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2 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques (LISPEN), Arts et
Métiers, Cluny, France

firstName.lastName@ensam.eu

Abstract. Topology optimization is a powerful tool for producing an
optimal free-form design from input mechanical constraints. However,
in its traditional-density-based approach, it does not feature a proper
definition for the external boundary. Therefore, the integration of shape-
related constraints remains hard. It requires the experts’ intervention
to interpret the generated designs into parametric shapes; thus, making
the design process time-consuming. With the growing role of additive
manufacturing in the industry, developing a design approach considering
mechanical and geometrical constraints simultaneously becomes an in-
teresting way to integrate manufacturing and aesthetics constraints into
mechanical design. In this paper, we propose to generate mechanically
and geometrically valid designs using a deep-learning solution trained
via a dual-discriminator Generative Adversarial Network (GAN) frame-
work. This Deep-learning-geometrical-driven solution generates designs
very similar to traditional topology optimization’s outputs in a fraction
of time.

Moreover, it allows an easy shape fine-tuning by a simple increase/decrease
of the input geometrical condition (here the total-bar-count), a task that
a traditional topology optimization cannot achieve.

Keywords: Topology Optimization (TO) · Deep Learning (DL) · Gen-
erative Adversarial Networks (GAN).

1 Introduction

In the late 20th century, the advent of additive manufacturing (AM) allowed the
production of organic shapes that were costly and complex with conventional
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shaping processes. On the other hand, given a set of parameters such as loads,
boundary conditions, and volume fraction (i.e. the percentage of material volume
used), topology optimization (TO) allows the generation of smooth and organic
shapes. Its synergy with AM made it further attractive in the research areas.
Despite the success of AM, not all the designs could be manufactured. Steep
curvatures, overhanging patterns, the need for supports, and other geometrical
constraints are still a hurdle[2]. Therefore, an engineer manually reconstructs
a shape inspired by TO’s suggestion, considering the geometric and manufac-
turing constraints implicitly. This re-interpretation phase is not straightforward,
can compromise the initial design’s optimality, and can be time-consuming; it de-
pends on the engineer’s experience and expertise. Moreover, a recent survey[26]
has shown that half of TO practitioners regret the absence of geometric and
manufacturing-related plug-ins in TO’s software.

Thus, to accelerate the design process, [12,15,31,13,29] integrated overhangs
and building directions into the formulation of TO to minimize the need for
supports during manufacturing. Nevertheless, TO is an iterative, finite-element-
based optimization method, hence computationally expensive. Its efficiency de-
pends on the design space (mesh size), the complexity of the input conditions,
and the resolution of discretized linear elasticity equations (e.g Finite Elements).
Consequently, other research has focused on accelerating the TO process via ma-
chine and Deep Learning (DL) techniques.
DL architectures have proven efficiency and robustness in learning complex
spatial correlations and extracting high-level features (including geometrical or
shape-related features) from real-world images [8,20,33].
The DL-TO methods found in the literature can be divided into two parts. The
first part used DL to assist traditional finite-element-TO [25,11,17] while the sec-
ond part tried to replace completely TO’s formulation by DL [28,30,22,19,1,14,6,10].
None of these DL-based methods included any geometrical constraints; on the
contrary, they were left to the re-interpretation phase.

In this work, the primary objective is not to accelerate TO via DL but to
take advantage of DL’s capability to learn spatial correlations to facilitate the
integration of geometrical constraints at the conceptual level of TO. The geo-
metrical constraint considered in this work is the total-bar-count referred to as
the design’s complexity. This DL-geometrical-driven TO paves the way to handle
and tailor different complexities during design generation.
Our approach consists of a dual-discriminator Generative Adversarial Network
(GAN)[7]. The generator (the DL-TO) encodes the mechanical and geometri-
cal conditions and outputs the 2D design. The first discriminator penalizes the
generator over the mechanical constraints, while the second penalizes it over the
geometrical one. The GAN is chosen for its flexible training framework. New
discriminators can be easily appended to pass new knowledge to the generator
during training. For example, one can add a build-time predictor, a thermal
distortion predictor, etc. as discriminators to generate designs accounting for a
short build time, thermal distortion, etc. Besides, these discriminators can al-
ways be used separately (to predict the build-time of a design or its thermal



distortion). To the best of our knowledge, related literature on automatic design
generation only focuses on the generated designs’ aesthetics. In our work, we
developed an objective evaluation, which considers not only mechanical criteria
(compliance, volume) but also an objective measure of complexity.

The major contributions of this paper can be summarized as follows: (1)
The integration of mechanical and geometrical constraints simultaneously at the
conceptual level via a DL-based TO. (2) The ability to easily tailor the geometry
of a design by a simple change of the input geometrical condition (the total-bar-
count in this case).

The rest of the paper is organized as follows: sections 2.1 and 2.2 provide
a theoretical overview of TO and GANs respectively. In section 3, the dual-
discriminator GAN approach is explained. Section 4 details the consolidation of
the training and test datasets used to train and evaluate the DL-TO. Generated
designs are shown and evaluated in Section 5. Finally, section 6 summarizes the
methodology and its outcomes and discusses future works.

2 Theoretical Overview

2.1 Topology Optimization

Topology optimization seeks to find the optimal layout within a design space for
a specific set of boundary conditions, load configurations, and volume fraction. It
gained its success in the industrial world for its intrinsic characteristics: it allows
effective use of the material and has a higher degree of freedom when addressing
the topology, shape, and sizing problems altogether. In the literature, several
approaches were developed to solve the TO problem: density-based[4], level-set[3]
and others. The topmost common commercial approach is the Solid Isotropic
Material with Penalization (SIMP) method[4]. SIMP is a density gradient-based
iterative method that uses penalization of the intermediate non-binary values
of density material to converge to an optimal binary design. SIMP represents
a design as a distribution of discretized square material elements e (material
properties are assumed constant within each element e). The variables are the
element-relative-densities xi such that xi = 1/0 represents presence/absence of
material at point i of the design domain.
A TO problem where the objective is to minimize the compliance c(x) can be
written as the following:

minx = UTKU =
N∑
e=1

xpeu
T
e k0ue s.t. KU = F,

V (x)

V 0
≤ f, 0 < x0 ≤ x ≤ 1 (1)

where U and ue are the global and element-wise displacements, F the forces
vector, K and ke are the global and element-wise stiffness matrices and N =
number of elements used to discretize the design domain. x is the design vari-
ables vector i.e. the density material and x0 the minimum relative densities
(non-zero to avoid singularity), p penalization power (typically 3 for Poisson’s



ratio = 1/3 [5]). V0 and V (x) are the design domain volume and material vol-
ume respectively and f the volume fraction. To efficiently solve the problem
stated above, several approaches were proposed: the Optimality Criteria (OC)
methods, Sequential Linear Programming (SLP) methods, the Method of Mov-
ing Asymptotes (MMA), etc. In [23], Sigmund used the OC method and added
a mesh-independency filter to ensure the existence of solutions to the problem
and avoid checker-board patterns[24]. In this study, a modified Python version
of the 99-line-of-code of the SIMP method written by Sigmund[23] is used to
generate the training and test datasets of 2D designs (section 4).

2.2 Generative Adversarial Networks

Generative adversarial network (GAN) was first introduced by Goodfellow[7].
This method learns to mimic any input data distribution. A GAN consists of
two neural networks the generator G(z, θg) and the discriminator D(x, θd), where
θg and θd are the parameters of the generator’s and discriminator’s networks re-
spectively. G(z, θg) would like to generate from a latent space z (z follows a
noise prior distribution pz) samples with a distribution pg similar to the origi-
nal ones pdata. However, D(x, θd) tries to discriminate real sample (pdata) from
synthesized ones (pg). Both networks are trained in a minimax framework to
improve the same loss function: the cross entropy loss L(G,D). The optimiza-
tion is successful when the generator starts to output data samples following
the same distributions as the real sample (i.e. pg = pdata). On the other hand,
a conditional GAN (cGAN) [16] is an extension of the GAN network enabling
the generation to be oriented by a specific input condition c. In this framework,
the basics of cGAN become: the conditional generator as G((z/c), θg), the con-
ditional discriminator as D((x/c), θd) and the loss function as:

L(G,D) = min
G

max
D

Ex∼pdata(x)
[log(D(x/c))]+Ez∼pz(z)[log(1−D(G(z/c)))] (2)

The approach adopted in this work is based on the cGAN framework.

3 Methodology

In this work, a conditional [16] convolutional[18] dual-discriminator GAN has
been adopted. This approach consists of a deep ResUnet generator[32] (the
DL-based TO), a Residual-based discriminator to differentiate between the real
designs (SIMP-based) and the generated ones, and an inception-based[27] bar
counter (the 2nd discriminator) to quantify the complexity of the generated/real
designs. The training procedure is detailed in Fig. 1.

3.1 Architecture of the Generator

The generator is a deep ResUnet[32] network. It takes as input the mechanical
and geometrical conditions and outputs the 2D design. It’s an encoder-decoder



Fig. 1: Training Procedure.

convolutional architecture with residual and skip-connections between the out-
puts of encoder layers and the inputs of decoder layers or what is called U-Net.
This architecture benefits from the U-Net[21] and residual[9] advantages. U-
Net connections ensures that high-frequency details are not lost in the decoding
phase, and residual connections allow a deeper network without any performance
degradation (usually due to vanishing gradients). The network can be divided
into three parts: an encoder, a bridge, and a decoder. The encoder is formed
of 4 blocks, each consisting of a down-sampling layer (a convolution of stride
2) and a residual unit3. The bridge connection has the same architecture as an
encoder’s block and combines the encoder to the decoder. The decoder is formed
of 5 blocks, each consisting of an up-sample layer (a transpose convolution of
stride 2) and a residual unit, followed by a convolution of kernel size 1× 1 and
a sigmoid activation.

3.2 Architecture of the Discriminators

The first one, the traditional discriminator, takes as input the design along with
the geometrical and mechanical conditions and outputs the probability that the
design comes from the real data distribution. The second one is a regression
inception-based DL counter. It takes as input the design and only its corre-
sponding mechanical conditions and outputs the total number of bars present in
the design.

The traditional discriminator’s network consists of seven blocks of down-
sample and residual units followed by a dropout, then a fully connected layer. It
outputs a probability p regarding the design being real (p ≈ 1) or fake (p ≈ 0).
It helps the generator improve the generated designs’ quality and conformity to
boundary conditions and load configurations.

The counter network consists of a stem, an Inception/Reduction Resnet-
v1-block-A, an Inception/Reduction Resnet-v1-block-B, an Inception Resnet-
v1-block-C followed by an average pooling layer, a dropout layer, and a fully

3 The architecture of the residual unit block used in this work is detailed in [32].



connected layer4. In this work, 4347 SIMP-designs were manually labeled (we
manually counted the total number of bars present in each design). The counter-
discriminator is pre-trained on these labeled SIMP designs before the full training
of the GAN, for this procedure improves the generator’s convergence.
The counter-discriminator is pre-trained using 3885 labeled designs and tested
over the remaining 462 designs. The counter-discriminator predicts 94.9% of the
time a total-bar-count within an error margin of ±2 bars. Additionally, even if
we restrict further the error margin to ±1 bar, its accuracy slightly drops to
85.4%; knowing that the range of total-bar-count is very wide ([3, 31]).
This pre-trained counter is also used to predict the total-bar-count on unlabeled
train designs to augment the training dataset.

3.3 Loss Function

This dual-discriminator GAN aims to train a generator embracing two aspects:
the reconstructed 2D designs’ quality and their conformity to the mechanical
and geometrical conditions. Thus, the original adversarial loss function used to
train the generator (Eq. 2) was altered to consider both aspects. A reconstruc-
tion loss (Lr) and a counting loss (Lcount) were added to the generator’s loss.
The modified generator loss function LG adapted in the training process is the
following:

LG = λ1Lr + λ2Ladv + λ3AcccountLcount (3)

Where Lr = 1
n

∑n
i=1(xi − x̂i)2, Lcount = 1

n

∑n
i=1(ŷi − yi)2, with xi, x̂i the true

and predicted 2D design, yi the input total bar-count, ŷi the predicted total-
bar-count in the generated designs and n the batch size. The accuracy of the
counter discriminator Acccount = 1

N

∑N
i=1(t̂i == yi) with yi, t̂i the true and

predicted total-bar-count in the real designs and N the total number of training
samples; this accuracy is updated at the end of each epoch. λ1, λ2 and λ3 are
the penalization weights of Lr, Ladv and Lcount respectively. The adversarial loss
ensures the generation of creative and varied 2D structures. The reconstruction
loss boosts the aesthetics and the reproduction of high-frequency details in the
generated samples. The counting loss penalizes the generator every time the
geometrical constraint on the total number of bars is not respected.
In this work, stabilizing the loss function was a challenge, especially that it
consists of different types of losses having different orders of magnitude: 0 ≤ Lr ≤
1, 0 ≤ Ladv ≤ 100; due to Pytorch Implementation of the Binary Cross Entropy
Loss, 0 ≤ Acccount ≤ 1 and 0 ≤ Lcount ≤ 961; in this work, the maximum total-
bar-count is 31. Additionally, during training, Lr tends to decrease sharply after
only few iterations (0 ≤ Lr ≤ 0.1). The same behavior is noticed with Ladv (0 ≤
Ladv ≤ 1). While Lcount × Acccount seems to vary between 0 and 30, especially
that, as mentioned earlier, the counter discriminator is pre-trained before the

4 The stem and inception/reduction blocks used defers from the original paper [27]
only by the number of input/output feature maps.

https://pytorch.org/docs/stable/generated/torch.nn.BCELoss
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss


Fig. 2: Input of the DL-generator. Boundary conditions (BCx, BCy), load con-
figurations (Fx, Fy), volume fraction V and complexity Cx (i.e. total-bar-count)
are formulated as a six-channel image forming the generator’s input.

training (Acccount ≈ 0.8). Thus, to ensure that the generator is equally penalized
over the three losses, λ1, λ2 and λ3 were set to 10, 1 and 0.1 respectively.

4 Data Generation

To train the model, 21 538 2D-designs of size 100×100 pixels were generated fol-
lowing the SIMP method explained in section 2.1 via a modified Python version
of the academic open-source TO code written by Sigmund[23]5. The geometri-
cal constraint (the complexity) is added by manual labeling over 4347 samples
(which are used to pre-train the counter discriminator) and then the complexity
of the remaining samples is predicted using the counter discriminator (section
3.2).
A 2D structure of size nx×ny can be discretized into a mesh of (nx+1)×(ny+1)
nodes and is subject to 2 major constraints: the boundary conditions i.e. the fixed
nodes and the loads i.e. the loaded nodes. Boundary conditions BC are repre-
sented as (nx + 1)× (ny + 1) matrices with null values everywhere except for the
fixed nodes set to 1.0; we only consider encastrated designs i.e. BC along the x
axis (BCx) and y axis (BCy) are similar. Loads Fx and Fy are represented as
(nx + 1) × (ny + 1) matrices with null values everywhere except for the loaded
nodes6. Since BC and F are 101×101 matrices, hence, to concatenate the latter
with the rest of the inputs altogether: the 2D design, the volume fraction, and
the complexity are reshaped into a 101× 101 image. An example of an input to
the generator is shown in Fig. 2. The dataset was separated into train (17230
samples) and test (4308 samples). The test set is used to evaluate the generator’s
performance.

5 This code is available on the GitHub repository: https://github.com/dbetteb/

TOP_OPT.git.
6 A loaded node ne located at line i and column j tilted θ degrees has Fx(i, j) = cos(θ)

and Fy(i, j) = sin(θ); the magnitude of the loads were set to 1.0 N .

https://github.com/dbetteb/TOP_OPT.git
https://github.com/dbetteb/TOP_OPT.git


(a) Without Threshold

(b) With Threshold

Fig. 3: In this figure, we compare the aesthetics, volume fraction (eV%
), com-

pliance (eC%
), complexity (∆Cx) and generation speed (nT ) of the original

(SIMP-based) versus generated (DL-based) designs with and without Threshold.
In both cases, DL-designs are barely indistinguishable, in terms of shape, from
SIMP-designs, achieve lower Volume Fractions (eV%

≤ 0), respect the Complex-
ity constraint (|∆Cx| ≤ 2) and are generated thousand of times of faster than
the SIMP-designs i.e. DL-TO generates the first design in Fig.3a 1833 times
faster than SIMP-TO. However, while the Compliance of DL-designs is higher
than SIMP-designs before threshold, it is significantly reduced after threshold.

5 Experiments and Results

As mentioned above, TO finds the optimal material distribution in a design space
that minimizes compliance and meets the boundary conditions, the loads, and
the volume fraction constraint. Still, an optimal design for manufacturing is a
compromise between mechanical performance and geometrical constraints. Thus,
to evaluate the generated designs, we will examine their compliance values, vol-
ume fractions, and complexities (geometrical constraint). The metrics used for

the volume fraction V and compliance C are the relative errors eV%
=

Vg−Vo

Vo
×100

and eC%
=

Cg−Co

Co
× 100 respectively. The metric of Complexity Cx is the bar-

count difference ∆Cx = Cxg−Cxo . Where Xg, Xo refer to generated and original
respectively and {Xg, Xo : X ∈ {V,C,Cx}}. The metric used to compare the
generation speed between SIMP and DL-TO is nT = Generation Time of SIMP-TO

Generation Time of DL-TO ,
which refers to DL-TO is faster nT times than SIMP-TO.
Figure 3a displays a sample of original (i.e. SIMP-based) versus generated (i.e.
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Fig. 4: Distributions of Volume Fraction (eV%
), Compliance (eC%

), Complexity
(Total bar count, ∆Cx

) and Reconstruction error (MSE) between the original
(SIMP-based) and generated (DL-based) designs with and without threshold in
the Test Set. The generated designs show conformity with all constraints except
for the compliance, which is improved with threshold.

DL-based) designs from the test set. It also shows their relative errors eV%
, eC%

and bar-count differences ∆Cx.
The DL-designs are aesthetically plausible. The fixed and loaded bars7 respect
the input boundary conditions and load configurations.
In the majority of cases, eV%

is negative, e.g. the DL-TO (the generator) tends
to find a lower volume fraction bound than that found by the traditional SIMP
formulation. However, eC%

is relatively higher (eC%
≥ 10% in most cases); show-

ing that the DL-designs exhibit greater external stresses. It would be interesting
to note here that SIMP-TO and DL-TO output continuous non-binary designs
and the compliance is very sensitive to intermediate-density-pixel values. Hence,
to account for this drawback, a threshold of 0.4 is applied to the test designs.
This particular threshold improved the compliance of test designs globally com-
pared to others. However, a better approach would be to choose an adapted
global threshold per design. Results are reported in Fig. 3b. In most cases, the
eC%

dropped significantly, eC%
≤ 5%, i.e. after threshold, DL and SIMP designs

tend to have similar compliance values (Cg ≤ 1.05×Co). We point out that the
application of threshold increased the volume fraction. Yet, the DL-designs still
achieved lower volume fractions than the SIMP-designs. In other words, after
threshold, in the majority of cases, DL-designs tend to present a better mechan-
ical performance: lower volume fraction and similar compliance.
Additionally, the geometrical constraint is mainly respected. Complex DL-designs
tend to display additional or fewer internal bars; the maximum bar-difference is

7 A fixed bar is a bar where boundary conditions are applied. A loaded bar is a bar
where a load is applied.



Fig. 5: A sample of generated designs with similar mechanical constraints but
different complexities. From left to right, the complexities are the following: 10,
18, 22, 25 and 30 bars.

more or less two bars (Fig. 3a, Fig. 3b).
Figure 4 summarizes the overall performance of the generator. The average re-
construction error (MSE) is 0.025, manifesting the aesthetic aspect of the DL-
designs. The volume fraction constraint is respected with 94% of the DL-designs
having a volume fraction lower than that achieved by SIMP. Moreover, 86% of the
DL-designs have, at most, 2 additional/fewer bars (|∆Cx| ≤ 2). Nevertheless, the
DL-designs tend to show higher external stresses. 50% of the DL-designs score
a compliance greater than that computed over the SIMP designs (eC%

≥ 20%).
One of the reasons is that the generator was not penalized explicitly on the com-
pliance during the training. The integration of a compliance predictor as a third
discriminator into our GAN could improve the generated designs’ compliance.
We note that the DL-designs comply better with complexity and volume fraction
constraints; the generator was penalized on the reconstruction error (it embeds
the volume fraction constraint implicitly) and complexity error during training.
We also compare the designs after the application of threshold. As expected, the
compliance dropped; (eC%

≤ 20%) in 70% of the cases.
We underline that the design’s mechanical and geometrical performance depends
on the threshold-value’s choice: the lower the threshold, the higher the volume
fraction, the higher the threshold, the lower the bar-count, and possibly the ap-
pearance of discontinuities in the design. Consequently, we need to prioritize the
constraints to find the best compromise.
To validate the generator’s understanding of complexity (total-bar-count), we
fixed the mechanical conditions of designs, changed the complexity and reported
the generator’s response to such change as shown in Figure 5. The number of
bars increases with the complexity. However, the additional bars are blurry. This
is due to the volume fraction constraint. The volume fraction and complexity of
a design are proportional. A better approach would be to increase/decrease the
complexity and volume fraction together.
Finally, in terms of computational time, it would be interesting to highlight
that the DL-TO generates a 2D design in 0.047s from specific mechanical condi-
tions and an additional geometrical one (the total-bar-count in our case), while
a SIMP-TO requires 221s on average (i.e.≈ 5000 times slower) for only the
same mechanical conditions and needs supplementary post-processing to inte-
grate the geometrical one. Moreover, a DL-TO’s generation time and compu-
tational complexity are independent of the input constraints, unlike traditional



Table 1: Generation Time (in seconds s) and Computational Complexity (in
Gega Floating Point Operations per Second GFLOPS) of SIMP (FE-based)
versus DL-TO.

Input Constraints
Generation Time (s) Computational Complexity (GFLOPS)

SIMP DL-TO SIMP DL-TO

1 Load 68 0.02 62.81 2.27

2 Loads 132 0.02 125.89 2.27

10 Loads 656 0.02 620.28 2.27

TO approaches as shown in Tab.1. For SIMP-TO, the computational time and
complexity increase with the complexity of the input constraint (here, the num-
ber of loads) while they remain unchanged for DL-TO.
To sum up, the DL-TO proposed in this study generates mechanically valid

designs, indistinguishable from those generated by SIMP-TO to the naked eye,
and is a thousand times faster than SIMP-TO. Moreover, while SIMP-TO needs
post-processing to account for a geometrical condition, DL-TO integrates it at
the conceptual level. Finally, DL-TO enables TO users to easily tailor the de-
sign’s complexity as the first step towards making it manufacturable.

6 Conclusion

In this paper, we build an original approach to generate topologically optimized
designs with the help of advanced DL architectures. This DL-TO (generator) not
only generates mechanical designs faster but also tailors the design’s complexity
(total-bar-count), as the first step towards making designs manufacturable. We
demonstrate the DL-TO’s ability to adjust the complexity, a task that is hardly
feasible with conventional TO methods. Lastly, we leverage the generative capa-
bility of GANs; the DL-TO generates creative valid designs.
Moreover, the adopted training strategy enables the addition of future developed
modules (as discriminators) to the generation approach such as: (a) a build-time
module to identify structures rapidly manufactured, (b) a thermal distortion
module, (c) and other complex modules to validate a design mechanically and
geometrically. In future works, we will integrate more complex additive man-
ufacturing constraints particularly, a build-time module, a geometry-evaluator
(to check for overhangs, bar curvatures, minimum length/width, etc.), and sup-
plementary mechanical validation modules into the generation process.
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