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Approximation Schemes for Multiperiod Binary Knapsack Problems
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Abstract

An instance of the multiperiod binary knapsack problem (MPBKP) is given by a horizon length T , a non-

decreasing vector of knapsack sizes (c1, . . . , cT ) where ct denotes the cumulative size for periods 1, . . . , t,

and a list of n items. Each item is a triple (r, q, d) where r denotes the reward or value of the item, q its

size, and d denotes its time index (or, deadline). The goal is to choose, for each deadline t, which items to

include to maximize the total reward, subject to the constraints that for all t = 1, . . . , T , the total size of

selected items with deadlines at most t does not exceed the cumulative capacity of the knapsack up to time t.

We also consider the multiperiod binary knapsack problem with soft capacity constraints (MPBKP-S) where

the capacity constraints are allowed to be violated by paying a penalty that is linear in the violation. The

goal of MPBKP-S is to maximize the total profit, which is the total reward of the selected items less the total

penalty. Finally, we consider the multiperiod binary knapsack problem with soft stochastic capacity constraints

(MPBKP-SS), where the non-decreasing vector of knapsack sizes (c1, . . . , cT ) follow some arbitrary joint

distribution but we are given access to the profit as an oracle, and we must choose a subset of items to

maximize the total expected profit, which is the total reward less the total expected penalty.

For MPBKP, we exhibit a fully polynomial-time approximation scheme that achieves (1 + ǫ) approxima-

tion with runtime Õ
(
min

{
n+ T

3.25

ǫ2.25
, n+ T

2

ǫ3
, nT

ǫ2
, n

2

ǫ

})
; for MPBKP-S, the (1 + ǫ) approximation can be

achieved in O
(

n logn

ǫ
·min

{
T

ǫ
, n

})
. To the best of our knowledge, our algorithms are the first FPTAS for

any multiperiod version of the Knapsack problem since its study began in 1980s. For MPBKP-SS, we prove

that a natural greedy algorithm is a 2-approximation when items have the same size. Our algorithms also

provide insights on how other multiperiod versions of the knapsack problem may be approximated.
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1 Introduction

Knapsack problems are a classical category of combinatorial optimization problems, and have been studied for

more than a century (Mathews, 1896). They have found wide applications in various fields (Kellerer et al.,

2004), such as selection of investments and portfolios, selection of assets, finding the least wasteful way to cut

raw materials, etc. One of the most commonly studied problem is the so-called 0-1 knapsack problem, where

a set of n items are given, each with a reward and a size, and the goal is to select a subset of these items to

maximize the total reward, subject to the constraint that the total size may not exceed some knapsack capacity. It

is well-known that the 0-1 knapsack problem is NP-complete. However, the problem was shown to possess fully

polynomial-time approximation schemes (FPTASs), i.e., there are algorithms that achieve (1 + ǫ) factor of the

optimal value for any ǫ ∈ (0, 1), and take polynomial time in n and 1/ǫ.

The first published FPTAS for the 0-1 knapsack problem was due to Ibarra and Kim (1975) where they achieve

a time complexity Õ
(
n+ (1/ǫ4)

)
by dividing the items into a class of “large” items and a class of “small”

items. The problem is first solved for large items only, using the dynamic program approach, with rewards

rounded down using some discretization quantum (chosen in advance), and the small items are added later.

Lawler (1979) proposed a more nuanced discretization method to improve the polylogarithmic factors. Since

then, improvements have been made on the dynamic program for large items (Kellerer and Pferschy, 2004; Rhee,

2015). Most recently, the FPTAS has been improved to Õ
(
n+ (1/ǫ)9/4

)
in Jin (2019).

In this paper, we study three extensions of the 0-1 knapsack problem. First, we consider a multiperiod version of

the 0-1 knapsack problem, which we call the multiperiod binary knapsack problem (MPBKP). There is a horizon

length T and a vector of knapsack sizes (c1, . . . , cT ), where ct is the cumulative size for periods 1, . . . , t and is

non-decreasing in t. We are also given a list of n items, each associated with a triple (r, q, d) where r denotes the

reward or value of the item, q its size, and d denotes its time index (or, deadline). The goal is to choose a reward

maximizing set of items to include such that for any t = 1, . . . , T , the total size of selected items with deadlines

at most t does not exceed the cumulative capacity of the knapsack up to time t. The application that motivates

this problem is a seller who produces (ct − ct−1) units of a good in time period t, and can store unsold goods for

selling later. The seller is offered a set of bids, where each bid includes a price (r), a quantity demanded (q), and

a time at which this quantity is needed. The problem of deciding the revenue maximizing subset of bids to accept

is exactly MPBKP.

The second extension we consider is the multiperiod binary knapsack problem with soft capacity constraints

(MPBKP-S) where at each period the capacity constraint is allowed to be violated by paying a penalty that is

linear in the violation. The goal of MPBKP-S is then to maximize the total profit, which is the total reward of the

selected items less the total penalty. In this case, the seller can procure goods from outside at a certain rate if his

supply is not enough to fulfill the bids he accepts, and wants to maximize his profit.

The third extension we consider is the multiperiod binary knapsack problem with soft stochastic capacity con-

straints (MPBKP-SS) where the non-decreasing vector of knapsack sizes (c1, . . . , cT ) follows some arbitrary

joint distribution given as the set of sample paths of the possible realizations and their probabilities. We select

the items before realizations of any of these random incremental capacities to maximize the total expected profit,

which is the total reward of selected items less the total expected penalty. In this case, the production of the seller

at each time is random, but he has to select a subset of bids before realizing his supply. Again, the seller can

procure capacity from outside at a certain rate if his realized supply is not enough to fulfill the bids he accepts,

and wants to maximize his expected profit.

We note that MPBKP is also related to a number of other multiperiod versions of the knapsack problem in
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literature. The multiperiod knapsack problem (MPKP) proposed by Faaland (1981) has the same structure as

MPBKP, except that in Faaland (1981), each item can be repeated multiple times, i.e., the decision variables

for each item is not binary, but any nonnegative integer (in the single-period case, this is called the unbounded

knapsack problem (Andonov et al., 2000)). To the best of our knowledge, there has been no further studies

on MPKP since Faaland (1981). In the multiple knapsack problem (MKP), there are m knapsacks, each with

a different capacity, and items can be inserted to any knapsacks (subject to its capacity constraints). It has

been shown in Chekuri and Khanna (2005) that MKP does not admit an FPTAS, but an efficient polynomial time

approximation scheme (EPTAS) has been found in Jansen (2012), with runtime depending polynomially on n but

exponentially on 1/ǫ. The incremental knapsack problem (IKP) is another multiperiod version of the knapsack

problem (Hartline and Sharp, 2006), where the knapsack capacity increases over time, and each selected item

generates a reward on every period after its insertion, but this reward is discounted over time. Unlike MPBKP,

items do not have deadlines and can be selected anytime throughout the T periods. A PTAS for the IKP when the

discount factor is 1 (time invariant, referred to as IIKP) and T = O
(√

log n
)

has been found in Bienstock et al.

(2013), and it has been shown that IIKP is strongly NP-hard. Later, Faenza and Malinovic (2018) proposed

the first PTAS for IIKP regardless of T , and Della Croce et al. (2019) proposed an PTAS for IKP when T is a

constant. Most recent developments of IKP include Aouad and Segev (2020); Faenza et al. (2020). Other similar

problems and/or further extensions include the multiple-choice multiperiod knapsack problem (Lin and Chen,

2010; Lin and Wu, 2004; Randeniya, 1994), the multiperiod multi-dimensional knapsack problem (Lau and Lim,

2004), the multiperiod precedence-constrained knapsack problem (Moreno et al., 2010; Samavati et al., 2017), to

name a few.

Our main contributions of this paper are two-fold. First, from the perspective of model formulation, we propose

the MPBKP and its generalized versions MPBKP-S and MPBKP-SS. Despite the fact that there are a number

of multiperiod/multiple versions of knapsack problems, including those mentioned above (many of which are

strongly NP-hard), the MPBKP and MPBKP-S we proposed here are the first to admit an FPTAS among any

multiperiod versions of the classical knapsack problem since their initiation back in 1980s. With these results, it

is thus interesting to see where the boundary lies between these multiperiod problems that admit an FPTAS and

those problems that do not admit an FPTAS. Second, the algorithms we propose for both MPBKP and MPBKP-S

are generalized from the ideas of solving 0-1 knapsack problems, but with nontrivial modifications as we will

address in the following sections. For MPBKP-SS, we propose a greedy algorithm that achieves 2-approximation

for the special case when all items have the same size.

The rest of this paper is organized as follows. In Section 2 we formally write the three problems in mathematical

programming form. The FPTAS for MPBKP is proposed in Section 3 and the FPTAS for MPBKP-S is proposed

in Section 4. Alternative algorithms for both problems are also provided in Apendix. A greedy algorithm for a

special case of MPBKP-SS is proposed in Section 5. All proofs are left to Appendix but we provide proof ideas

in the main body.

2 Problem Formulation and Main Results

In this section, we formally introduce the Multiperiod Binary Knapsack Problem (MPBKP), as well as the gen-

eralized versions: the Multiperiod Binary Knapsack Problem with Soft capacity constraints (MPBKP-S), and

Multiperiod Binary Knapsack Problem with Soft Stochastic Capacity constraints (MPBKP-SS).
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2.1 Multiperiod binary Knapsack problem (MPBKP)

An instance of MPBKP is given by a set of n items, each associated with a triple (ri, qi, di), and a sequence of

knapsack capacities {c1, . . . , cT }. For each item i, we get reward ri if and only if i is included in the knapsack

by time di. We assume that ri ∈ N, qi ∈ N and di ∈ [T ] := {1, . . . , T}. The knapsack capacity at time t is ct,
and by convention c0 = 0. The MPBKP can be written in the integer program (IP) form:

max
x

z =

n∑

i=1

rixi (1a)

s.t.
∑

j:dj≤t

qjxj ≤ ct, ∀t = 1, . . . , T (1b)

xi ∈ {0, 1}, ∀i = 1, . . . , n (1c)

where xi’s are binary decision variables, i.e., xi is 1 if item i is included in the knapsack and is 0 otherwise.

In (1), we aim to pick a subset of items to maximize the objective function, which is the total reward of picked

items, subject to the constraints that by each time t, the total size of picked items with deadlines up to t does not

exceed the knapsack capacity at time t, which is ct. For each t ∈ [T ], let I(t) := {i ∈ [n] | di = t} denote the

set of items with deadline t. Note that without loss of generality, we may assume that I(t) 6= ∅,∀t and ct > 0.

We further note that the decision variables xi’s in (1) are binary, but if we relax this to any nonnegative integers,

the problem becomes the so-called multiperiod knapsack problem (MPKP) as in Faaland (1981). Our first main

result is the following theorem on MPBKP.

Theorem 1. An FPTAS exists for MPBKP. Specifically, there exists a deterministic algorithm that achieves (1+ǫ)-

approximation in Õ
(
min

{
n+ T 3.25

ǫ2.25 , n+ T 2

ǫ3 ,
nT
ǫ2 ,

n2

ǫ

})
.

As we will see shortly, MPBKP can be viewed as a special case of MPBKP-S. In Section 3, we will provide

an approximation algorithm for MPBKP with runtime Õ
(
n+ T 3.25

ǫ2.25

)
. An alternative algorithm with runtime

Õ
(
n+ T 2

ǫ3

)
is provided in Appendix B. In Section 4, we will provide an approximation algorithm for MPBKP-

S with runtime Õ
(
nT
ǫ2

)
, which is also applicable to MPBKP.

2.2 Multiperiod binary Knapsack problem with soft capacity constraints (MPBKP-S)

In MPBKP-S, the capacity constraints in (1) no longer exist, i.e., the total size of selected items at each time step

is allowed to be greater than the total capacity up to that time, however, there is a penalty rate Bt ∈ N for each

unit of overflow at period t. We assume that Bt > maxi∈[n]:di≤t
ri
qi

to avoid trivial cases (any item with ri
qi

≥ Bt

and di ≤ t will always be added to generate more profit). In the IP form, MPBKP-S can be written as

max
x,y

∑

i∈[n]

rixi −
T∑

t=1

Btyt (2a)

s.t.
∑

i∈I(1)∪···∪I(t)

qixi −
t∑

s=1

ys ≤ ct, ∀t : 1 ≤ t ≤ T (2b)

xi ∈ {0, 1}, yt ≥ 0, (2c)
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where the decision variables yt, t = 1, . . . , T represent the units of overflow at time t, and ct − ct−1 is the

incremental capacity at time t. The objective is to choose a subset of the n items to maximize the total profit,

which is the sum of the rewards of the selected items minus the sum of penalty paid at each period, and the

constraints enforce that the total size of accepted items by the end of each period must not exceed the sum of the

cumulative capacity and the units of overflow. Our second main result is the following theorem on MPBKP-S.

Theorem 2. An FPTAS exists for MPBKP-S. Specifically, there exists an algorithm which achieves (1 + ǫ)-

approximation in O
(
n logn

ǫ ·min
{
T
ǫ , n

})
.

In section 4 we will present an approximation algorithm for solving MPBKP-S with time complexity O
(
nT logn

ǫ2

)
.

An alternative FPTAS with runtime O
(
n2

ǫ

)
is provided in Appendix C. For the ease of presentation, our al-

gorithms and analysis are presented for the case Bt = B, but they can be generalized to the heterogeneous

{B1, . . . , BT } in a straightforward manner. It is worth noting that the algorithm for MPBKP that we introduce

in section 3 does not extend to MPBKP-S, and we will make this clear in the beginning of section 4.

2.3 Multiperiod Binary Knapsack Problem with Soft Stochastic Capacity Constraints (MPBKP-

SS)

The MPBKP-SS formulation is similar to (2), except that the vector of knapsack sizes (c1, . . . , cT ) follows some

arbitrary joint distribution given to the algorithm as the set of possible sample path (realization) of knapsack sizes

and the probability of each sample path. We use ω to index sample paths which we denote by {ct(ω)}, p(ω) as

the probability of sample path ω, and Ω as the set of possible sample paths. The goal is to pick a subset of items

before the realization of ω so as to maximize the expected total profit, which is the sum of the rewards of the

selected items deducted by the total (expected) penalty. For a sample ω ∈ Ω let yt(ω) be the overflow at time t.
Then, we can write the problem in IP form as:

max
x,y

∑

i∈[n]

rixi − Eω

[
Bt ·

T∑

t=1

yt(ω)

]
(3a)

s.t.
∑

i∈I(1)∪···∪I(t)

qixi −
t∑

s=1

ys(ω) ≤ ct(ω), ∀ω ∈ Ω, 1 ≤ t ≤ T (3b)

xi ∈ {0, 1}, yt ≥ 0 (3c)

Our third main result is the following theorem on MPBKP-SS, which asserts a greedy algorithm for the special

case when all items are of the same size. Details will be provided in Section 5.

Theorem 3. If qi = q for all i ∈ [n], then there exists a greedy algorithm that achieves 2-approximation for

MPBKP-SS in O
(
n2T |Ω|

)
.

We further note that both MPBKP-S and MPBKP-SS are special cases of non-monotone submodular maximiza-

tion which is not non-negative, for which not many general approximations are known. In that sense, studying

these problems would be an interesting direction to develop techniques for it.
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3 FPTAS for MPBKP

In this section, we provide an FPTAS for the MPBKP with time complexity Õ
(
n+ T 3.25

ǫ2.25

)
. We will apply

the “functional approach” as used in Chan (2018). The main idea is to use the results on function approxima-

tions (Chan, 2018; Jin, 2019) as building blocks – for each period we approximate one function that gives, for

every choice of available capacity, the maximum reward obtainable by selecting items in that period. We then

combine “truncated” version of these functions using (max,+)-convolution. This idea, despite its simplicity,

allows us to obtain an FPTAS for MPBKP. Such a result should not be taken as granted – as we will see in the

next section, this method does not apply for MPBKP-S, even though it is just a slight generalization of MPBKP.

We begin with some preliminary definitions and notations. For a given set of item rewards and sizes, I =
{(r1, q1), . . . , (rn′ , qn′)}, define the function

fI(c) := max
x1,...,xn′

{
∑

i∈I

rixi :
∑

i∈I

qixi ≤ c, x1, . . . , xn′ ∈ {0, 1}
}

(4)

for all c ≥ 0, and fI(c) := −∞ for c < 0. The function fI is a nondecreasing step function, and the num-

ber of steps is called the complexity of that function. Further, for any I = I1 ⊔ I2, i.e., I being a disjoint

union of I1 and I2, we have that fI = fI1 ⊕ fI2 , where ⊕ denotes the (max,+)-convolution: (f ⊕ g)(c) =
maxc′∈R (f(c′) + g(c− c′)).

We define the truncated function f c′

I as follows:

f c′
I (c) =

{
fI(c) c ≤ c′,

−∞ c > c′.
(5)

Recall that we denote the set of items with deadline t by I(t). We next define the function ft as follows:

ft :=

{
f c1
I(1) t = 1,
(
ft−1 ⊕ fI(t)

)ct t ≥ 2.
(6)

In words, each function value of ft(c) corresponds to a feasible, in fact an optimal, solution x for items with

deadline at most t as the next proposition shows.

Proposition 1. Let x∗ be the optimal solution for MPBKP (1). We have that the optimal value of (1),
∑

i∈[n] rix
∗
i ,

satisfies
∑

i∈[n] rix
∗
i = fT (cT ).

Proposition 1 implies that, to obtain an approximately optimal solution for MPBKP (1), it is sufficient to have a

good approximation for the function

fT =
(
· · ·

((
f c1
I(1) ⊕ fI(2)

)c2 ⊕ fI(3)

)c3
· · · ⊕ fI(T )

)cT
. (7)

We say that a function f̃ approximates the nonnegative function f with factor 1+ ǫ if f̃(c) ≤ f(c) ≤ (1+ ǫ)f̃(c)
for all c ∈ R. It should be clear that if f̃ approximates f with factor 1+ ǫ and g̃ approximates g with factor 1+ ǫ,
then f̃ ⊕ g̃ approximates f ⊕ g with factor 1 + ǫ. We then introduce the following result from Jin (2019) for 0-1

Knapsack problem.
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Lemma 1 (Jin (2019)). Given a set I = {(r1, q1), . . . , (rn, qn)}, we can obtain f̃I that approximates fI (defined

in (4)) with factor 1 + ǫ and complexity Õ
(
1
ǫ

)
in Õ

(
n+ (1/ǫ)2.25

)
.

With the above lemma, we present Algorithm 1 for MPBKP.

Algorithm 1 FPTAS for MPBKP

Input: ǫ, [n], c1, . . . , cT ⊲ Set of items to be packed, cumulative capacities

Output: f̃t ⊲ Approximation of function ft
1: Discard all items with ri ≤ ǫ

n
maxj rj and relabel the items

2: r0 ← mini ri ⊲ Lower bound of solution value

3: m←
⌈
log1+ǫ

n2

ǫ

⌉
⊲ number of distinct rewards to be considered, each in the form r0 · (1 + ǫ)k

4: Obtain f̃I(1) that approximates fI(1) with factor (1 + ǫ) using Lemma 1

5: f̃1 := f̃
c1
I(1) ⊲ f̃1 has complexity at most m = Õ

(
1
ǫ

)

6: for t = 2, . . . , T do

7: Obtain f̃I(t) that approximates fI(t) with factor (1 + ǫ) using Lemma 1

8: l ← complexity of f̃I(t) ⊲ l = Õ
(
1
ǫ

)

9: Compute (all breakpoints and their values of) f̂t :=
(
f̃t−1 ⊕ f̃I(t)

)ct
, taking m · l time ⊲ f̂t has complexity Õ

(
1
ǫ2

)

10: f̃t := r0 · (1 + ǫ)

⌊
log1+ǫ

(
f̂t
r0

)⌋

⊲ Round f̂t down to the nearest r0 · (1 + ǫ)k. Now f̃t has complexity at most m = Õ
(
1
ǫ

)

11: end for

We now describe the intuition behind Algorithm 1. We first discard all items with reward ri ≤ ǫ
n maxj rj . The

maximum we could lose is n · ǫ
n maxj rj = ǫmaxj rj , which is at most ǫ fraction of the optimal value. We next

obtain all f̃I(t), for all t = 1, . . . , T , that approximate fI(t) (as defined in (4)) within a (1 + ǫ) factor. These

functions f̃I(t) have complexity Õ
(
1
ǫ

)
. We start with combining the functions of period 1 and period 2 using

(max,+)-convolution. To enforce the constraint that the total size of selected items in period 1 does not exceed

the capacity of period 1, we truncate f̃I(1) by c1 (so that any solution using more capacity in period 1 results in

−∞ reward) and do the convolution on the truncated function f̃1. Since both functions are step functions with

complexity Õ
(
1
ǫ

)
, the (max,+) convolution can be done in time O

(
1
ǫ2

)
. The resulting function f̂2 would have

complexity O
(
1
ǫ2

)
. To avoid inflating the complexity throughout different periods (which increases computation

complexity), the function f̂2 is rounded down to the nearest r0 · (1 + ǫ)k, where r0 := minj rj and k is some

nonnegative integer. Note that r0 is a lower bound of any solution value. After discarding small-reward items,

we have that
maxj rj

r0
≤ n

ǫ , which implies that nmaxj rj = n2

ǫ r0 is an upper bound for the optimal solution

value. Therefore, after rounding down the function values of f̂2 and obtaining f̃2, there are at most log1+ǫ
n2

ǫ ≈
1
ǫ log

n2

ǫ different values on f̃2. Now we have brought down the complexity of f̃2 again to Õ
(
1
ǫ

)
, at an additional

(1 + ǫ) factor loss in the approximation error. We then move to period 3 and continue this pattern of (max,+)-
convolution, truncation, and rounding down. In the end when we reach period T , f̃T will only contain feasible

solutions to (1), and approximate fT with total approximation factor of (1 + ǫ)T ≈ (1 + Tǫ). Formally, we have

the following lemma which shows the approximation factor of f̃t for ft.

Lemma 2. Let f̃t be the functions obtained from Algorithm 1, and let ft be defined as in (6). Then, f̃t approxi-

mates ft with factor (1 + ǫ)t, i.e., f̃t(c) ≤ ft(c) ≤ (1 + ǫ)tf̃t(c) for all 0 ≤ c ≤ ct.

Lemma 2 and Proposition 1 together imply that f̃T (cT ), obtained from Algorithm 1, approximates the optimal

value of MPBKP (1) by a factor of (1 + ǫ)T ≈ (1 + Tǫ). In Algorithm 1, obtaining f̃I(t) for all t = 1, . . . , T

takes time Õ
(
n+ T/ǫ2.25

)
; computing the (max,+)-convolution on f̃t−1 ⊕ f̃I(t) for all t take time T ·m · l =

Õ
(
T/ǫ2

)
. Therefore, Algorithm 1 has runtime Õ

(
n+ T/ǫ2.25

)
. As a result, we have the following proposition.
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Proposition 2. Taking ǫ′ = Tǫ, Algorithm 1 achieves (1 + ǫ′)-approximation for MPBKP in Õ
(
n+ T 3.25

ǫ′2.25

)
.

4 FPTAS for MPBKP-S

In this section, we provide an FPTAS for the MPBKP-S with time complexity O
(
Tn logn

ǫ2

)
. An alternative

FPTAS with time complexity O
(
n2 logn

ǫ

)
is provided in Appendix C. Combining the two, we show that our

algorithms achieve (1 + ǫ) approximation ratio in time O
(
n logn

ǫ ·min
{
T
ǫ , n

})
, which proves Theorem 2. We

should note that the algorithm in the previous section does not apply here: we could similarly define a function

which gives the maximum profit (=reward−penalty) under a given capacity constraint, but the main obstacle

is on the (max,+)-convolution because profit does not “add up”. In other words, the total profit we earn by

selecting items in the set S1 ∪ S2 is not the sum of the profits we earned by selecting S1 and S2 separately. For

this reason, we can no longer rely on the techniques used in function approximation and (max,+)-convolution

as in Chan (2018); Jin (2019). Instead, our main idea is motivated by the techniques that originated from earlier

papers (Ibarra and Kim, 1975; Lawler, 1979), but adapting their technique to MPBKP-S requires significant

modifications as we show in this section. We restrict our presentation to the case Bt = B for readability, but

our algorithms and analysis generalize in a straightforward manner when the penalties for buying capacity are

heterogeneous {B1, . . . , BT } (by replacing B with minτ≤tBτ in the calculations of profit/penalty at period t on

line 7 of Algorithm 2).

Preliminaries: We first introduce some notation. From now on, let R(S) := ∑
i∈S ri. The optimal solution set

to (2) is denoted by S∗. The total profit earned can be expressed as a function of the solution set S:

P(S) = R(S)−B ·
T∑

t=1


 ∑

j∈S∩I(t)

qj −max



ct −

∑

j∈S,dj≤t

qj, ct − ct−1







+

. (8)

Let pi be the profit of item i, which is defined as the profit earned if we select only i, i.e., pi = ri−B ·(qi − cdi)
+

.

Without loss of generality, we assume that each item i is by itself profitable, i.e., pi ≥ 0, so one profitable solution

would be {i}. Let P := maxi pi and P̄ :=
∑

i∈[n] pi. The following bounds on P(S∗) follow:

P ≤ P(S∗) ≤ P̄ ≤ nP. (9)

Partition of items: We partition the set of items [n] into two sets: a set of “large” items IL and a set of “small”

items IS such that we can bound the number of large items in any optimal solution. The main idea is to use

dynamic programming to pick the large items in the solution, and a greedy heuristic for ‘padding’ this partial

solution with small items. The criterion for small and large items is based on balancing the permissible error

ǫP(S∗) equally in filling large items and filling small items. Instead of first packing all large items and then

all small items, we consider items in the order of their deadlines, and for each deadline t, the large items are

selected first and then the small items are selected greedily in order of their reward densities. As a result, the

approximation error due to large items overall will be 1
2ǫP(S∗) and the error due to the small items with each

deadline will be 1
2T ǫP(S∗). This gives a total approximation error of 1

2ǫP(S∗) + T · 1
2T ǫP(S∗) = ǫP(S∗).

Suppose that we can find some P0 that satisfies (10).

P0 ≤ P(S∗) ≤ 2P0. (10)
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Then, the set of items is partitioned as follows.

IL :=

{
i ∈ [n] | pi ≥

1

2T
ǫP0

}
; IS :=

{
i ∈ [n] | pi <

1

2T
ǫP0

}
. (11)

This partition is computed in O(n) time and is not the dominant term in time complexity. Let nL = |IL| and

nS = |IS|, so that nL + nS = n. Further, let

IL(t) := {i ∈ SL | di = t} , and IS(t) := {i ∈ SS | di = t}

denote the set of large and small items, respectively, with deadline t. We will assume that the items in IL are

indexed in non-decreasing order of their deadlines, i.e., ∀i, j ∈ IL such that j ≥ i, we have that di ≤ dj . Denote

by IL(t) as the index of the last item with deadline t, i.e., IL(t) := maxi∈SL∩IL(t) i. For each time t, we will

also sort the small items in IS(t) according to their reward densities, i.e., ∀i < j and i, j ∈ IS(t), ri
qi

≥ rj
qj

. This

sorting only takes place once for each guess P0, and does not affect our overall time complexity result.

Algorithm 2 DP on large items for MPBKP-S

Input: IL,∆c, ⊲ Set of (large) items to be packed, additional capacity available for packing

Ã(p) for all p =
{
0, 1, . . . ,

⌈
16T
ǫ2

⌉}
· κ ⊲ A set of partial solutions

Output: Â(IL, p) for all p =
{
0, 1, . . . ,

⌈
16T
ǫ2

⌉}
· κ ⊲ Set of partial solutions after packing IL

1: Initialize ∀p : Â(0, p) := Ã(p) + ∆c

2: for i = 1, . . . , IL do

3: for p =
{
0, 1, . . . ,

⌈
16T
ǫ2

⌉}
· κ do

4: Â(i, p) := Â(i− 1, p) ⊲ If reject item i

5: end for

6: for p̄ =
{
0, 1, . . . ,

⌈
16T
ǫ2

⌉}
· κ do

7: p = p̄+ r̂i −

⌈
B

(
qi −max

{
0, Â(i− 1, p̄)

})+
⌉

κ

8: Â(i, p) = max
{
Â(i, p), Â(i− 1, p̄)− qi

}
⊲ Accept i

9: end for

10: for p =
{⌈

16T
ǫ2

⌉
,
⌈
16T
ǫ2

⌉
− 1, . . . , 1

}
· κ do

11: if Â(i, p− κ) < Â(i, p) then

12: Â(i, p− κ) = Â(i, p)
13: end if

14: end for

15: end for

Algorithm overview: Our FPTAS algorithm is given in Algorithm 5 which uses a doubling trick to guess the

value of P0 satisfying (10), and for each guess uses Algorithm 4 as a subroutine. Algorithm 4 is the main

algorithm for MPBKP-S, which first selects the items with deadline 1, then the items with deadline 2, and so on.

For each deadline t, we maintain two sets of partial solutions: the first, Ãt(p), corresponds to an approximately

optimal (in terms of leftover capacity carried forward to time t+1) subset of large and small items with deadline

at most t and some rounded profit p ; and the second Ât(p) corresponds to the optimal appending of large items

with deadline t to the approximately optimal set of solutions corresponding to Ãt−1.

Given Ãt−1, we first select large items from IL(t) using dynamic programming to obtain Ât, which is done in

Algorithm 2. In other words, given the partial solutions Ãt−1(p̄) for all p̄ ∈
{
0, 1, . . . ,

⌈
16T
ǫ2

⌉}
· κ, Ât(p) is

the maximum capacity left when earning rounded profit (precise definition given in (14)) p by adding items in

8



Algorithm 3 Greedy on small items for MPBKP-S

Input: IS , Â(p) for all p =
{
0, 1, . . . ,

⌈
16T
ǫ2

⌉}
· κ. ⊲ Set of (small) items to be packed, a set of partial solutions

Output: Ã(p) for all p =
{
0, 1, . . . ,

⌈
16T
ǫ2

⌉}
· κ ⊲ Set of partial solutions after packing IS

1: Initialize ∀p : Ã(p) = Â(p)
2: for p̄ =

{
0, 1, . . . ,

⌈
16T
ǫ2

⌉}
· κ do

// Filter out small items with size larger than Â(p)

3: ĨS ← ∅
4: for i ∈ IS do

5: if Â(p̄) ≥ qi then

6: ĨS ← ĨS ∪ {i}
7: end if

8: end for

9: R̃0′ = 0, q̃0′ = 0, and relabel the items in ĨS as
{
1′, . . . , |ĨS|

′

}
(in decreasing order of reward density)

10: for i′ = 1′, . . . , |ĨS|
′ do

11: R̃i′ = R̃(i−1)′ + ri′

12: q̃i′ = q̃(i−1)′ + qi′

13: end for

14: // Add small items using Greedy algorithm

15: for i′ = 1′, . . . , |ĨS|
′ do

16: if q̃i′ ≤ Â(p̄) then

17: p =
⌊
p̄+ R̃i′

⌋

κ

18: Ã(p) = max
{
Ã(p), Â(p̄)− q̃i′

}

19: end if

20: end for

21: end for

IL(t). We then use a greedy heuristic to pick small items from IS(t) to obtain Ãt, which is done in Algorithm 3.

Specifically, our goal in Algorithm 3 is to obtain the partial solutions Ãt(·) given the partial solutions Ât(·) by

packing the small items IS(t). We initialize Ãt(p̄) with Ât(p̄), and for each p̄ we try to augment the solution

corresponding to Ât(p̄) using a subset ĨS(t) ⊆ IS(t) defined as

ĨS(t) := {i ∈ IS(t) | qi ≤ Ât(p̄)}.

The small items in ĨS(t) are sorted according to their reward densities, and are added to the solution of Ât(p̄) one

by one. After each addition of a small item, if the new total rounded reward is p, we compare the leftover capacity

with current Ãt(p), and update Ãt(p) with the new solution if it has more leftover capacity. We continue this

add-and-compare (and possibly update) until we reach the situation where adding the next small item overflows

the available capacity.

Intuitively, for any amount of capacity available to be filled by small items, and a minimum increase in profit, the

optimal solution either packs a single item from IS(t) \ ĨS(t) in which case the loss by ignoring items in this set

is bounded by the maximum reward of any small item, or the optimal solution only contains items from ĨS(t) in

which case the space used by this optimal set of items is lower bounded by the a fractional packing of the highest

density items in ĨS(t). During Algorithm 3, one of the solutions we would consider would be the integral items

of this fractional solution, and lose at most 1
2T ǫP0 in profit, and obtain a solution with still smaller space used

(more leftover capacity) than the fractional solution. Accumulation of these errors for t periods then will give us

the invariant: the partial solution Ãt(p) obtained as above has more leftover capacity than any solution obtained

by selecting items from ∪t
t′=1IL(t′) with rounded rewards and rounded penalties, and items from ∪t

t′=1IS(t′)
with original (unrounded) rewards such that the rounded total profit is at least p+ 1

2T ǫP0t+ κt.

9



Algorithm 4 DP on large items and Greedy on small items for MPBKP-S

1: Define κ = ǫ2P0

8T

2: Define r̂i = ⌊ri⌋κ ⊲ Round down reward

// Ãt(p) = leftover capacity for the algorithm’s partial solution when earning (rounded)

profit p using items with deadlines at most t (small and large)

// Ât(p) = capacity left for the algorithm’s partial solution when earning (rounded)

profit p by selecting large items in IL(t) with rounded down rewards r̂, given the partial

solutions Ãt−1(p)

3: Initialize Â(0, p) = Ã0(p) =

{
0 p = 0,

−∞ p > 0.

4: for t = 1, . . . , T do

5: Run Algorithm 2 with IL = IL(t),∆c = ct − ct−1, and Ã(p) = Ãt−1(p) for all p =
{
0, 1, . . . ,

⌈
16T
ǫ2

⌉}
· κ, and obtain

Ât(p) := Â(IL, p) for all p.

6: Run Algorithm 3 with IS = IS(t) and Â(p) = Â(IL(t), p) for all p =
{
0, 1, . . . ,

⌈
16T
ǫ2

⌉}
·κ, and obtain Ãt(p) := Ã(p) for all

p.

7: end for

Algorithm 5 FPTAS for MPBKP-S in O(Tn log n/ǫ2)

1: P0 ← P̄

2: p∗ ← 0
3: while p∗ < (1− ǫ)P0 do

4: P0 ←
P0

2

5: Run Algorithm 4 with the current P0.

6: p∗ ← max{
p∈

{
0,...,

⌈
16T

ǫ2

⌉}
·κ

ÃT (p)>−∞

} p

7: end while

Our main theorem for the approximation ratio for MPBKP follows.

Theorem 4 (Partially restating Theorem 2). Algorithm 5 is a fully polynomial approximation scheme for the

MPBKP-S, which achieves (1 + ǫ) approximation ratio with running time O
(
Tn logn

ǫ2

)
.

5 A greedy algorithm for a special case of MPBKP-SS

In this subsection, we consider the special case of MPBKP-SS when all items have the same size, i.e., qi =
q,∀i ∈ [n]. We again only present for the case Bt = B,∀t ∈ [T ]. We note that in the deterministic problems

(MPBKP or MPBKP-S), when items all have the same size, greedily adding items one by one in decreasing order

of their rewards leads to the optimal solution. For MPBKP-SS, as the capacities are now stochastic, we wonder

if there is any greedy algorithm performs well. We propose Algorithm 6, where we start with an empty set, and

greedily insert the item that brings the maximum increment on expected profit, and we stop if adding any of the

remaining items does not increase the expected profit.

Let S∗ be an optimal solution, i.e., S∗ ∈ argmaxS⊆[n]P(S) := R(S)−B · Φ(S), where

Φ(S) := E





T∑

t=1


 ∑

j∈I(t)∩S

qj − max
0≤t′<t



ct − ct′ −

∑

j∈S:t′+1≤dj≤t−1

qj







+


is the expected quantity of overflow on set S , and let Sp be the set output by Algorithm 6. Then, we have the
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Algorithm 6 Greedy algorithm according to profit change

1: S ← ∅
2: s← 1
3: while s == 1 do

4: i∗ ← argmaxi/∈S {P(S ∪ {i}) − P(S)}
5: if P(S ∪ {i∗})− P(S) ≥ 0 then

6: S ← S ∪ {i∗}
7: else

8: s← 0
9: end if

10: end while

11: Sp ← S
12: Return Sp

following theorem.

Theorem 5 (Restating Theorem 3). Algorithm 6 achieves 2-approximation factor for MPBKP-SS when items

have the same size, i.e., P(Sp) ≥ 1
2P(S∗) in O

(
n2T |Ω|

)
.

The proof of the 2-approximation could be more nontrivial than one may think. The idea is to look at the greedy

solution set Sp and the optimal solution set S∗, where we will use the dual to characterize the optimal solution

on each sample path. By swapping each item in Sp to S∗ in replacement of the same item or two other items,

we construct a sequence of partial solutions of the greedy algorithm as well as modified optimal solution set,

while maintaining the invariant that the profit of S∗ is bounded by the sum of two times the profit of items in

Sp swapped into S∗ so far and the additional profit of remaining items in the modified optimal solution set. We

leave the formal proof of Theorem 5 to Appendix A.3.

6 Comments and Future Directions

The current work represents to the best of our knowledge the first FPTAS for the two multi-period variants of the

classical knapsack problem. For MPBKP, we obtained the runtime Õ
(
n+ (T 3.25/ǫ2.25)

)
. This was done via the

function approximation approach, where a function is approximated for each period. The runtime increases in T
since we conduct T number of rounding downs, one after each (max,+)-convolution. An alternative algorithm

with runtime Õ
(
n+ T 2

ǫ3

)
is also provided in Appendix B. Note that the function we approximated is in the same

form as used in the 0-1 knapsack problem (Chan, 2018). It is thus interesting to ask if we could instead directly

approximate the following function:

fI(c) = max
x




∑

i∈I

rixi :
∑

i∈∪t
t′=1

I(t′)

qixi ≤ ct,∀t ∈ [T ], x ∈ {0, 1}n


 ,

where I = ∪T
t=1I(t) and c = {c1, . . . , cT } is a T -dimensional vector. Here we impose all T constraints in the

function. The hope is that, if the above function could be approximated, and if we could properly define the

(max,+)-convolution on T dimensional vectors (and have a fairly easy computation of it), then we may get an

algorithm that depends more mildly on T .

For MPBKP-S and MPBKP-SS, there seems to be less we can do without further assumptions. One direction

to explore is parameterized approximation schemes: assuming that in the optimal solution, the total (expected)
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penalty is at most β fraction of the total reward. Then we may just focus on rewards. Our ongoing work suggests

that an approximation factor of
(
1 + ǫ

1−β

)
may be achieved in Õ

(
n+ (T 3.25/ǫ2.25)

)
for MPBKP-S, and the

same approximation factor in Õ
(
n+ 1

ǫT

)
for MPBKP-SS.

We further note that the objective function for the three multiperiod variants are in fact submodular (but not non-

negative, or monotone). Whether we can get a constant competitive solution in time Õ(n), using approaches in

submodular function maximization, is also an intriguing open problem.

Finally, motivated by applications, one natural extension that the authors are working on now is when there is a

general non-decreasing cost function φt(∆c) for procuring capacity ∆c at time t, and the goal is to admit a profit

maximizing set of items when the unused capacity can be carried forward. Another extension is when there is a

bound on the leftover capacity that can be carried forward.
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A Omitted Proofs

A.1 Proofs for Section 3

Proof of Proposition 1. We show that the solution corresponding to fT (c) is optimal for cT = c among all

solutions feasible to (1). We prove by induction on T . Base case is T = 1, this reduces to 0-1 Knapsack problem,

13



and by definition, the solution corresponding to fI(1)(c) is the optimal feasible solution when the Knapsack

capacity is c. For the induction step, assume that the solution of fT−1(c
′) is the optimal feasible solution to (1)

for the T −1 period problem and cT−1 = c′, we show that the solution corresponding to fT (c) is also the optimal

feasible solution to (1) for the T period problem and cT = c.

By definition,

fT (c) =
((
fT−1 ⊕ fI(T )

)
(c)

)cT =

(
max
c′∈R

(
fT−1(c

′) + fI(T )(c− c′)
))c

.

We first show that fT (c) is at least the optimal value of (1) when cT = c. Suppose that, in the optimal solution

of (1), the total size of accepted items up to time T − 1 is ĉ with ĉ < c, then the optimal value is fT−1(ĉ) +
fI(T )(c − ĉ) since fT−1(ĉ) is the maximum achievable reward with cT−1 = ĉ (by induction assumption) and

fI(T )(c − ĉ) is the maximum achievable reward using items from I(T ) with space constraint c − ĉ. Thus, we

have that the optimal value fT−1(ĉ) + fI(T )(c− ĉ) ≤
(
maxc′∈R

(
fT−1(c

′) + fI(T )(c− c′)
))c

= fT (c).

We next show the other direction: the optimal value of (1) for the T period problem with cT = c is at least fT (c).
It suffices to show that every possible solution considered in fT (c) satisfies the feasibility constraints in (1). By

induction assumption, every solution of fT−1(c
′) satisfies the constraints up to time T − 1. When computing

fT (c), we note that since fT−1(c
′) is a function truncated at cT−1, which implies that fT−1(c

′) = −∞ for any

c′ > cT−1. Therefore, any c′ > cT−1 must not be in the solution of maxc′∈R
(
fT−1(c

′) + fI(T )(c− c′)
)
. As a

result, every solution of fT (c) is enforcing that c′ ≤ cT−1, and satisfies the feasibility constraints up to time T .

Combining both directions, we conclude the induction step, and thus the proof of the proposition. �

Proof of Lemma 2. By the construction of f̃t, it should be clear that f̃t ≤ ft. We prove that (1 + ǫ)tf̃t ≥ ft
by induction on t. Base case is when t = 1, we have that (1 + ǫ)f̃1 = (1 + ǫ)f̃ c1

I(1) ≥ f c1
I(1) = f1, where the

inequality follows from Lemma 1. As for the induction step, assume that (1 + ǫ)t−1f̃t−1 ≥ ft−1, we show that

(1 + ǫ)tf̃t ≥ ft. Again, by Lemma 1 we have that

(1 + ǫ)t−1f̃I(t) ≥ (1 + ǫ)f̃I(t) ≥ fI(t).

Combined with the induction hypothesis, we have that

(1 + ǫ)t−1
(
f̃t−1 ⊕ f̃I(t)

)
=

(
(1 + ǫ)t−1f̃t−1

)
⊕

(
(1 + ǫ)t−1f̃I(t)

)
≥ ft−1 ⊕ fI(t).

Taking truncation on both sides, we have that

(1 + ǫ)t−1f̂t = (1 + ǫ)t−1
(
f̃t−1 ⊕ f̃I(t)

)ct ≥
(
ft−1 ⊕ fI(t)

)ct = ft.

Because of rounding down, we have that (1 + ǫ)f̃t ≥ f̂t. Therefore,

(1 + ǫ)tf̃t ≥ (1 + ǫ)t−1f̂t ≥ ft.

This concludes the induction step, and thus the proof of the lemma. �
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A.2 Proofs for Section 4

This section is devoted to the proof of Theorem 4. To proceed, we first present the following result on Algo-

rithm 2.

Lemma 3. Given a set of partial solutions with leftover capacities Ã(p) for all p ∈
{
0, 1, . . . ,

⌈
16T
ǫ2

⌉}
· κ, the

additional capacity available for packing ∆c, and the set of large items to be added IL := {1, . . . , IL}, the

output of Algorithm 2, Â(IL, p), satisfies:

Â(IL, p) = max



I′,p̄ : I′⊆IL
∆P̂(I′,Ã(p̄)+∆c)≥p−p̄

p̄∈
{
0,1,...,

⌈
16T
ǫ2

⌉}
·κ





Ã(p̄) + ∆c−Q(I ′), ∀p. (12)

That is, Â(IL, p) is the maximum leftover capacity for any solution with (rounded) profit at least p obtained by

adding items in IL to the solutions corresponding to Ã(·).

Proof of Lemma 3. We will prove a more general result than (12), i.e.,

Â(i, p) = max




I′,p̄ : I′⊆{1,...,i}

∆P̂(I′,Ã(p̄)+∆c)≥p−p̄

p̄∈
{
0,1,...,

⌈
16T
ǫ2

⌉}
·κ






Ã(p̄) + ∆c−Q(I ′), ∀p (13)

We prove this by induction. The base case (i = 0) is vacuously true. Now we assume that (13) holds for all

p ∈
{
0, 1, . . . , ⌈16T/ǫ2⌉

}
κ and for all k ∈ [i − 1]. Consider some p ∈

{
0, 1, . . . , ⌈16T/ǫ2⌉

}
κ, and let I∗ be

any set achieving the maximum in (13) so that P̂ (I∗) ≥ p− p̄ for some p̄ ∈
{
0, 1, . . . ,

⌈
16T
ǫ2

⌉}
·κ. We will show

that Â(i, p) is at least the leftover capacity under solution I∗ via case analysis:

• Case i /∈ I∗: In this case, the leftover capacity under I∗ is the leftover capacity by di, which is the sum of

leftover capacity in I∗ by di−1 and cdi − cdi−1
. By induction hypothesis, Â(i − 1, p) is no less than the

leftover capacity of I∗ by di−1, and therefore, by lines 4 and 8, Â(i, p) ≥ Â(i− 1, p) + cdi − cdi−1
which

in turn is no less than the leftover capacity under I∗ by di. By optimality of I∗, all the inequalities must

be equalities.

• Case i ∈ I∗: Let I ′ = I∗ \ {i}, and let p′ = P̂(I ′) be its rounded profit. Then by induction hypothesis,

Â(i−1, p′) is no less than the leftover capacity under I ′ by di−1. Further, by packing item i in the solution

corresponding to Â(i − 1, p′), the change in profit is larger than by packing item i in I ′ (the penalty is

no less under I ′ since it has weakly smaller leftover capacity). Therefore, packing item i in the solution

corresponding to Â(i − 1, p′) gives a solution with at least as large a rounded profit as p and at least as

much leftover capacity by di as I∗. Therefore, in turn Â(i, p) is at least as much as the leftover capacity in

I∗. Since we assume I∗ to have the largest leftover capacity with profit at least p, all the inequalities must

be equalities.

This completes the induction step, and thus the proof of the lemma. �

Next, we have the following Lemma as a preparation for our result on Ã(p) of Algorithm 3.
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Lemma 4. Given some capacity c and a set of small items IS with pmax := maxi∈IS pi, let S∗ be the profit-

optimal subset, i.e., S∗ = argmaxS⊆IS P(S) = R(S) −B (Q(S)− c)+. Further, let ĨS := {i ∈ IS | qi ≤ c}
and relabel the items in ĨS as

{
1′, . . . , |ĨS |′

}
(in decreasing order of reward density ri/qi). Let i′ be such that

∑i′

j′=1′ qj′ ≤ c and
∑(i+1)′

j′=1′ qj′ > c. Then, the solution S ′ := {1′, . . . , i′} satisfies

• Q(S ′) ≤ Q(S∗),

• P(S ′) ≥ P(S∗)− pmax.

Proof of Lemma 4. The first item can be shown by contradiction. Suppose that to the contrary Q(S ′) > Q(S∗),
that is, S ′ uses more space than S∗. Since the items in S ′ have the highest reward densities, it is in fact the

optimal solution which uses space Q(S ′) < c. Since the optimal profit is non-decreasing in the capacity c, this

violates optimality of S∗.

To see the second item, we look at two different cases. First, if S∗ ∩
(
IS \ ĨS

)
6= ∅, i.e., the optimal packing

S∗ includes some item i∗ with qi∗ > c, then, there should be only one item in S∗, i.e., S∗ = {i∗}. In this case,

P(S∗) = pi∗ = pmax and thus P(S ′) ≥ P(∅) = 0 = P(S∗)− pmax.

Second, if S∗∩
(
IS \ ĨS

)
= ∅, then S∗ = argmaxS⊆ĨS

P(S). Note that P(S∗) is upper bounded by the reward

for the fractional packing: P(S∗) ≤ RLP := R(S ′) + r(i+1)′ · c−Q(S′)
q(i+1)′

≤ R(S ′) + r(i+1)′ = P(S ′) + p(i+1)′ ≤
P(S ′) + pmax.

In either cases, we conclude that P(S ′) ≥ P(S∗)− pmax. �

Before presenting our result on Ãt(p), we will need the following definitions. For a solution S = S(1) ∪ S(2) ∪
· · · ∪ S(T ) with S(t) = SL(t) ∪ SS(t), denoting the items with deadline t in S , let the large items be indexed

as SL(t) = (i
(t)
1 , . . . , i

(t)
Lt
) in the order in which Algorithm 2 considers them, and the small items be indexed

arbitrarily SS(t) =
(
j
(t)
1 , . . . , j

(t)
St

)
. Let SL := SL(1) ∪ · · · ∪ SL(T ) and SS := SS(1) ∪ · · · ∪ SS(T ) denote

the large and small items in S , respectively (this depends on the choice of P0 but we suppress the dependence for

brevity). We define the rounded profit of S as:

P̃(S) = R̂(SL)−
T∑

t=1

Lt∑

k=1



B


∑

ℓ≤k

q
i
(t)
ℓ

− max
0≤t′<t



ct − ct′ −

∑

t′+1≤τ<t

Q(S(τ))








+

κ

+
T∑

t=1

R(SS(t))−B


Q(S(t)) − max

0≤t′<t



ct − ct′ −

∑

t′+1≤τ<t

Q(S(τ))








+
κ

. (14)

That is, we add the rounded rewards of the large items, and for small items, we first group the small items by

their deadlines, and for each deadline we round the sum of unrounded rewards of small item. Further, let

C̃t(p) := max
{S⊆⋃t

t′=1 I(t
′) : P̃(S)≥p}

max
0≤t′<t



ct − ct′ −

∑

t′+1≤τ≤t

Q(S(τ))




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denote the feasible partial solution with largest leftover capacity at time t and rounded total profit at least p. Then,

we have the following lemma.

Lemma 5. For any t = 1, . . . , T and any p′ ∈
{
0, 1, . . . ,

⌈
16T
ǫ2

⌉}
· κ, we have that Ãt(p) ≥ C̃t(p

′) for some

p ≥ p′− 1
2T ǫP0t−κt ≥ r′− 1

2T ǫ(1− ǫ/4)P0t. That is, for any rounded total profit p′ by time t, there exists some

partial solution Ãt of Algorithm 4 which has at least as much leftover capacity at time t the optimal solution

C̃t(p
′), and has rounded profit p not too much smaller than p′.

Proof of Lemma 5. We prove by induction on t. Base case is when t = 1. Let S ′ be the solution corresponding

to C̃1(p
′), i.e., S ′ := argmax{ S⊆I(1)

P̃(S)≥p′

} c1 − Q(S), and let S ′
L = S ′ ∩ IL, S ′

S = S ′ ∩ IS . Then P̃(S ′
L) =

P̂(S ′
L). By Lemma 3, Â(IL(1), P̃(S ′

L)) is the maximum leftover capacity using items in IL(1) earning rounded

profit P̃(S ′
L). Thus, Â1(P̃(S ′

L)) = Â(IL(1), P̃(S ′
L)) ≥ c1 − Q(S ′

L). Let S ′′
L be the solution corresponding to

Â1(P̃(S ′
L)), and thus Q(S ′′

L) ≤ Q(S ′
L). Consider appending the partial solution S ′′

L using items from IS(1).
Let S ′′

S be the small item set obtained by adding small items greedily in their reward densities, subject to the

constraint that Q(S ′′
S) ≤ Q(S ′

S). Then, by Lemma 4, with S ′′
S being the greedy solution, Q(S ′

S) being the

capacity constraint and S ′
S being the optimal filling of small items in IS(1), we conclude that

P(S ′′
S) ≥ P(S ′

S)−
1

2T
ǫP0.

Therefore, p′ = P̃(S ′) = P̃(S ′
L ∪ S ′

S) = P̃(S ′
L) + ∆P̃(S ′

S , c1 −Q(S ′
L)) ≤ P̃(S ′′

L) + ∆P̃(S ′′
S , c1 −Q(S ′

L)) +
1
2T ǫP0 + κ ≤ P̃(S ′′

L) +∆P̃(S ′′
S , c1 −Q(S ′′

L)) +
1
2T ǫP0 + κ = P̃(S ′′

L ∪ S ′′
S) +

1
2T ǫP0 + κ. Let p = P̃(S ′′

L ∪ S ′′
S).

From Algorithm 3, we know that since S ′′
S includes the small items in ĨS(1) with the highest reward densities,

the solution S ′′
L ∪ S ′′

S is one feasible solution for Ã1(p). We thus have that

Ã1(p) ≥ c1 −Q(S ′′
L ∪ S ′′

S) ≥ c1 −Q(S ′) = C̃1(p
′),

where p ≥ p′− 1
2T ǫR0−κ, and the second inequality follows from the facts that Q(S ′′

L) ≤ Q(S ′
L) and Q(S ′′

S) ≤
Q(S ′

S).

For the induction step, assume that for all p′′ ∈
{
0, 1, . . . ,

⌈
16T
ǫ2

⌉}
·κ, we have that Ãt−1(p) ≥ C̃t−1(p

′′) for some

p ≥ p′′− 1
2T ǫP0(t−1)−κ(t−1). We want to show that for all p′, Ãt(p) ≥ C̃t(p

′) for some p ≥ p′− 1
2T ǫP0t−κt.

Let S ′ be the solution corresponding to C̃t(p
′), i.e.,

S ′ := arg max
{S⊆⋃t

t′=1 I(t
′) : P̃(S)≥p′}

max
0≤t′<t



ct − ct′ −

∑

t′+1≤τ≤t

Q(S(τ))



 ,

and let S ′
L = S ′∩IL, S ′

S = S ′∩IS . Let S ′(t) := {i ∈ S ′ | di = t} and consider the partial solution ∪t−1
t′=1S ′(t′).

By induction assumption, there exists some partial solution ∪t−1
t′=1S ′′(t′) such that Q

(
∪t−1
t′=1S ′′(t′)

)
≤ Q

(
∪t−1
t′=1S ′(t′)

)
,

and that P̃
(
∪t−1
t′=1S ′′(t′)

)
≥ P̃

(
∪t−1
t′=1S ′(t′)

)
− 1

2T ǫP0(t− 1)− κ(t− 1).

First, we fill the partial solution ∪t−1
t′=1S ′′(t′) using items from IL(t) according to Algorithm 2. Note that

one feasible solution is S ′
L(t) which results in ∪t−1

t′=1S ′′(t′) ∪ S ′
L(t). This keeps Q

(
∪t−1
t′=1S ′′(t′) ∪ S ′

L(t)
)
≤

Q
(
∪t−1
t′=1S ′(t′) ∪ S ′

L(t)
)

while having P̃
(
∪t−1
t′=1S ′′(t′) ∪ S ′

L(t)
)
≥ P̃

(
∪t−1
t′=1S ′(t′) ∪ S ′

L(t)
)
− 1

2T ǫP0(t − 1) −
κ(t− 1). Suppose that after filling items from IL(t) using DP in Algorithm 2, the resulting set corresponding to
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Ât

(
P̃
(
∪t−1
t′=1S ′′(t′) ∪ S ′

L(t)
))

is S̃ , then this S̃ would only use less space and earn more profit, i.e.,

Q
(
S̃
)
≤ Q

(
∪t−1
t′=1S ′′(t′) ∪ S ′

L(t)
)
≤ Q

(
∪t−1
t′=1S ′(t′) ∪ S ′

L(t)
)
,

P̃
(
S̃
)
≥ P̃

(
∪t−1
t′=1S ′′(t′) ∪ S ′

L(t)
)

≥ P̃
(
∪t−1
t′=1S ′(t′) ∪ S ′

L(t)
)
− 1

2T
ǫP0(t− 1)− κ(t− 1).

Next, consider filling the partial solution S̃ using items from IS(t). Let S ′′
S(t) be the small item set obtained by

adding small items greedily in their reward densities, subject to the constraint that Q (S ′′
S(t)) ≤ Q (S ′

S(t)). Then,

by Lemma 4, with S ′′
S(t) being the greedy solution, Q(S ′

S(t)) being the capacity constraint and S ′
S(t) being the

optimal filling of small items in IS(t), we conclude that

P(S ′′
S(t)) ≥ P(S ′

S(t))−
1

2T
ǫP0.

Therefore,

p′ = P̃(S ′) = P̃
(
∪t−1
t′=1S ′(t′) ∪ S ′

L(t) ∪ S ′
S(t)

)

≤ P̃
(
S̃ ∪ S ′′

S(t)
)
+

1

2T
ǫP0(t− 1) + κ(t− 1) +

1

2T
ǫP0 + κ

≤ P̃
(
S̃ ∪ S ′′

S(t)
)
+

1

2T
ǫP0t+ κt.

Let p = P̃
(
S̃ ∪ S ′′

S(t)
)

. From Algorithm 3, we know that since S ′′
S(t) includes the small items in ĨS(t) with the

highest reward densities, the solution S̃ ∪ S ′′
S(t) is one feasible solution for Ãt(p). We thus have that

Ãt(p) ≥ max
0≤t′<t



ct − ct′ −

∑

t′+1≤τ≤t

Q
((

S̃ ∪ S ′′
S(t)

)
(τ)

)




≥ max
0≤t′<t



ct − ct′ −

∑

t′+1≤τ≤t

Q(S ′(τ))



 = C̃t(p

′),

where p ≥ p′ − 1
2T ǫP0t− κt. This finishes the induction step, and thus the proof of the lemma. �

Using the above lemmas, we prove the following approximation result.

Proposition 3. Let S ′ denote the optimal solution set by Algorithm 4, i.e., S ′ is the solution set corresponding to

ÃT (p
∗) where p∗ is the maximum p such that ÃT (p) > −∞. Let S∗ be the optimal solution set to the original

MPBKP-S. Then,

P(S ′) ≥ p∗ ≥ (1− ǫ− 3ǫ2/8)P(S∗).
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Proof. Note that P̃(S ′) = p∗. Lemma 5 implies that

ÃT (p
∗) ≥ C̃T

(
p∗ +

1

2T
ǫP0T + κT

)
= C̃T

(
p∗ +

1

2
ǫP0 + κT

)
.

Since C̃T (P̃(S∗)) > −∞, we have that ÃT

(
P̃(S∗)− 1

2ǫP0 − κT
)
≥ C̃T (P̃(S∗)) > −∞. Therefore,

P(S ′) ≥ p∗ ≥ P̃(S∗)− 1

2
ǫP0 − κT.

By the definition of P̃ as in (14), for each large item, the reward is rounded down by at most κ and the penalty

is rounded up by at most κ, and all small items are together rounded down by at most κT . Note that each

large items earns profit pi unless it is paying more penalty than it would be by itself, which happens at most

once at each period. Thus, there are at most 2P0
1
2T

ǫP0
+ T = 4T

ǫ + T number of large items, and thus the total

number of rounding downs (for both large and small items) is bounded by 4T
ǫ + 2T . Therefore, we have that

P(S∗) ≤ P̃(S∗) +
(
4T
ǫ + 2T

)
κ. In conclusion,

P(S ′) ≥ p∗ ≥ P̃(S∗)− 1

2
ǫP0 − κT

≥ P(S∗)−
(
4T

ǫ
+ 2T

)
κ− 1

2
ǫP0 − Tκ = P(S∗)− ǫP0 − 3Tκ

≥
(
1− ǫ− 3ǫ2/8

)
P(S∗).

�

It remains to validate Algorithm 5 in the search of P0 which satisfies (10). When Algorithm 5 terminates, it

returns the last p∗ and the solution set S ′ corresponding to ÃT (p
∗). We then have the following lemmas.

Lemma 6. Algorithm 5 terminates within log n iterations of the “while” loop (line 3).

Proof of Lemma 6. When P0 satisfies (10), by Proposition 3 we have that

p∗ ≥ (1− ǫ)P(S∗) ≥ (1− ǫ)P0.

Thus, the “while” loop terminates when P0 satisfies (10), if not before P0 satisfies (10). When P0 satisfies (10),

we would also have P(S∗)/2 ≤ P0 ≤ P(S∗). Therefore, the number of iterations is upper bounded by

number of iterations ≤ log
P̄ /2

P(S∗)/2
≤ log n,

where we have used the fact that P̄ ≤ nP ≤ nP(S∗). �

Lemma 7. After running Algorithm 5, suppose S ′ is the solution set corresponding to ÃT (p
∗), and S∗ is the

optimal solution set to the original MPBKP-S. Then,

P(S ′) ≥ (1− ǫ)P(S∗).
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Proof of Lemma 7. If the “while” loop terminates when P0 > P(S∗), i.e., it stops before P0 falls below P(S∗),
then we have that

P(S ′) ≥ p∗ ≥ (1− ǫ)P0 > (1− ǫ)P(S∗).

Otherwise, from the proof of Lemma 6 we know that the “while” loop must terminate when P0 first falls below

P(S∗), which implies that the last P0 satisfies (10). Then by Proposition 3 we again have that

P(S ′) ≥ (1− ǫ)P(S∗).

In either case, the solution we obtained from Algorithm 5 achieves (1− ǫ) optimal. �

With the above Lemmas, we are in a position to prove Theorem 4.

Proof of Theorem 4. By Lemma 7, the solution found is within (1 − ǫ) factor of P(S∗). Since the running

time of the algorithm is O
(
n ·

⌈
16T
ǫ2

⌉
· log n

)
= O

(
Tn logn

ǫ2

)
, which is polynomial in n and 1/ǫ, the theorem

follows. �

A.3 Proof of Theorem 5

This subsection is devoted to the proof of Theorem 5. The idea is to look at the greedy solution set Sp and the

optimal solution set S∗, and by swapping each item in Sp to S∗ in replacement of the same item or two other

items, we construct a sequence of partial solutions of the greedy algorithm as well as modified optimal solution

set, while maintaining the invariant that the profit of S∗ is bounded by the sum of two times the profit of items in

Sp swapped into S∗ so far and the additional profit of remaining items in the modified optimal solution set. We

will make this clear in the following.

To proceed, we first introduce some notations. Let Sp = {g1, . . . , gl} and S∗ = {o1, . . . , om}, i.e., the items in

greedy solution is denoted by gi’s and the items in the optimal solution is denoted by oi’s. Further, for any two

sets of items S1 and S2, we define the incremental profit of adding S2 to the set S1 as

∆P(S1,S2) = P(S1 ∪ S2)− P(S1). (15)

Recall that Φ(S) is the expected number of units of overflows that penalties are paid, which will be referred as

overflow units in the following. The incremental expected overflow units of adding S2 to the set S1 is defined as

∆Φ(S1,S2) = Φ(S1 ∪ S2)− Φ(S1). (16)

On a sample path of incremental capacities ω = {ct}Tt=1, let at := ct − ct−1. Let Pω and Φω be the profit and

overflow units function, respectively, and the incremental profit of adding S2 to the set S1 is

∆Pω(S1,S2) = Pω(S1 ∪ S2)− Pω(S1).

Similarly, on sample path ω, the incremental penalty of adding S2 to the set S1 is

∆Φω(S1,S2) = Φω(S1 ∪ S2)− Φω(S1).
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Then, the relationship of ∆P and ∆Φ is:

∆P(S1,S2) = P(S1 ∪ S2)− P(S1) = R(S1 ∪ S2)−R(S1)−B · Φ(S1 ∪ S2) +B · Φ(S1)

= R(S2)−B ·∆Φ(S1,S2).

Similarly, on a sample path, we have that ∆Pω(S1,S2) = R(S2)−B ·∆Φω(S1,S2).

Let S(t) := {j ∈ S | dj = t}. Given a (partial) solution S and a sample path of capacities ω = {ct}Tt=1 ∈ Ω.

We let at := ct − ct−1, and the available leftover capacity at time t (after including items in S(t)) is

max

{
sup
t′≤t

t∑

τ=t′

aτ −Q(S(τ)), 0

}
:= CS

ω (t).

Then, overflow units at time t is

max

{
sup
t′≤t

Q(S(τ)) −
t∑

τ=t′

aτ , 0

}
:= ΦS

ω(t),

and the total overflow units is Φω(S) =
∑T

t=1 Φ
S
ω(t).

With the above definitions, we first consider the calculation of overflows on a set S of items for a given sample

path ω. This is done in Algorithm 7.

Algorithm 7 OVERFLOW ASSIGNMENT

1: Parameters: Sample path of capacities (c1, . . . , cT ) ∈ NT , an arbitrary ordered list of requests L = (d1, d2, . . . , dn)
2: Initialize: Remaining capacity a

r = (ar
1, . . . , a

r
T )← (a1, . . . , aT ) ⊲ at = ct − ct−1

3: Initialize: Units of overflow needing to pay penalty Φ← 0
4: i← 1
5: while i ≤ n do

6: qr ← qi
7: ti = max{t ≤ di : a

r
t > 0}

8: while qr > 0 do

9: if ti <∞ and ti > 0 then

10: ar
ti ← ar

ti −min
{
ar
ti , q

r
}

11: qr ← qr −min
{
ar
ti , q

r
}

12: ti ← ti − 1
13: else

14: Φ← Φ + qr

15: qr ← 0
16: end if

17: end while

18: i← i+ 1
19: end while

20: Return (ar,Φ)

Algorithm 7 serves dual purpose – while calculating the overflow, it also implicitly finds an assignment of the

items which do not suffer a penalty to supply units. The assignment of items to supply units can be non-unique,

while Algorithm 7 identifies one way of matching. Intuitively, the algorithm assigns items to the latest available

units, saving the earlier capacity for items with shorter deadlines. This allows us to find the total overflows by

considering the items in an arbitrary order (instead of in increasing order of deadlines), which is in turn useful

for finding incremental profit ∆P when we add a set of requests to an existing set of accepted requests. We begin
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with the following lemma which proves that Algorithm 7 indeed finds the minimum overflow.

Lemma 8. Given a sample path ω ∈ NT of supply, and a set S of items with general integer demands, let

L = (d1, . . . , dn) be an arbitrary ordering of the items in S (di denoting the deadlines). Then the overflow units

Φ returned when executing Algorithm 7 (OVERFLOW ASSIGNMENT) on (ω,L) satisfies Φ = Φω(S).

Proof of Lemma 8. We will use LP duality to prove the Lemma. In a nutshell, we will use the the assignment

created by Algorithm 7 to create a feasible solution to the dual LP such that the objective function of the dual

matches the objective function penalty of the assignment. Since any feasible solution of the dual lower bounds

the optimal, we would have thus demonstrated the optimality of the assignment and hence of the overflow units

Φ.

(PRIMAL)

min
∑n

i=1 yi
s.t.

∀t ∈ [T ] : −∑
i:di≤t xi ≥ −ct

∀i ∈ [n] : xi + yi = qi
xi, yi ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣

(DUAL)

max
∑n

i=1 qiγi −
∑

t λtct
s.t.

∀i ∈ [n] : γi ≤ 1
∀i ∈ [n] : γi ≤

∑
t≥di

λt

λt ≥ 0

To construct the dual solution, let τ = min{t : art > 0}. That is, τ is the first time at which there is some capacity

remaining after the assignment of OVERFLOW ASSIGNMENT. By the nature of the algorithm, there are no items

with di ≥ τ for which penalty is paid, and in fact all items with di ≥ τ are served with capacity that arrives at

time τ or later. Therefore, the overflow units under the assignment is the total size of items with di < τ minus

the capacity cτ−1 (since this capacity is only used by requests with di < τ ).

Now construct a dual solution as follows:

λt =

{
1 t = τ − 1,

0 t 6= τ − 1;
γi =

{
1 di ≤ τ − 1,

0 di ≥ τ.

It is easy to verify that this is a feasible dual solution. Further, the objective function value under this feasible

dual is ∑

i:di≤τ−1

qi − cτ−1

which is exactly the overflow units of the primal assignment. Therefore, the primal solution in fact attains the

optimal objective. �

As a result of Algorithm 7 and Lemma 8, we have the following lemma.

Lemma 9. Let S be a set of items disjoint with S1 and S2. If for some ω = {ct | t ∈ [T ]} ∈ Ω, we have

CS1
ω (t) ≥ CS2

ω (t),∀t ∈ [T ], then, ∆Pω(S1,S) ≥ ∆Pω(S2,S). If this is true for all ω ∈ Ω, we further have that

∆P(S1,S) ≥ ∆P(S2,S).

Proof of Lemma 9. It suffices to show that ∆Φω(S1,S) ≤ ∆Φ(S2,S). Note that

∆Φω(S1,S) = Φω′(S), where ω′ =
{
CS1
ω (t) | t ∈ [T ]

}
,
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∆Φω(S2,S) = Φω′′(S), where ω′′ =
{
CS2
ω (t) | t ∈ [T ]

}
.

By Lemma 8, the ordering of items in S does not matter when computing the total overflow units, and we may

apply Algorithm 7 to compute Φω′(S) and Φω′′(S). Since CS1
ω (t) ≥ CS2

ω (t),∀t ∈ [T ], as we apply Algorithm 7,

for any capacity in ω′′ that is used to serve a unit of demand in S , we have the same capacity in ω′ that can

be used to serve the same unit of demand in S . It then follows that Φω′(S) ≤ Φω′′(S), which implies that

∆Φω(S1,S) ≤ ∆Φω(S2,S). �

We next show the submodularity of P.

Lemma 10. For any S1 ⊆ S2, we have that ∆P(S1,S3) ≥ ∆P(S2,S3).

Proof of Lemma 10. Since S1 ⊆ S2, in each realized sample path of capacities ω = {ct}Tt=1, it should be clear

that CS1
ω (t) ≥ CS2

ω (t),∀t, i.e., at each time period, the available remaining capacity on S1 is no less than the

available remaining capacity on S2. Thus, by Lemma 9, the result follows. �

Lemma 9 and Lemma 10 showed the relationship of incremental profit change of adding a set of items on top

of two other sets of items. Specifically, if one set always has more remaining capacity than the other set, then

adding a third set to one generates more incremental profit than adding the same set to the other.

For the rest of this section, we impose the assumption that qi = q,∀i ∈ [N ]. To simplify the presentation, we

may without loss of generality assume that q = 1 by allowing {ct} to be nonintegers. We next have the following

result which will serve as a key to prove Theorem 5.

Lemma 11. Let S1 and S2 = S−
2 ⊔S+

2 be two disjoint set of items. Let i, j, k be three items not in either set such

that:

1. dm ≤ dj ≤ di, for all items m ∈ S−
2 ,

2. di ≤ dk ≤ dm, for all items m ∈ S+
2 .

Then, we have that

∆P (S1 ∪ {j, k},S2) ≤ ∆P (S1 ∪ {i},S2) . (17)

Proof of Lemma 11. We begin with two observations.

Observation 1: Using Lemma 8, we can determine ∆P (S1 ∪ {j, k},S2) as follows: We first fix an ordering

of S1 and assign them using Algorithm 7. This gives some residual capacity vector cr. The problem of finding

∆P(S1 ∪ {j, k},S2) under capacity vector ω now reduces to finding ∆P({j, k},S2) under capacity vector cr.

Similarly, finding ∆P(S1 ∪ {i},S2) under capacity vector ω reduces to finding ∆P({i},S2) under capacity

vector cr.

Observation 2: It suffices to prove the Lemma for |S2| = 1.

We therefore consider two cases, based on whether the item m in S2 has dm ≤ dj ≤ di or dm ≥ dk ≥ di. Note

that we have reduced to a case where we only need to worry about items i, j, k,m and capacity availability c
r .
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Case : dm ≤ dj ≤ di
To find incremental penalty:

Φ
{i,m}
c
r − Φ

{i}
c
r

we will first add item i and then m according to Algorithm 7. Similarly, for

Φ
{j,k,m}
c
r − Φ

{j,k}
c
r

we first add item j, then k and then m. We claim that if item m does not pay a penalty in the latter case (when

added to {j, k}), then it does not pay a penalty when added to {i}. To see why, if m does not pay a penalty when

added to {j, k}, then it must be that ∑

t≤dj

crt ≥ 2,
∑

t≤dm

crt ≥ 1.

In this case, when adding item i, there is still residual capacity left for matching m.

Case : di ≤ dk ≤ dm
In this we argue that if m pays a penalty when added to i, then it must pay a penalty when added to {j, k}. If m
pays penalty for i, then: ∑

t≤di

crt ≤ 1,
∑

di<t≤dm

crt = 0.

In this case when we first add k, it uses up any capacity crt ≤ di, leaving m to pay a penalty.

Therefore, in either case, the incremental overflow units when adding item m to item i is at most the incremental

overflow units when adding m to {j, k}. �

With the above lemmas, we are in a position to prove Theorem 5.

Proof of Theorem 5. First, suppose that without loss of generality, the items in Sp are added exactly in the order

of g1, . . . , gl. Our proof is done by defining Gi and S∗
i inductively, and show that

P(S∗) ≤ 2P(Gi) + ∆P(Gi,S∗
i ), ∀i ≤ min{l,m} s.t. S∗

i is well-defined.

Base Case. Let G1 = {g1} and let S∗ = S∗− ⊔ S∗+ where S∗− := {j ∈ S∗ | dj < dg1} and S∗+ := {j ∈ S∗ |
dj ≥ dg1}. Define

S∗
1 =

{
S∗ \ {g1}, if g1 ∈ S∗

S∗ \ {o′, o′′}, if g1 /∈ S∗

where o′ ∈ S∗ : di′ ≤ do′ ≤ dg1 ,∀i′ ∈ S∗−, and o′′ ∈ S∗ : dg1 ≤ do′ ≤ dj′ ,∀j′ ∈ S∗+, i.e., o′ is an item in

S∗ with deadline no later than g1 but no earlier than the deadlines of items in S∗−, and o′′ is an item in S∗ with

deadline no earlier than g1 but no later than the deadlines of items in S∗+
i (if such o′ or o′′ does not exist, then

simply ignore it). Then, we have the two cases:

• g1 ∈ S∗.

P(S∗) = ∆P (∅,S∗) = ∆P (∅, {g1}) + ∆P ({g1},S∗
1 )

≤ 2P(G1) + ∆P(G1,S∗
1 )
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where the inequality follows directly from the fact that P(G1) = ∆P (∅, {g1}) is nonnegative.

• g1 /∈ S∗. First note that

∆P
(
∅,
{
o′, o′′

})
= ∆P

(
∅, {o′}

)
+∆P

(
{o′}, {o′′}

)

≤ ∆P
(
∅, {o′}

)
+∆P

(
∅, {o′′}

)

≤ ∆P(∅, {g1}) + ∆P(∅, {g1}) = 2∆P(∅, {g1}) = 2P(G1),

where the first inequality follows from Lemma 10 and the second inequality follows from the greedy

algorithm that g1 gives the greatest incremental profit.

On the other hand, by Lemma 11, we also have that

∆P
({

o′, o′′
}
,S∗

1

)
≤ ∆P (G1,S∗

1 ) .

Combining the above two inequalities, we conclude that

P(S∗) = ∆P (∅,S∗) = ∆P
(
∅,
{
o′, o′′

})
+∆P

({
o′, o′′

}
,S∗

1

)

≤ 2P (G1) + ∆P (G1,S∗
1 )

Induction Step. Assume that P(S∗) ≤ 2P(Gi) + ∆P(Gi,S∗
i ), we define Gi+1 = Gi ∪ {gi+1} and let S∗

i =
S∗
i
− ⊔ S∗

i
+ where S∗

i
− := {j ∈ S∗

i | dj < dgi} and S∗
i
+ := {j ∈ S∗

i | dj ≥ dgi}. Define

S∗
i+1 =

{
S∗
i \ {gi+1}, if gi+1 ∈ S∗

i

S∗
i \ {o′, o′′}, if gi+1 /∈ S∗

i

where where o′ ∈ S∗
i : di′ ≤ do′ ≤ dgi ,∀i′ ∈ S∗

i
−, and o′′ ∈ S∗

i : dgi ≤ do′ ≤ dj′ ,∀j′ ∈ S∗
i
+, i.e., o′ is an item

in S∗
i with deadline no later than gi but no earlier than the deadlines of items in S∗

i
−, and o′′ is an item in S∗

i with

deadline no earlier than gi but no later than the deadlines of items in S∗+
i (if such o′ or o′′ does not exist, then

simply ignore it). Then, we have in the two cases:

• gi+1 ∈ S∗
i .

P(S∗) ≤ 2P(Gi) + ∆P(Gi,S∗
i ) = 2P(Gi) + ∆P (Gi, {gi+1}) + ∆P

(
Gi+1,S∗

i+1

)

≤ 2P(Gi) + 2∆P (Gi, {gi+1}) + ∆P
(
Gi+1,S∗

i+1

)
= 2P(Gi+1) + ∆P

(
Gi+1,S∗

i+1

)

where the first inequality follows from the induction assumption and the second inequality follows directly

from the fact that ∆P (Gi, {gi+1}) is nonnegative.

• gi+1 /∈ S∗
i . First note that

∆P
(
Gi,

{
o′, o′′

})
= ∆P

(
Gi, {o′}

)
+∆P

(
Gi ∪ {o′}, {o′′}

)

≤ ∆P
(
Gi, {o′}

)
+∆P

(
Gi, {o′′}

)

≤ ∆P(Gi, {gi+1}) + ∆P(Gi, {gi+1}) = 2∆P(Gi, {gi+1}),

where the first inequality follows from Lemma 10 and the second inequality follows from the greedy

algorithm that gi+1 adds the greatest incremental profit to Gi.
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On the other hand, by Lemma 11, we also have that

∆P
(
Gi ∪

{
o′, o′′

}
,S∗

i+1

)
≤ ∆P

(
Gi+1,S∗

i+1

)
.

Combining the above two inequalities, we conclude that

P(S∗) ≤ 2P(Gi) + ∆P(Gi,S∗
i ) = 2P(Gi) + ∆P

(
Gi,

{
o′, o′′

})
+∆P

(
Gi ∪

{
o′, o′′

}
,S∗

i+1

)

≤ 2P(Gi) + 2∆P (Gi, {gi+1}) + ∆P
(
Gi+1,S∗

i+1

)

≤ 2P (Gi+1) + ∆P
(
Gi+1,S∗

i+1

)

This completes the induction step. Note that at each step, S∗
i+1 ( S∗

i and Gi ( Gi+1. In the end, we will reach

some i′ such that either S∗
i′ = ∅ or Gi′ = Sp and S∗

i′ 6= ∅. In the first case, we have that

P(S∗) ≤ 2P(Gi′ ) + ∆P(Gi′ ,S∗
i′) = 2P(Gi′ ) + 0 ≤ 2P(Sp).

In the second case, i.e., Gi′ = Sp and S∗
i′ 6= ∅, we again have that P(S∗) ≤ 2P(Gi′ ) + ∆P(Gi′ ,S∗

i′). Now if

∆P(Gi′ ,S∗
i′) > 0, then we can add the items in S∗

i′ to Sp and still increase the profit, which violates the greedy

algorithm. Thus, it must be that ∆P(Gi′ ,S∗
i′) ≤ 0. Then we would have

P(S∗) ≤ 2P(Gi′ ) + ∆P(Gi′ ,S∗
i′) ≤ 2P(Sp).

In conclusion, we have that P(S∗) ≤ 2P(Sp), or equivalently P(Sp) ≥ 1
2P(S∗). This completes the proof of

Theorem 5. �

B Alternative FPTAS for MPBKP

In this section, we introduce another FPTAS for MPBKP, which has time complexity Õ
(
n+ T 2

ǫ3

)
. To roughly

describe the main idea, we will again adopt the functional approach to approximate (6). Instead of having an

approximation of fI(t) for each t directly from Lemma 1, we further partition I(t) into m+ 1 subsets (m being

specified later), i.e., I(t) := I(t)0 ⊔ I(t)1 ⊔ · · · ⊔ I(t)m, where items in each subset have approximately the

same reward. Then, we have that fI(t) = fI(t)0 ⊕ fI(t)1 ⊕ · · · ⊕ fI(t)m := ⊕m
j=0fI(t)j , and by noting that the

(max,+)-convolution ⊕ is commutative, the function ft as defined in (6) can be computed as

ft :=

{
f c1
I(1) t = 1,
(
ft−1 ⊕ fI(t)

)ct =
(
ft−1 ⊕ fI(t)0 ⊕ fI(t)1 ⊕ · · · ⊕ fI(t)m

)ct t ≥ 2,
(18)

and (18) can be computed more efficiently due to some special properties of fI(t)j .

Before proceeding to the actual algorithm, we first have some preliminaries. A monotone step function fI(c)
with steps at c1, c2, . . . , cl is called r-uniform if it satisfies both of the following conditions:

1. ∀c ∈ R+, fI(c) = kr for some nonnegative integer k,

2. ∃cj s.t. fI(cj) = kr =⇒ ∃cj′ s.t. fI(cj′) = k′r,∀k′ ≤ k nonnegative integers.

The monotone step function fI(c) with steps at c1, c2, . . . , cl is called pseudo-concave if cj+2 − cj+1 ≥ cj+1 −
cj ,∀j = 1, . . . , l − 2. The range of a function f is the set of all possible function values. We then introduce the
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following lemma from Chan (2018) for approximating f ⊕ g when g is r-uniform and pseudo-concave.

Lemma 12 (Chan (2018)). Let f and g be monotone step functions with total complexity l and ranges contained

in {−∞, 0} ∪ {A,B}. Then we can compute a monotone step function that approximates f ⊕ g with factor

1 +O(ǫ′) and complexity Õ
(
1
ǫ′

)
in O(l) + Õ

(
1
ǫ′

)
time if g is r-uniform and pseudo-concave.

With the above lemma, we present Algorithm 8 for MPBKP.

Algorithm 8 FPTAS for MPBKP in Õ
(
n+ T 2/ǫ3

)

Input: [n], c1, . . . , cT ⊲ Set of items to be packed, cumulative capacities up to each time t

Output: f̃t ⊲ Approximation of function ft
1: Discard all items with ri ≤

ǫ
n
maxj rj and relabel the items

2: r0 ← mini ri ⊲ Lower bound of solution value

3: r̂i ← r0 · (1 + ǫ)

⌊
log1+ǫ

(
ri
r0

)⌋

⊲ Round down the reward of each item

4: m←
⌈
log1+ǫ

n2

ǫ

⌉
⊲ Number of distinct rewards to be considered, each in the form r0 · (1 + ǫ)k

5: f̃0 ← −∞
6: for t = 1, . . . , T do

7: f̂t ← f̃t−1

8: for j = 0, . . . ,m do

9: I(t)j =
{
i ∈ I(t) | r̂i = r0 · (1 + ǫ)j

}
⊲ Items in each I(t)j has the same rounded reward

10: Î(t)j = {(r̂i, qi) | i ∈ I(t)j} and obtain f
Î(t)j

⊲ Using items with rounded rewards, build the function f
Î(t)j

11: Approximately compute f̂t = f̂t ⊕ f
Î(t)j

using Lemma 12

12: end for

13: f̃t = f̂ct
t ⊲ f̃t is an approximation of ft

14: end for

In Algorithm 8, we first discard all items with reward ri ≤ ǫ
n maxj rj . The maximum we could lose is n ·

ǫ
n maxj rj = ǫmaxj rj , which is at most ǫ fraction of the optimal value. We next round down the rewards of

all remaining items to the nearest r0 · (1 + ǫ)k, where r0 := minj rj and k is some nonnegative integer, so

we lose at most a fraction of (1 + ǫ) in the rounding, and the number of distinct rounded rewards is bounded

by m =
⌈
log1+ǫ

n2

ǫ

⌉
= Õ

(
1
ǫ

)
. We begin with initializing f̃0 = −∞. Then, for period t = 1, we partition

I(1) = ⊔m
j=0I(1)j where all items in I(1)j have rounded reward r0 · (1+ ǫ)j . Denote by Î(1)j these items with

rounded rewards, and by adding these items greedily in nonincreasing order of their sizes, we obtain fÎ(1)j , which

is a (1 + ǫ) approximation of fI(1)j , and is r0 · (1 + ǫ)j-uniform and pseudo-concave. By applying Lemma 12

for m+1 times (with ǫ′ to be specified later), we obtain f̃0 ⊕ fÎ(1)0 ⊕ fÎ(1)1 ⊕ · · · ⊕ fI(1)m = f̃0 ⊕ fÎ(1), which

approximates f0 ⊕ fI(1) with an accumulative approximation factor (1+ ǫ)(1+ ǫ′)m+1, and is computed in total

time O(n1) + Õ
(
m+1
ǫ′

)
. Then, to ensure feasibility, f̃1 is obtained by taking truncation c1 on f̃0 ⊕ fÎ(1), which

becomes a (1+ǫ)(1+ǫ′)m+1 approximation of f1. We then move to period 2 and continue this pattern of partition,

convolutions, and truncation. In the end as we reach period T , f̃T would only contain feasible solutions to (1),

and approximates fT with accumulated approximation factor (1+ ǫ)(1 + ǫ′)(m+1)T ≈ (1 + ǫ)(1+ (m+1)Tǫ′).
Formally, we have the following lemma which shows the approximation factor of f̃t to ft.

Lemma 13. Let f̃t be the functions obtained from Algorithm 8, and let ft be defined as in (6). Then, f̃t approxi-

mates ft with factor (1 + ǫ)(1 + ǫ′)(m+1)t, i.e., f̃t(c) ≤ ft(c) ≤ (1 + ǫ)(1 + ǫ′)(m+1)tf̃t(c) for all 0 ≤ c ≤ ct.

The proof of Lemma 13 relies on the following fact.
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Lemma 14. At any period t, after running the inner “for” loop of Algorithm 8, we have that (1 + ǫ′)m+1f̂t ≥
f̃t−1 ⊕ fÎ(t)0 ⊕ fÎ(t)1 ⊕ · · · ⊕ fÎ(t)m .

Proof of Lemma 14. We prove by induction on j = 0, 1, . . . ,m. Base case is when j = 0, i.e., after the first

round of the inner “for” loop, by Lemma 12, we have that (1 + ǫ′)f̂t ≥ f̃t−1 ⊕ fÎ(t)0 . For the induction step,

assume that after j rounds of the inner “for” loop, (1+ ǫ′)j f̂t ≥ f̃t−1⊕ fÎ(t)0 ⊕· · ·⊕ fÎ(t)j−1
, we show that after

j + 1 rounds, (1 + ǫ′)j+1f̂t ≥ f̃t−1 ⊕ fÎ(t)0 ⊕ · · · ⊕ fÎ(t)j . As a notation, we denote by f̂old
t the f̂t right before

the (j + 1)th round of the inner “for” loop, and by f̂new
t the f̂t right after the (j + 1)th round of the inner “for”

loop. Then, from Lemma 12 we have that (1 + ǫ′)f̂new
t ≥ f̂old

t ⊕ fÎ(t)j , which implies that

(1 + ǫ′)j+1f̂new
t ≥ (1 + ǫ′)j f̂old

t ⊕ fÎ(t)j ≥ f̃t−1 ⊕ fÎ(t)0 ⊕ · · · ⊕ fÎ(t)j−1
⊕ fÎ(t)j ,

where the second inequality follows from the induction assumption. This finishes the induction step, and thus the

proof of the lemma. �

With Lemma 14 at hand, we now prove Lemma 13.

Proof of Lemma 13. By the construction of f̃t, it should be clear that f̃t ≤ ft. We prove that (1 + ǫ)(1 +
ǫ′)(m+1)tf̃t ≥ ft by induction on t. Base case is when t = 1, we have that (1 + ǫ)(1 + ǫ′)m+1f̃1 = (1 + ǫ)(1 +

ǫ′)m+1f̂ c1
1 ≥ (1 + ǫ)

(
f̃0 ⊕ fÎ(1)

)c1
= (1 + ǫ)f c1

Î(1)
≥ f c1

I(1) = f1, where the first inequality follows from

Lemma 12, and the second inequality follows from the rounding of the rewards. For the induction step, assume

that (1 + ǫ)(1 + ǫ′)(m+1)tf̃t ≥ ft, we show that (1 + ǫ)(1 + ǫ′)(m+1)(t+1) f̃t+1 ≥ ft+1.

After partitioning I(t+1) = I(t+1)0 ⊔I(t+1)1⊔ · · · ⊔ I(t+1)m, for any item i ∈ I(t+1), by the rounding

down, we have that (1 + ǫ)r̂i ≥ ri ≥ r̂i, which further implies that (1 + ǫ)fÎ(t+1)j
≥ fI(t+1)j ≥ fÎ(t+1)j

,∀j =
0, 1, . . . ,m. Thus,

(1 + ǫ)
(
fÎ(t+1)0

⊕ fÎ(t+1)1
⊕ · · · ⊕ fÎ(t+1)m

)
≥ fI(t+1) ≥ fÎ(t+1)0

⊕ fÎ(t+1)1
⊕ · · · ⊕ fÎ(t+1)m

,

which, together with the induction assumption, implies that

(1 + ǫ)(1 + ǫ′)(m+1)t
(
f̃t ⊕ fÎ(t+1)0

⊕ fÎ(t+1)1
⊕ · · · ⊕ fÎ(t+1)m

)
≥ ft ⊕ fI(t+1).

By Lemma 14, after the inner “for” loop in Algorithm 8, we have that (1 + ǫ′)m+1f̂t+1 ≥ f̃t ⊕ fÎ(t+1)0
⊕

fÎ(t+1)1
⊕ · · · ⊕ fÎ(t+1)m

, which implies that

(1 + ǫ)(1 + ǫ′)(m+1)(t+1)f̂t+1 ≥ (1 + ǫ)(1 + ǫ′)(m+1)(t+1)
(
f̃t ⊕ fÎ(t+1)0

⊕ fÎ(t+1)1
⊕ · · · ⊕ fÎ(t+1)m

)

≥ ft ⊕ fI(t+1).

Taking truncation on both sides, we conclude that

(1 + ǫ)(1 + ǫ′)(m+1)(t+1) f̃t+1 = (1 + ǫ)(1 + ǫ′)(m+1)(t+1)f̂
ct+1

t+1 ≥
(
ft ⊕ fI(t+1)

)ct+1 = ft+1.

This finishes the induction step, and thus the proof of the lemma. �
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Lemma 13 and Proposition 1 together imply that f̃T (cT ), obtained from Algorithm 8, approximates the optimal

value of MPBKP (1) by a factor of (1 + ǫ)(1 + ǫ′)(m+1)T ≈ (1 + ǫ+mTǫ′). In Algorithm 8, during each of the

periods t = 1, . . . , T , approximately computing the (max,+)-convolutions on f̂t⊕ fÎ(t)j for all j = 0, 1, . . . ,m

take total time Õ (nt + (m+ 1)/ǫ′). Therefore, Algorithm 8 has total runtime Õ (n+ (m+ 1)T/ǫ′). As a result,

we have the following proposition.

Proposition 4. Taking ǫ = mTǫ′ and m = Õ(1/ǫ), Algorithm 8 achieves (1 + ǫ)-approximation for MPBKP in

Õ
(
n+ T 2

ǫ3

)
.

C Alternative FPTAS for MPBKP-S

In this section, we provide an FPTAS for the MPBKP-S with time complexity O
(
n2 logn

ǫ

)
. Following the

classical approach for “0-1” knapsack problems (see, e.g., Vazirani (2013)), we round down the reward of each

item so that the optimal solution for the MPBKP under the new rounded rewards is upper bounded by some

polynomial of n and 1/ǫ, and thus the naive pseudo-polynomial dynamic program becomes a polynomial time

algorithm.

We assume that the items are initially sorted and relabeled in the increasing order of their deadlines, i.e., d1 ≤
d2 ≤ · · · ≤ dn. Further, assume that we have a guess P0 that satisfies (10). Then, we choose a discretization

quantum κ := ǫP0/2n and define rounded rewards r̂i :=
⌊
ri
κ

⌋
κ
. We then have P(S∗) ≤ 4n

ǫ κ.

For a solution S = S(1)∪S(2)∪ · · · ∪S(T ) where S(t) is the set of items with deadline t. Let the items in S(t)
be indexed as S(t) =

(
i
(t)
1 , . . . , i

(t)
St

)
in the order in which Algorithm 9 considers them, we define the rounded

profit of S as:

P̂(S) = R̂(S)−
T∑

t=1

St∑

k=1



B


∑

ℓ≤k

q
i
(t)
ℓ

− max
0≤t′<t



ct − ct′ −

∑

t′+1≤τ<t

Q(S(τ))








+

κ

. (19)

Let us also define a single period change in rounded profit for a set of items S = (i1, . . . , iS) with knapsack

capacity c as:

∆P̂(S, c) = R̂(S)−
S∑

k=1



B


∑

ℓ≤k

qiℓ − c




+

κ

. (20)

Let Â(i, p) be the maximum capacity left at time di when earning rounded profit at least p using items {1, . . . , i}
with rounded down rewards r̂, equivalently,

Â(i, p) := max{
S⊆{1,...,i}

P̂(S)≥p

} max
0≤t′<di



cdi − ct′ −

∑

t′+1≤τ≤di−1

Q(S(τ))



 . (21)

If it is not possible to earn profit p at time di using items {1, . . . , i} with rounded down rewards, i.e., no S ⊆
{1, . . . , i} exists such that P̂(S) ≥ p, then Â(i, p) is labeled −∞. The DP table runs for i = 1, . . . , n and

p = 0, κ, . . . ,
⌈
4n
ǫ

⌉
κ. We then have Algorithm 9, which returns an exact optimal solution of P̂(S) under the
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rounded rewards and rounded penalties.

Algorithm 9 DP with rounded down rewards for MPBKP-S

1: Define κ = ǫP0

2n

2: Define r̂i = κ
⌊
ri
κ

⌋
⊲ Round down reward

// Â(i, p) = max capacity left at time di when earning (rounded) profit at least p by

selecting items in {1, . . . , i} with rounded down rewards r̂

3: Initialize Â(0, p) =

{
0 p = 0,

−∞ p > 0.

4: for t = 1, . . . , T do

5: i = I(t− 1) + 1
6: for p =

{
0, 1, . . . ,

⌈
4n
ǫ

⌉}
· κ do

7: Â(i, p) := Â(i− 1, p) + ct − ct−1 ⊲ If reject request i

8: end for

9: for p̄ =
{
0, 1, . . . ,

⌈
4n
ǫ

⌉}
· κ do

10: p = p̄+ r̂i −
⌈
B(qi −max{0, Â(i− 1, p̄) + (ct − ct−1)})

+
⌉

κ

11: Â(i, p) = max{Â(i, p), Â(i− 1, p̄) + (ct − ct−1)− qi} ⊲ Accept i

12: end for

13: for p =
{⌈

4n
ǫ

⌉
,
⌈
4n
ǫ

⌉
− 1, . . . , 1

}
· κ do

14: if Â(i, p− κ) < Â(i, p) then

15: Â(i, p− κ) = Â(i, p)
16: end if

17: end for

18: for i = I(t− 1) + 2, . . . , I(t) do

19: for p =
{
0, 1, . . . ,

⌈
4n
ǫ

⌉}
· κ do

20: Â(i, p) := Â(i− 1, p) ⊲ If reject request i

21: end for

22: for p̄ =
{
0, 1, . . . ,

⌈
4n
ǫ

⌉}
· κ do

23: p = p̄+ r̂i −
⌈
B(qi −max{0, Â(i− 1, p̄)})+

⌉

κ

24: Â(i, p) = max{Â(i, p), Â(i− 1, p̄)− qi} ⊲ Accept i

25: end for

26: for p =
{⌈

4n
ǫ

⌉
,
⌈
4n
ǫ

⌉
− 1, . . . , 1

}
· κ do

27: if Â(i, p− κ) < Â(i, p) then

28: Â(i, p− κ) = Â(i, p)
29: end if

30: end for

31: end for

32: end for

Proof of Correctness of Algorithm 9. We show that Â(i, p) returned by the algorithm satisfies (21) by induction

on i. The base case (i = 0) is vacuously true. Now we assume that (21) holds for all p ∈ {0, 1, . . . , ⌈4n/ǫ⌉} κ
and for all k ∈ [i − 1]. Consider some p ∈ {0, 1, . . . , ⌈4n/ǫ⌉} κ, and let S∗ be any set achieving the maximum

in (21) so that P̂(S) ≥ p. We will show that Â(i, p) is at least the leftover capacity under solution S∗ via case

analysis:

• Case i /∈ S∗: In this case, the leftover capacity under S∗ is the leftover capacity by di, which is the sum

of leftover capacity in S∗ by di−1 and cdi − cdi−1
. By induction hypothesis, Â(i− 1, p) is no less than the

leftover capacity of S∗ by di−1, and therefore, by lines (7,11) and (20,24), Â(i, p) ≥ Â(i−1, p)+cdi−cdi−1
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which in turn is no less than the leftover capacity under S∗ by di. By optimality of S∗, all the inequalities

must be equalities.

• Case i ∈ S∗: Let S ′ = S∗ \ {i}, and let p′ = P̂(S ′) be its rounded profit. Then by induction hypothesis,

Â(i−1, p′) is no less than the leftover capacity under S ′ by di−1. Further, by packing item i in the solution

corresponding to Â(i − 1, p′), the change in profit is larger than by packing item i in S ′ (the penalty is

no less under S ′ since it has weakly smaller leftover capacity). Therefore, packing item i in the solution

corresponding to Â(i − 1, p′) gives a solution with at least as large a rounded profit as p and at least as

much leftover capacity by di as S∗. Therefore, in turn Â(i, p) is at least as much as the leftover capacity in

S∗. Since we assume S∗ to have the largest leftover capacity with profit at least p, all the inequalities must

be equalities.

�

Our next result gives the approximation guarantee for Algorithm 9.

Lemma 15. Let S∗ be the optimal solution set to the original MPBKP-S, and P0 satisfy (10). Let S ′ denote

the optimal solution set by Algorithm 9, i.e., S ′ is the solution set corresponding to Â(n, p∗) where p∗ is the

maximum p such that Â(n, p) > −∞. Then,

P(S ′) ≥ p∗ ≥ (1− ǫ)P(S∗).

Proof of Lemma 15. For any item i, because of rounding down, r̂i is smaller than ri. Also there are at most n
rounding ups on the penalties in S∗, each by not more than κ. Then,

P(S∗)− P̂(S∗) ≤ 2nκ.

The dynamic programming step must return a set, S ′, at least as good as S∗ under the new profit. Therefore,

P(S ′) ≥ P̂(S ′) = p∗ ≥ P̂(S∗) ≥ P(S∗)− 2nκ = P(S∗)− ǫP0 ≥ (1− ǫ)P(S∗),

where first inequality follows because the rewards are rounded down and the penalties are rounded up in calcu-

lation of P̂ , second inequality follows because S ′ is the optimal set for objective P̂ , the third inequality follows

because |S∗| ≤ n and T ≤ n, and the last inequality follows from (10) that P(S∗) ≥ P0. �

It remains to find P0 which satisfies (10). Since P(S∗) ≤ P̄ , we can enumerate P0 from P̄ /2, P̄ /4, P̄ /8, . . .,
and one of them must satisfy (10). The FPTAS is presented as Algorithm 10.

Algorithm 10 FPTAS for MPBKP-S in O(n2 log n/ǫ)

1: P0 ← P̄

2: p∗ ← 0
3: while p∗ < (1− ǫ)P0 do

4: P0 ←
P0

2

5: Run Algorithm 9 with the current P0.

6: p∗ ← max{
p∈{0,...,⌈ 4nǫ ⌉}·κ

Â(n,p)>−∞

} p

7: end while
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Theorem 6. Algorithm 10 is a fully polynomial approximation scheme for the MPBKP-S, which achieves (1− ǫ)

factor of optimal with running time O
(
n2 logn

ǫ

)
.

Proof of Theorem 6. Time complexity: When P0 satisfies (10), by Lemma 15 we have that

p∗ ≥ (1− ǫ)P(S∗) ≥ (1− ǫ)P0.

Thus, the “while” loop terminates when P0 satisfies (10), if not before P0 satisfies (10). When P0 satisfies (10),

we would also have P(S∗)/2 ≤ P0 ≤ P(S∗). Therefore, the number of iterations is upper bounded by

number of iterations ≤ log
P̄ /2

P(S∗)/2
≤ log n,

where we have used the fact that P̄ ≤ nP ≤ nP(S∗). Since each iteration takes time O
(
n ·

⌈
4n
ǫ

⌉)
we get a total

time complexity of O
(
n2 logn

ǫ

)
.

Approximation ratio: When Algorithm 10 terminates, it returns the last p∗ and the solution set S ′ corresponding

to Â(n, p∗). If the “while” loop terminates when P0 > P(S∗), i.e., it stops before P0 falls below P(S∗), then we

have that

P(S ′) ≥ p∗ ≥ (1− ǫ)P0 > (1− ǫ)P(S∗).

Otherwise, from the time complexity analysis, we know that the “while” loop must terminate when P0 first falls

below P(S∗), which implies that the last P0 satisfies (10). Then by Lemma 15 we again have that

P(S ′) ≥ (1− ǫ)P(S∗).

In either case, the solution we obtained from Algorithm 10 achieves (1− ǫ) optimal. (1− ǫ) factor of P(S∗). �
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