} ⊂ H . Recall that by Claim 3.6, Γ = 3B \B, so Γ ⊆ a+H and is
disjoint from setA. It follows that for any γ ∈ Γ, f̂(γ) = 0 (or directly from Claim 3.7). However, applying
Proposition 2.2 to f̂(γ), we see that by the definition of set Γ, γ = ρ+β with ρ ∈ A, β ∈ B and β /∈ N(ρ).
Hence there is at least one negative term contribution on the right-hand side in (1) for f̂(γ), but since both
2B and 2A are disjoint from Γ, there is no positive term on the right-hand side in (1), a contradiction.

We discuss the following two possibilities separately.

The case when |H| = 4(|B|+1). First note that if this were the case, then F (K) = |〈B〉|/|B| = 4(1+ 1
|B|).

By Theorem 3.8, the doubling constant of B is at least K = |2B|/|B| > 2.5, or |2B| > 2.5|B|. Therefore

|L| ≤ 0.5|B|. On the other hand, 4B = 2B + 2B and 4B ⊆ H so σ[2B] = |4B|/|2B| < 4+ 1
16

2.5 < 7/4.
Then by Theorem 3.8 again, |4B| = |〈2B〉|, that is 4B = H .

We next claim that L ⊆ H . To see this, let λ be an arbitrary element in L; applying Proposition 2.2 to
f̂(λ) gives

1

2k
= f̂(λ) = 2f̂(λ)f̂(0) +

∑
λ′∈L

f̂(λ′)f̂(λ+ λ′) + other terms.

The first term and the second summation can contribute at most 1
22k

(2|L| + 2) ≤ |B|+2
22k

< 1
2k

. Therefore,
the “other terms” on the right-hand side must contain terms of the form f̂(α1)f̂(α2), where α1 and α2 are
two distinct points in A and λ = α1 + α2. That is λ ∈ 2B + 2B, hence it follows that L ⊆ 4B = H .
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Let D := H \ (2B ∪ L). We have |D| = 4(|B| + 1) − 3|B| − 1 = |B| + 3 > 0. Let δ be any point
in D. First, since δ /∈ 2B ∪ B, f̂(δ) = 0. Second, since δ ∈ H , there is no negative term in the right-hand
side of 0 = f̂(δ) =

∑
γ∈Fn2

f̂(γ)f̂(δ + γ), because if γ ∈ B, then δ + γ ∈ a + H but there is no positive
Fourier coefficient in a + H (since L ⊂ H). On the other hand, consider the set {δ + α | α ∈ 2B ∪ L}.
Since |D| < |H|/2, this set has non-empty intersection with 2B ∪ L. Therefore, there are positive terms in∑

γ∈Fn2
f̂(γ)f̂(δ + γ), this contradicts the fact that f̂(δ) = 0.

The case when |H| = 2(|B|+ 1). This case is similar to the previous one. First, if this were the case, then
F (K) = |〈B〉|/|B| = 2(1 + 1

|B|). It follows that, by Theorem 3.8, the doubling constant of B is at least
K = |2B|/|B| > 7/4, and hence |4B|/|2B| ≤ |H|/|2B| < 3/2, and by Theorem 3.8 again 4B = H . The
rest is identical to the case when |H| = 4(|B|+ 1).

Proof of Lemma 3.9 when 〈B〉 is an affine subspace. Now that the only possibility left is | span(B)| = 2 ·
(|B| + 1), and because 〈B〉 is an affine subspace, it follows that 2B ⊆ H and hence |2B| ≤ |B| + 1.
Applying Laba’s lemma, Lemma 2.6, to set B gives that 2B is a subspace. Since |2B| ≥ |B|, it follows that
2B = H , a dimension k − 1 subspace.

3.3.2 If 〈B〉 is a subspace

If the affine span 〈B〉 is a subspace, and since |〈B〉| < 7|B|, then we either have |〈B〉| = 4(|B| + 1) or
|〈B〉| = 2(|B|+ 1) (because B ∩ 2B = ∅ and |2B| ≥ |B|, |〈B〉| ≥ 2|B|). In the following we exclude the
first case.

Recall that R = 2B \ {0} is the set of non-zero points in the Fourier support of f that can be written as
a sum of two β-points in B. Let R = {λ1, . . . , λm}, where m is the cardinality of R.

Claim 3.11. If 〈B〉 is a subspace, then m ≤ 2.5t.

Proof. For the sake of contradiction, suppose that m > 2.5t. For every λi ∈ R, let di be the number of
βj’s that form a triangle with λi. Then we have

∑m
i=1 di = t(t − 1) and di ≥ 2 for every 1 ≤ i ≤ m. By

a standard averaging argument, there is some λi with di ≤ 0.4t. By the definition of set Γ, it follows that
|Γ| ≥ t − di = 0.6t. Recall that Γ = 3B \ B so Γ ⊂ 〈B〉 = span(B), and Γ is disjoint from either 2B or
B, thus |〈B〉| ≥ |2B|+ |B|+ |Γ| > 4.1t, contradicting our assumption that |〈B〉| = 4(|B|+ 1).

Proof of Lemma 3.9 when 〈B〉 is a subspace. Now since m ≤ 2.5t, the doubling constant of B is at most
|2B|/|B| ≤ 2.5 + 1/|B| < 21/8, then by Theorem 3.8, |〈B〉|/|B| < 42/11 < 4, therefore we must have
|〈B〉| = 2(|B| + 1) = 2k. Once again, applying Laba’s lemma to set B shows that 2B is a subspace of
dimension k − 1.

3.4 Completing the proof of the Main Lemma

By Lemma 3.9, 2B is a dimension k − 1 subspace; without loss of generality, we may assume that

H = 2B = span(e1, . . . , ek−1). (7)

Since | span(B)| = 2k = 2|2B|, and B ∩ 2B = ∅, B is an affine shift of H with one point δ missing. Since
δ /∈ H , so without loss of generality, we may assume ek is the missing point. That is

B = (ek + span(e1, . . . , ek−1)) \ {ek} and (8)

R = 2B \ {0} = span(e1, . . . , ek−1) \ {0} = ek +B. (9)
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Now by Claim 3.6, we have Γ = {ek} and consequently f̂(ek) = 0. Our last task is to determine the
structure of set L. Recall that A = R∪L and |A| = 3t, and because we now have R = 2B \ {0}, therefore
|L| = 2t = 2k − 2.

Claim 3.12. For any λ ∈ L, ek + λ ∈ L.

Proof. Applying Proposition 2.2 to the Fourier coefficient of f at ek and noting that R = ek +B, we have

f̂(ek) = 0 =
∑
γ∈Fn2

f̂(γ)f̂(ek + γ)

= 2
∑
ρ∈R

f̂(ρ)f̂(ek + ρ) +
∑
λ∈L

f̂(λ)f̂(ek + λ)

≤ 2t · (− 1

22k
) + 2t · 1

22k

= 0,

where equality holds in the second last line only if for every λ ∈ L, f̂(ek +λ) = 1
2k

. That is, ek +λ ∈ A(=
L∪R). As each element in R has already been taken into account in the first summation in the second line,
therefore we necessarily have ek + λ ∈ L.

Claim 3.13. For any λ ∈ L and ρ ∈ R, f̂(λ+ ρ) = 0.

Proof. Applying Proposition 2.2 to f̂(ρ), where ρ is an arbitrary element in R, we have

f̂(ρ) =
1

2k
= 2 · f̂(0)f̂(ρ) +

∑
β∈B

f̂(β)f̂(ρ+ β) +
∑

ρ′∈R,ρ′ 6=ρ
f̂(ρ′)f̂(ρ+ ρ′) +

∑
λ∈L

f̂(λ)f̂(λ+ ρ)

= 2 · 2

2k
· 1

2k
+ (t− 1) · (− 1

2k
) · (− 1

2k
) + (t− 1) · ( 1

2k
) · ( 1

2k
) +

∑
λ∈L

1

2k
· f̂(λ+ ρ)

≥ 1

2k
, (as λ+ ρ /∈ B, therefore f̂(λ+ ρ) ≥ 0)

where we have a factor of (t− 1) in the second line because ρ + ek ∈ B and equality holds in the last line
only if f̂(λ+ ρ) = 0 for every λ ∈ L and every ρ ∈ R.

Claim 3.14. For any λ, λ′ ∈ L, λ+ λ′ ∈ L except that λ+ λ′ = 0 or ek.

Proof. Applying Proposition 2.2 to f̂(λ), where λ is an arbitrary element in L, we have

f̂(λ) =
1

2k
= 2 · f̂(0)f̂(λ) +

∑
β∈B

f̂(β)f̂(λ+ β) +
∑
ρ∈R

f̂(ρ)f̂(λ+ ρ) +
∑

λ′∈L,λ′+λ/∈{0,ek}

f̂(λ′)f̂(λ+ λ′)

= 2 · 2

2k
· 1

2k
+ 0 + 0 +

∑
λ′∈L,λ′+λ/∈{0,ek}

1

2k
· f̂(λ+ λ′) 6

≤ 4

22k
+ (2t− 2) · ( 1

2k
) · ( 1

2k
)

=
1

2k
,
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where equality holds in the second last line only if λ+ λ′ ∈ L for every λ′ ∈ L, except when λ′ is equal to
λ or λ+ ek.

Put Claim 3.12, Claim 3.13 and Claim 3.14 together, and since |L| = 2k − 2 we conclude that H ′ :=
L ∪ {0, ek} is a subspace of dimension k. Moreover, as span(B) = span(e1, . . . , ek) is a subspace of
dimension k, and L ∩ span(B) = ∅, we thus have H ′ ∩ span(B) = {0, ek}. Therefore, without loss of
generality, we may take H ′ = span(ek, . . . , e2k−1) and consequently finally have

L = span(ek, . . . , e2k−1) \ {0, ek}. (10)

It is straightforward to check7 that the Fourier spectrum calculated in Section B for a disjoint union of
two dimension n−k affine subspaces is identical to the Fourier spectrum of f , which is completely specified
by sets in (8), (9) and (10). Therefore the proof of the Main Lemma is complete.

4 Dealing with small values of k

When k = 2 or k = 3, note that since Claim 3.1 holds for every k ≥ 2, this will enable us to prove the
same results as Main Lemma by slightly different arguments. That is, when k = 2 or k = 3, support of f is
also a disjoint union of two dimension n− k affine subspaces. However, when k = 4 one can not prove the
same characterization as Main Lemma. In fact, there are two possibilities: one is that f is still the indicator
function of two disjoint dimension n − 4 affine subspaces; the other is that support of f are four disjoint
n − 5 affine subspaces. Furthermore, we show that this is the only counterexample to Main Lemma for all
k. Now we give the precise statements for small values of k and their proofs.

Lemma 4.1. Let 2 ≤ k ≤ 4 and n ≥ k be integers. Let f : Fn2 → {0, 1} be a Boolean function such that
f̂(0) = 1/2k−1 and any other Fourier coefficients are either zero or equal to ± 1

2k
. If k = 2 or k = 3, then

f is the indicator function of a disjoint union of two dimension n − k affine subspaces; If k = 4, then f is
either the indicator function of a disjoint union of two dimension n − k affine subspaces, or the indicator
function of a disjoint union of four dimension n− k − 1 affine subspaces.

4.1 Proof of the case k = 2

In this case, |A| = 3 and |B| = 1. For convenience, suppose that f̂(0) =
1

2
, f̂(β) = −1

4
and f̂(α1) =

f̂(α2) = f̂(α3) =
1

4
, where β, α1, α2, α3 are four distinct non-zero vectors.

We claim that there exists an αi, 1 ≤ i ≤ 3, such that f̂(β+αi) = 0. To see this, suppose f̂(β+αi) 6= 0
for every 1 ≤ i ≤ 3. Because the four vectors are distinct, β + αi 6= 0; furthermore, since αi 6= 0, so
β + αi 6= β. It follows that β + {α1, α2, α3} = {α1, α2, α3}; that is, adding β to A permutes the three
elements in the set. But now adding these three elements together gives 3β1+

∑
αi =

∑
αi, a contradiction

since β1 6= 0.
6The second term vanishes because the only triangles passing through a point βi ∈ B are of the type (βi, βj , ρ`) where ρ` ∈ R;

the third term vanishes because of Claim 3.13.
7The second line in (11) corresponds to set B, third line in (11) corresponds to set R, and the fourth and fifth lines of (11)

correspond to set L.
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Without loss of generality, assume f̂(β+α1) = 0 and denote β+α1 by γ. Now applying Proposition 2.2
to γ gives:

f̂(γ) = 0 =
∑
α

f̂(α)f̂(α+ γ)

= 2 · f̂(β1)f̂(α1) + f̂(α2)f̂(α2 + γ) + f̂(α3)f̂(α3 + γ)

= 2 · (−1

4
) · 1

4
+ f̂(α2)f̂(α2 + γ) + f̂(α3)f̂(α3 + γ)

≤ 0,

where equality holds in the last line only if γ = α2 + α3 so that

f̂(α2)f̂(α2 + γ) = f̂(α3)f̂(α3 + γ) = f̂(α2)f̂(α3) =
1

4
· 1

4
.

After taking an invertible linear transformation if necessary, we may take α1 = e1, β = e1 + e2, α2 = e3
and α3 = e2 + e3, then it is easy to verify that this is identical to the Fourier spectrum in (11) for the case of
k = 2.

4.2 Proof of the case k = 3

In this case, |A| = 9 and |B| = 3. Denote set B by {β1, β2, β3}. Then by Corollary 3.4, β1 + β2 + β3 6= 0,
therefore R = {β1 + β2, β1 + β3, β2 + β3}, and Γ = {β1 + β2 + β3}. Hence Lemma 3.9 is established and
the rest of the proof is identical to that of the Main Lemma in Section 3.4 for the general k ≥ 5 case.

4.3 Proof of the case k = 4

First of all, it is easy to see that when k = 4, the indicator function of a disjoint union of 2 affine subspaces
of dimension n−k = n−4 is still a Boolean function with desired Fourier spectrum, for every n ≥ 4. Next
we construct another Boolean function, which demonstrates that Main Lemma is no longer valid for k = 4.

Construction 4.2. Let G = F6
2 with e1, · · · , e6 as the standard basis and let A,B ⊂ G be two disjoint

subsets given as follows:

• B = {ei | 1 ≤ i ≤ 6} ∪ {
∑6

i=1 ei};

• A = {ei + ej | 1 ≤ i < j ≤ 6} ∪ {
∑

i∈S ei | S ⊂ [6], |S| = 5}.

Clearly A = 2B \ {0}, |B| = 24−1 − 1 = 7 and |A| =
(
7
2

)
= 3|B|, which satisfy the size requirements

for A and B for k = 4. To see that sets A and B in Construction 4.2 satisfy all the additive properties
imposed by Proposition 2.2, one can explicitly compute a “core” function fCE : F6

2 → R with A∪B ∪ {0}
being its Fourier support to verify that f is indeed a Boolean function and supp(fCE) = {0} ∪ {

∑
i∈S ei |

S ⊂ [6], |S| = 5} ∪ {
∑6

i=1 ei}. That is, f is equal to 1 on vectors of weights 0, 5 and 6, and is equal to 0
on all other vectors. Note that supp(fCE) consists of 8 distinct vectors and is a disjoint union of four affine
subspaces of dimension n− 4− 1 = 1 each. Moreover, it can be checked that supp(fCE) is not the union
of any two disjoint affine subspaces of dimension 2.

Our next claim shows that, up to an invertible linear transformation, Construction 4.2 is essentially the
only counterexample to the Main Lemma.
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Claim 4.3. When k = 4, either f is the indicator function of a disjoint union of two affine subspaces of
dimension n − k, or the Fourier spectrum of f is given by Construction 4.2 under some invertible linear
transformation, and consequently f is the indicator function of a disjoint union of four affine subspaces of
dimension n− k − 1.

Proof. When k = 4, we have |B| = 24−1 − 1 = 7. By inequality (6), σ[B] = |2B|/|B| ≤ 22/7. But if
|2B| ≤ 21, then pluggingK = σ[B] ≤ 3 into (4) gives that s ≤ 5 and consequently F (K) ≤ 2K < 7. That
is, we would have |〈B〉| < 7|B| = 49. Then following the same argument, we would be able to establish
Lemma 3.9 for the case k = 4 as well, i.e. to have | span(B)| = 2k = 2(|B| + 1) and 2B is a subspace
of dimension k − 1, thereby recovering the regular configuration of f being the indicator function of two
disjoint affine subspaces of dimension n− k.

Therefore, from now on, we assume that |2B| = 22. On the other hand, |A| = 3|B| = 21; combining
this with Lemma 3.3 (i.e. 2B ⊆ A∪{0}), we must have A = 2B \{0}. By the upper bound on |〈B〉| given
in Theorem 3.8, we have |〈B〉| ≤ 26 = 64. But if |〈B〉| < 64 (hence |〈B〉| = 32 or |〈B〉| = 16), then the
proof of Lemma 3.9 would follow again.

Hence, the counter-example is possible only when the dimension of span(B) is at least 6. Without loss
of generality, we may assume B = {ei | 1 ≤ i ≤ 6} ∪ {β}. We will determine vector β next.

If β /∈ span(e1, · · · , e6), then without loss of generality, let β = e7. Now A = 2B \ {0} = {ei + ej |
1 ≤ i < j ≤ 7}. But applying Proposition 2.2 to the vector e1 + e2 + e3 gives that f̂(e1 + e2 + e3) =
−6/22k, contradiction to the fact that f̂(e1 + e2 + e3) = 0 because e1 + e2 + e3 /∈ A ∪ B. It follows that
β ∈ span(e1, · · · , e6).

Note that every weight-2 vector ei + ej , 1 ≤ i < j ≤ 6, is in A. On the other hand, since |A| =
(|B|

2

)
,

it follows that for every αk ∈ A, there exist a unique pair βi, βj ∈ B such that βi + βj = αk. Combining
these two facts, we conclude that none of the weight-3 vector of the form ei + ej + ek is in B, for every
1 ≤ i < j < k ≤ 6, as it would gives two ways to obtain vectors such as ei+ ej by adding two vectors from
B, thus making |A| <

(|B|
2

)
. By Claim 3.5, none of the weight-4 vectors can be in B either, which leaves

only the possibilities of weight-5 or weight-6 vector for β.
If β is a weight-5 vector, without loss of generality, we may assume β =

∑5
i=1 ei. Then B would

contain vectors of weight-1 and weight-5 only, consequently A would contain vectors of weight-2, weight-4
and weight-6 only. Now applying Proposition 2.2 to the vector e1 + e2 + e3 yields f̂(e1 + e2 + e3) < 0,
contradicting to the fact that f̂(e1 +e2 +e3) = 0 as e1 +e2 +e3 /∈ A∪B. Therefore, we have β =

∑6
i=1 ei,

completing the proof of the claim.

5 Proof of the Main Theorem

Clearly, if f̂(0) = 1
2k

, then, because |f̂(α)| ≤ f̂(0) for every α, all non-zero Fourier coefficients of f have
absolute value 1

2k
. Therefore, Rothschild and van Lint Theorem applies and f is the indicator function of an

affine subspace of dimension n− k. Therefore, from now on, we assume f̂(0) = 1
2k−1 .

The first step in our proof of the Main Theorem is to follow a similar procedure employed in the proof
of Theorem 1.1. That is, whenever possible, we reduce the values of n and k simultaneously. This proceeds
as follows. Suppose there exists a non-zero α with f̂(α) = 1

2k−1 or − 1
2k−1 . Without loss of generality,

assume that f̂(α) = 1
2k−1 . Apply an invertible linear transform L that maps α to e1 and let g := Lf . Now

we have ĝ(0) = ĝ(e1) = 1
2k−1 . Apply the restriction on the first bit of the input to get sub-functions g0

and g1. Then by (2), ĝ1(0) = ĝ(0) − ĝ(e1) = 0, which implies that g1 ≡ 0. This implies that supp(f) is
completely contained in the support of g0 and moreover, by (3), ĝ0(β) = 2f̂(0, β) for every β ∈ Fn−12 . In
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other words, g0 is a Boolean function over Fn−12 and |ĝ(β)| is equal to either zero, or 1
2k−1 , or 1

2k−2 . That is,
by performing a linear restriction, we reduce both the dimension n and the parameter k by one, so that the
Main Theorem holds for Boolean functions over Fn2 as long as it holds for Boolean functions over Fn−12 .

When we arrive at a point that such a linear restriction is no longer possible; equivalently, f is irreducible,
then f̂(0) is the only Fourier coefficient whose absolute value is 1

2k−1 . Therefore, the Main Lemma for k ≥ 5
or Lemma 4.1 for 2 ≤ k ≤ 4 applies.

6 Concluding Remarks and Open Problems

In this work, we extend a classical result of Rothschild and van Lint to give a complete characterization
of Boolean functions whose Fourier coefficients take values only in the set {−2/2k,−1/2k, 0, 1/2k, 2/2k}.
Our work may be regarded as a first step toward understanding the structures of Boolean functions of gran-
ularity k. A major motivation for such studies is to prove a polynomial upper bound on the kill number for
any k-granular Boolean function, thus resolving the Log-rank XOR conjecture. Another interesting question
is to find other sets of Fourier coefficients which uniquely or almost uniquely determine the structures of
their corresponding Boolean functions.
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A A Proof of Proposition 2.3

Recall that Proposition 2.3 on the Fourier spectra of sub-functions obtained from linear restrictions is the
following:

Proposition 2.3. Let f : Fn2 → R be a function defined on the Boolean hypercube. Let f0, f1 : Fn−12 → R
be the “sub-functions” obtained from restricting the first bit of the input to 0 and 1, respectively; that is,
f0(y) := f(0, y) and f1(y) := f(1, y) for all y ∈ Fn−12 . Then the Fourier spectra of f0 and f1 satisfy that,
for all β ∈ Fn−12 ,

f̂0(β) = f̂(0, β) + f̂(1, β), f̂1(β) = f̂(0, β)− f̂(1, β). (2)

Conversely, the Fourier spectrum of f satisfies

f̂(0, β) =
1

2
(f̂0(β) + f̂1(β)), f̂(1, β) =

1

2
(f̂0(β)− f̂1(β)). (3)
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Proof. Clearly it suffices to prove either (2) or (3) and the other follows immediately. We prove the first part
of (3), the second part can be proved analogously. By the definition of Fourier transform,

f̂(0, β) =
1

2n

∑
x∈Fn2

f(x)χ(0,β)(x)

=
1

2n

∑
y∈Fn−1

2

(
f(0, y)χ(0,β)((0, y)) + f(1, y)χ(0,β)((1, y))

)

=
1

2n

 ∑
y∈Fn−1

2

f(0, y)χβ(y) +
∑

y∈Fn−1
2

f(1, y)χβ(y)


=

1

2n

∑
y∈Fn−1

2

f0(y)χβ(y) +
1

2n

∑
y∈Fn−1

2

f1(y)χβ(y)

=
1

2
(f̂0(β) + f̂1(β)).

B The Fourier spectrum of disjoint union of two affine subspaces

In this section we calculate the Fourier spectrum of a Boolean function whose support is the union of two
disjoint affine subspaces satisfying certain properties. In particular, the two affine subspaces are of the same
dimension and their Fourier spectra have minimum intersection.

Let n ≥ 1 and 0 ≤ k < n be integers. If V is a linear subspace in Fn2 of dimension n− k and a ∈ V ⊥,
where V ⊥ denotes the linear subspace that is the orthogonal complement of V , then it is well known that
the Fourier spectrum of the indicator function of affine subspace a+ V is (see e.g. [25]):

1̂a+V (α) =

{
1
2k
χα(a) if α ∈ V ⊥,

0 otherwise.

Let f : Fn2 → {0, 1} be a Boolean function whose support is the union of two disjoint affine subspaces of
dimension n−k. By a shift of the origin if necessary, we may assume that one of the two affine subspaces is
a linear subspace. Therefore f = 1a+V1 +1V2 , where V1 and V2 are two linear subspaces of dimension n−k
in Fn2 and a ∈ V ⊥1 . In order for a + V1 and V2 to be disjoint, a necessary condition is that their orthogonal
complement subspaces have non-trivial intersection, V ⊥1 ∩ V ⊥2 6= {0}. The special configuration we are
interested in is when this intersection is minimal, that is when |V ⊥1 ∩ V ⊥2 | = 2.

To this end, without loss of generality, we let V ⊥1 = span(e1, . . . , ek) and V ⊥2 = span(ek, . . . , e2k−1)
so that V ⊥1 ∩ V ⊥2 = {0, ek}. Then we necessarily have8 〈ek, a〉 = 1. Therefore for simplicity (and also

8This is because, the affine subspace a+V1 can be expressed as the solutions to a system of linear equations a+V1 = {x ∈ Fn2 |
〈x, ei〉 = ai for every 1 ≤ i ≤ k}, where {e1, . . . , ek} is an orthonormal basis for V ⊥1 , and {ai := 〈ei, a〉}ki=1 are the components
under this basis. Now if |V ⊥1 ∩ V ⊥2 | = 2, and because the intersection of the two orthogonal complement subspaces is a subspace,
we may take V ⊥1 ∩ V ⊥2 = {0, ek} for convenience. On the other hand, V2 = {x ∈ Fn2 | 〈x, ei〉 = 0 for every k ≤ i ≤ 2k − 1}.
a + V1 and V2 are disjoint if and only if there is no solution to the two systems of linear equations combined together, which is
equivalent to the condition that 〈ek, a〉 = 1.
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without loss of generality) we may take a = ek. Therefore the Fourier spectrum of f is

f̂(α) = 1̂a+V1(α) + 1̂V2(α) =



1
2k−1 if α = 0,
− 1

2k
if α ∈ ek + (span(e1, . . . , ek−1) \ {0}),

1
2k

if α ∈ span(e1, . . . , ek−1) \ {0},
1
2k

if α ∈ ek + (span(ek+1, . . . , e2k−1) \ {0}),
1
2k

if α ∈ span(ek+1, . . . , e2k−1) \ {0},
0 otherwise.

(11)
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