
ar
X

iv
:2

10
3.

05
93

3v
1

 [
cs

.D
S]

 1
0

M
ar

 2
02

1

Pebble Guided Near Optimal Treasure Hunt in

Anonymous Graphs ∗

Barun Gorain† Kaushik Mondal‡ Himadri Nayak§ Supantha Pandit¶

March 11, 2021

Abstract

We study the problem of treasure hunt in a graph by a mobile agent. The nodes in the
graph are anonymous and the edges at any node v of degree deg(v) are labeled arbitrarily
as 0, 1, . . . , deg(v)−1. A mobile agent, starting from a node, must find a stationary object,
called treasure that is located on an unknown node at a distanceD from its initial position.
The agent finds the treasure when it reaches the node where the treasure is present. The
time of treasure hunt is defined as the number of edges the agent visits before it finds the
treasure. The agent does not have any prior knowledge about the graph or the position
of the treasure. An Oracle, that knows the graph, the initial position of the agent, and
the position of the treasure, places some pebbles on the nodes, at most one per node, of
the graph to guide the agent towards the treasure.

We target to answer the question: what is the fastest possible treasure hunt algorithm
regardless of the number of pebbles are placed?

We show an algorithm that uses O(D log∆) pebbles to find the treasure in a graph
G in time O(D log∆ + log3 ∆), where ∆ is the maximum degree of a node in G and D

is the distance from the initial position of the agent to the treasure. We show an almost
matching lower bound of Ω(D log∆) on time of the treasure hunt using any number of
pebbles.

Keywords: treasure hunt, mobile agent, anonymous graph, pebbles

1 Introduction

1.1 Model and Problem Definition

Treasure hunt by a mobile agent is a well studied problem in networks and related areas. A
mobile agent, starting from an initial position, has to find a stationary object, called treasure.
In practice, a treasure can be a missing person in a dark cave and a mobile robot must find
the person. In networks applications, a software agent must find a computer virus or valuable
data resource in a computer connected in a network.

The network is modeled as a graph where the nodes are unlabeled. The edges at a node v
of degree deg(v) are labeled as 0, 1, . . . , deg(v) − 1 arbitrarily. Thus, each edge has two port

∗Preliminary version of this paper is accepted in SIROCCO 2021.
†Indian Institute of Technology Bhilai, Raipur, Chattisgarh, India. barun@iitbhilai.ac.in
‡Indian Institute of Technology Ropar, Rupnagar, Punjab, India. kaushik.mondal@iitrpr.ac.in
§Indian Institute of Information Technology, Bhagalpur, India himadri@iiitbhagalpur.ac.in
¶Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, Gujrat, India.

pantha.pandit@gmail.com

1

http://arxiv.org/abs/2103.05933v1

numbers associated with it at each of its incident vertices. A mobile agent, starting from
a node, must find the treasure which is situated in an unknown node at distance D. The
agent have no prior knowledge about the network or the value of D. The agent finds the
existence of the treasure only when it reaches the node where the treasure is situated. The
agent moves according to a deterministic algorithm where at each node, it chooses a port and
move to the next node using the chosen port. At the start, the agent only knows the degree
of the initial node. From a node u, when the agent reaches node v by using the port p at
u, it learns the degree of the node v, and the port q at v through which it reaches v. For
a network with maximum degree ∆, using a simple depth first search based algorithm, the
agent can find the treasure in time O(∆D). But many practical applications required a faster
treasure hunt algorithm. For example, consider the application of finding a person inside a
mine by a mobile robot. The person may be lost and injured due to a sudden accident and
therefore he or she must be found as fast as possible. In such scenarios, some external help is
provided to the robot/agent in order to guide it towards the desired location faster. Providing
such external help is often done by an oracle which gives some additional information in the
form of a binary string, called advice [13, 18]. The oracle gives this advice to the agent a
priori. Using the information provided in the advice, the agent finds the treasure. However,
if the treasure hunt has to be done by sufficiently large number of agents independently over
a long duration, providing such advice to each of the agents might be costly. Instead, the
same purpose can be served by providing information to the nodes of the networks only once.
Each agent, while visiting a node, learns this information and find the treasure using it. In
this paper, we consider a very simple scenario where a pebble can be placed at the nodes as
an external information. An agent, looking at the placement of the pebbles, learns in which
way it must traverse to find the treasure. To be specific, we consider the problem where some
pebbles are placed in some nodes of the network by an oracle who knows the initial position
of the agent and the position of the treasure. The position of the pebbles guides the agent
towards the treasure. At any node, at most one pebble can be placed. The agent can see
a pebble only after reaching that node. In this paper, we study what is the fastest possible
algorithm for treasure hunt in anonymous graphs with pebbles. To be specific, we aim design
the fastest algorithm for treasure hunt when any number of pebbles can be placed in the
network.

1.2 Our Result

➤ We present an algorithm that finds the treasure in an anonymous graph in O(D log ∆+
log3∆)-time using O(D log ∆) pebbles, where ∆ is the maximum degree of a node in
the graph and D is the distance from the initial position of the agent to the treasure.

➤ We prove that even if we supply any number of pebbles, any algorithm must require
Ω(D log ∆)-time to find the treasure in an anonymous graph.

1.3 Related Work

Treasure hunt by a mobile agent is a well studied problem [3, 6, 7, 9, 11, 15, 18, 22] for last
few decades. In [3], Beck et al. introduced the problem of deterministic treasure hunt on a
line. The authors proposed a deterministic algorithm with competitive ratio 9 and proved
that this ratio is the best that can be acheived in case of line. A generalized version of [3]
was studied by Demaine et al. [9] by considering cost of turns that agent makes along with

2

the cost of the trajectory. Bouchard et al. [7] considered the treasure hunt problem in plane
and showed a much improved bound with the assumption of angle information.

In the book [1], several problems related to treasure hunt are discussed. Most of the
algorithms surveyed in this book are randomized. One such is the randomized treasure hunt
in a star, where the treasure is present in one of the m rays passing through a common point
[15]. In [18, 22], it is shown that the problem of treasure hunt and the problem of rendezvous
in graphs are closely related. Ricardo et al. studied the problem of finding an unknown fixed
point on a line and in a grid [2]. More generalized studies are done in [14, 16], where the
objective is to search an unknown line in a plane. The author studied the problem of finding
a target in a ring in [21] by multiple selfish agents participates and a game theoretic solution
is proposed. Also, treasure hunt in a plane and in a grid by multiple agents are studied in
[11, 12, 17]. In [11, 17], the agents are considered to have bounded memory. Treasure hunt in
plane is studied in [20] in the advice model. Treasure hunt in a tree network is studied in [4],
where random faulty hints are provided to the agents. Treasure hunt in arbitrary graph is
also studied in [6] considering the agent has unlimited memory. The game of pursuit-evasion,
a closely related problem to treasure hunt, is considered in [5, 8], where set of pursuers try
to catch a fugitive trying to escape. Also treasure hunt in terrain in presence of obstacles
was introduced in [19]. Another related problem is graph exploration and Disser et. al. [10]
recently proved a tight bound on number of pebbles required for a single mobile agent with
constant memory to explore an undirected port labelled graph.

2 Treasure Hunt Algorithm

In this section, we provide an O(D log ∆+ log3 ∆)-time algorithm for the treasure hunt prob-
lem using O(D log ∆) pebbles.

Let G be a graph with maximum degree ∆ ≥ 210. If ∆ < 210, then the algorithm described
for the case when all nodes on the path from s to t are of ‘small’ degree (these small degree
nodes are defined as light nodes later) can be applied.

Let s, t ∈ G be the starting point of the agent, and position of the treasure in G, respec-
tively. Let P be the shortest path between s and t of length D. Without loss of generality, we
assume that the degree of the node s is at least 2. Otherwise, the first degree-3 node along P

starting from s can be considered as the starting position of the agent. For any node v ∈ G,
by deg(v), we denote the degree of the node v. Let αv = 1 + ⌊log deg(v)⌋. For any node
w ∈ G, by w(0), w(1), . . . , w(deg(w) − 1), we denotes the neighbors of w that are connected
through port numbered 0, 1, . . . , deg(w) − 1, at w respectively. For any two strings Γ1 and
Γ2, by ‘Γ1 · Γ2’, we mean concatenation of Γ1 and Γ2. For any binary string Γ, by Γ(i, j), we
denote the substring of Γ starting from the i-th bit of Γ to the j-th bit of Γ. For two nodes
u, v ∈ G, we denote the shortest distance between u and v in G by dist(u, v).

Before providing the formal description of the algorithm, we give a high level idea of the
pebble placement and discuss how these pebbles guide the agent towards the treasure. To
help the reader understand the algorithm better, we describe the idea for trees first and then
generalize this idea for general graphs.
High level idea of the algorithm in a tree network: Here we assume that G is a rooted
tree with root s. Let Li be the set of nodes that are at distance i from s. Let P = (s =
) v0, v1, . . . , vD−1, vD (= t) be the path from s to t, and let p0, p1, . . . , pD−1 be the sequence of
port numbers corresponding to the path P such that from the node vℓ, the node vℓ+1 can be

3

reached by taking the edge with port number pℓ. For any node v ∈ Lj, let its i-th neighbor
be the adjacent node in Lj+1 to which v is connected via i-th largest port going to Lj+1. The
pebbles are placed at the children of the nodes in P such that the placement of the pebbles
corresponds the binary representation of the port numbers along the shortest path from the
current node. To be more specific, let b0b1 . . . bm−1 be the binary representation of the integer
pj, where m = 1 + ⌊log deg(vj)⌋. For 0 ≤ i ≤ m− 1, place a pebble at i-th neighbor of vj , if
bi = 1. Hence, from the point of view of a node vj ∈ Li, each of its neighbors in Li+1 either
contains a pebble or does not contain a pebble. Visiting each of the neighbor in increasing
order of the port numbers and ignoring the port that connects to the parent of the current
node, the agent, from the current node, can learn the binary representation of the integer pj,
by realizing a node with pebble as ‘1’ and a node without pebble as ‘0’. Hence, the placement
of pebbles in the above manner helps us to “encode” the port labeled path from s to t and the
agent, with the help of this encoding, learn the port numbers from each node in P that leads
to the next node towards the treasure. The difficulty here for the agent is while learning this
binary encoding by looking at the pebble placement, the agent must learn when this binary
encoding ends, as the nodes, which are not used for encoding (no pebbles are placed on these
nodes) can be misinterpreted as zeros. To overcome this difficulty, instead of simple binary
encoding. we use a transformed binary encoding: replacing every ‘1’ by ‘11’ and every ‘0’ by’
‘10’ in the standard binary encoding. The advantage of this transformed encoding is that it
does not contain the substring ‘00’. Hence, as soon as the agent sees two consecutive node
without pebbles, it realizes that the binary string that is encoded in the nodes is ended.
Extending the idea for general graphs: The above method of pebble placement for trees can
not be directly extended to general graphs. This is because in a rooted tree, no two nodes
have common children. Hence, once the encoding is done after placing the pebbles, the agent
can unambiguously decode this encoding. However, in the case of graphs, two consecutive
nodes on P may have neighbors in common. Hence, if a pebble is placed on such a common
neighbor, the agent can not distinguish for which node the pebble is placed. Also, since the
nodes are anonymous, there is no way the agent can identify whether it is visiting a node that
is a common neighbor to the previous or next node. We resolve this difficulty by encoding in
the neighbors of a set of “high” degree nodes that do not share neighbors. These nodes are
called milestones (we define this formally later). The details are explained below.

We say that a node is heavy if its degree is at least 80⌊log ∆⌋+106 (the reason for choosing
this magical number is discussed in Remark 2.1). Otherwise, we say that the node is light.
Let T be the breadth first search (BFS) tree, rooted at s, and for 0 ≤ i ≤ D, let Li denotes
the set of nodes that are at a distance i from s. Clearly, s ∈ L0, and t ∈ LD.

Let P = (s =) v0, , v1, . . . , vD−1, vD (= t), be the shortest path from s to t, and let
p0, p1, . . . , pD−1 be the sequence of port numbers corresponding to the path P such that from
the node vℓ, the node vℓ+1 can be reached by taking the edge with port number pℓ, for
0 ≤ ℓ < D. For 0 ≤ i ≤ D − 1, let Bi be the binary representation of the integer pi of length
xi, where xi = 1 + ⌊log deg(vi)⌋.

First, consider a special case where each vi, 0 ≤ i ≤ D − 1, is light. A simple algorithm
will work in this case: place a pebble at each of the nodes vi, for 1 ≤ i ≤ D − 1. The agent,
at the starting node s, set CurrentNode = s. At each step, the agent visits all the neighbors
of the CurrentNode and move to the neighbor v, (except the node from where it reaches to
CurrentNode) that contains a pebble. It then sets CurrentNode = v. The agent continues
to explore in this way until the treasure is found. Since all the nodes on P are light, the time
for treasure hunt is O(D log∆). If not all nodes are light on P , then a set of nodes called

4

milestones are used to code the sequence of port numbers corresponding to the path P . We
define a set of nodes as milestones in a recursive manner. To define the first milestone, we
consider the following four cases based on the position of the heavy nodes in the BFS tree T :
i) the node s is heavy, ii) the node s is light and a node in L1 is heavy, iii) all the nodes in
L0∪L1 are light and a node in L2 is heavy, and iv) all the nodes in L0∪L1∪L2 are light and
j ≥ 3 is the smallest integer for which Lj contains a heavy node that is at a distance 3 from
vj−3. From now onward, we distinguish these four cases as Case H, Case L-H, Case L-L-H,
and Case L-L-L, respectively.

The first milestone is defined based on the above four cases as follows.

• Case H: milestone1 = s.

• Case L-H: Let w be the node with maximum degree in L1. If multiple nodes with
maximum degree exists, then w is chosen as the node to which s is connected by the
edge with minimum port number. Set milestone1 = w.

• Case L-L-H: Let w be the node with maximum degree in L2. If multiple nodes with
maximum degree exists, then w is chosen as the node to which s is connected by a path
of length 2 which is lexicographically shortest among all other paths to nodes with same
degree. Set milestone1 = w.

• Case L-L-L: If j = 4, and v1 ∈ {s(0), s(1)}, then consider the setW = {w ∈ Lj|dist(s(0), w) =
3 or dist(s(1), w) = 3}. Let w be the node in W whose degree is maximum among all
nodes in W . If multiple nodes with maximum degree exists, then the node with max-
imum degree to which s is connected via lexicographically shortest path of length 4 is
chosen as w. Set milestone1 = w. On the other hand, If j > 4 or v1 6∈ {s(0), s(1)}, let
W = {w ∈ Lj|dist(vj−3, w) = 3}. Let w be the node with maximum degree in W . If
multiple nodes with maximum degree exists then w is chosen as the node to which vj−3

is connected by a path of length 3 that is lexicographically shortest among all other
nodes with same degree. Set milestone1 = w.

The subsequent milestones are defined recursively as follows. For i ≥ 1, let milestonei ∈
Lj. The first heavy node on P that is at a distance at least 3 from vj is defined asmilestonei+1.

Intuitively, we encode in the neighbors of the milestones in a similar fashion as described
above for the case of tree network. As the milestones are at least 3 distance apart, no two
of them have common neighbors and hence decoding can be done unambiguously. However,
there is another difficulty, that is the agent does not have any knowledge about the graph
and hence does not know the value of ∆, the maximum degree of the graph. This restrict the
agent to learn whether a node is heavy or light just by looking at its degree. We overcome
this difficulty by placing some ‘markers’. By looking at these markers the agent can identify
the possible position of the first milestone. Once the agent identify the first milestone, finding
the other milestones are easy as the path towards the next milestone is carefully coded at the
neighbors of the current milestone. If s itself is a heavy node, then it is defined as the first
milestone. In order to help the agent to learn that this is the case, two pebbles are placed at
s(0), and s(1), one at each. The agent, at the beginning of the treasure hunt algorithm, first
visits the first two neighbors of s, and learn that s is heavy, if it sees pebbles at both of these
nodes. If s is light and a node in L1 is heavy, then a pebble is placed at s(0). While vising
first two neighbors of s, the agent identify the Case L-H by finding a pebble at s(0), and

5

not finding any pebble at s(1). Once the agent identify the Case L-H, it reach to the node
connected to s with maximum degree and hence reach to the first milestone in this case. For
Case L-L-H, a pebble is placed at s(1). In similar fashion as earlier, the agent identify the
Case L-L-H, by finding a pebble at s(1), and not finding any pebble at s(0). It then reached
to the milestone by exploring all paths of length 2 from s and finding the node with maximum
degree. For the Case L-L-L, no pebbles are placed in either of the first two neighbors of s and
the agent can identify this case by visiting s(0) and s(1) and not finding any pebbles in these
nodes. We explain how the agent identify the first milestone in this case later where formal
description of the algorithm is provided.

Another set of ‘markers’ are used to indicate the distance between two consecutive mile-
stones. How these markers are placed will be explained later where formal descriptions of the
pebble placements is provided.

We are ready to give the formal description of the treasure hunt algorithm.

2.0.1 Pebble Placement:

The placement of pebbles are done in three phases.
Phase 1: Placing pebbles in s(0) and s(1)

• Case H: Place one pebble each at s(0), and s(1).

• Case L-H: Place a pebble at s(0).

• Case L-L-H: Place a pebble at s(1).

• Case L-L-L: No pebble is placed in s(0), and s(1) is this case.

Phase 2: Placing pebbles to encode the path between milestone1 to milestone2

Case H: Here milestone1 is the node s itself. Notice that, two pebbles are already placed
at s(0) and s(1) during phase 1 to represent the marker corresponding to Case H. The
other neighbors of s are used to encode the path say P ′ from s to milestone2. To be
more specific, if the distance from s to milestone2 is at most 5, then the entire path
P ′ is coded in the neighbors of s. Otherwise, if the distance from s to milestone2 is
more than 5, then the first three port numbers and the last three port numbers are
encoded at the neighbors of s. The difficulty here is to make the agent learn that how
far milestone2 is from s. To overcome this situation, the third neighbor s(2) and the
fourth neighbor s(3) of s are used as ‘markers’ to represent the distance between s to
milestone2. To denote that milestone2 is at distance 3, two pebbles are placed on s(2)
and s(3) to encode the marker ‘11’. To denote milestone2 is at distance 4, a pebble is
placed on s(2) and no pebble is placed on s(3) to encode the marker ‘10’. To denote
milestone2 is at distance 5, a pebble is placed on s(3) and no pebble is placed on s(2)
to encode the marker ‘01’. Finally, no pebbles are placed either on s(2) or on s(3)
to encode the marker ‘00’ that indicates that milestone2 is at least 6 distance apart
from milestone1. Note that in this case, (milestone2 is at distance more than 5 from
milestone1) the entire path from milestone1 to milestone2 is not coded. Instead, the
first three and the last three sequence of port numbers are coded in the neighbors of
milestone1. Once the agent learns this coding, can compute the first three ports and
The light nodes in between are used to guide the agent towards milestone2.

6

Once the pebble corresponding to markers are placed, a few other neighbors of s are used
to encode the sequence of port numbers following which the agent reaches milestone2
from milestone1. The formal pebbles placement is described based on the distance of
the second milestone as follows. Let ℓ be an integer such that milestone2 = vℓ.

1. [ℓ = 3]: Here the path from milestone1 to milestone2 is v0, v1, v2, v3 and the corre-
sponding sequence of port numbers is p0, p1, p2. Let Γ

′ = B0 ·B1 ·B2 and Γ = 11·Γ′.

2. [ℓ = 4]: Here the path from milestone1 to milestone2 is v0, v1, v2, v3, v4 and the
corresponding sequence of port numbers is p0, p1, p2, p3. Let Γ

′ = B0 · B1 ·B2 · B3

and Γ = 10 · Γ′.

3. [ℓ = 5]: Here the path from milestone1 to milestone2 is v0, v1, v2, v3, v4, v5 and the
corresponding sequence of port numbers is p0, p1, p2, p3, p4. Let Γ

′ = B0 · B1 · B2 ·
B3 ·B4 and Γ = 01 · Γ′.

4. [ℓ ≥ 6]: Here the path from milestone1 to milestone2 is v0, v1, . . . vℓ and the cor-
responding sequence of port numbers is p0, p1, . . . pℓ. As mentioned earlier, the
sequence of port numbers p0, p1, p2, pℓ−3, pℓ−2, pℓ−1 is coded in this case. Let
Γ′ = B0 · B1 · B2 · Bℓ−3 ·Bℓ−2 ·Bℓ−1 and Γ = 00 · Γ′.

Let Γ̂ be the transformed binary encoding of Γ. Let z be the length of the string Γ̂. For
1 ≤ i ≤ z, place a pebble on s(1 + i), if the i-th bit of Γ̂ is 1. If ℓ ≥ 7, then place a
pebble on each of the nodes v4, . . . , vℓ−3.

Figure 1 shows the pebble placement for Case H.

(a) (b)

(c) (d)

Figure 1: Showing the pebble placement in Case H. The markers are represented by show-
ing pebbles using gray colored circles above the nodes (a) Placement of pebbles where
milestone2 ∈ L3 (b) Placement of pebbles where milestone2 ∈ L4 (c) Placement of peb-
bles where milestone2 ∈ L5 (d) Placement of pebbles where milestone2 ∈ Lj for j ≥ 6.

7

Case L-H: In this case, the first milestone is selected as one of the neighbors w of s. Note
that w may not be on the shortest path from s to t. For this reason we encode the
path (or a subpath of the path) from s to milestone2 in the neighbors of w. The agent,
while executing the treasure hunt algorithm, first arrives at w, decode the path which
is encoded in the neighbors of w, returns back to s and then moves according to this
learned path.

In order to encode the path from s to milestone2, a similar approach as in Case H
can be applied. The sequence of port numbers from s to milestone2 is encoded in the
neighbors of w. As before, this is done based on the distance from s to milestone2.
However, a difficulty arises as s(0) and/or s(1) may also be neighbours of w and there
is no way for the agent to learn through which port w is connected to s(0) or s(1). We
overcome this difficulty in the following way.

Let Γ be the binary string of length z that we want to encode in the neighbors of w.
Let N1(w), N2(w), . . . , N5(w) be 5 sets of disjoint neighbors of w and the cardinality
of each set is z. Since s(0) and/or s(1) may be neighbours of w, at least 3 of these 5
neighbour sets of w does not contain either s(0) or s(1). This implies that, if Γ is coded
in each of these five sets, it is possible to code Γ correctly (without interrupting s(0) and
s(1) for which pebble placement is already done in Phase 1) in the nodes of three sets.
Hence, while executing the treasure hunt algorithm, if the agent learns all the strings
that are coded in these five sets, then Γ can be identified as the string that is coded in
majority number of sets. To be specific, the nodes of each of the Ni(w) to encode Γ,
and if s(0) or s(1) appears in this set then skip the corresponding bits of Γ while placing
pebbles at the time of coding. Another difficulty here is how to make the agent learn
where the set Ni(w) ends and Ni+1(w) starts. To overcome this difficulty, instead of
simple binary encoding of the sequence of port numbers as explained in Case H, we use
a transformed binary encoding: replace every ‘1’ by ‘11’ and every ‘0’ by ‘10’ of Γ. The
advantage of this transformed encoding is that it does not contains the substring 00.
We take advantage of this fact to show separation between the sets Ni(w)s as follows.
First, compute the string Γ that has to be encoded in the neighbors of w. Compute
the transformed encoding Γ̂. Now, encode Γ̂ in Ni(w) and next two neighbors after
Ni(w) are left blank (no pebbles placed to represent ‘00’). The agent continues to visit
consecutive neighbors of w until it sees two consecutive nodes that does not contains
any pebbles. At this point the agent learns that here the set Ni(w) ends. One more
difficulty can arise in which the nodes which are left blank may also contain s(0) or
s(1). We later show that Γ̂ still can unambiguously computed by the agent.

The formal description of the placement of pebbles in this case is given below. Let
milestone2 = vℓ. Note that as per the definition of milestones, l ≥ 4.

1. [ℓ = 4]: Here the path from s tomilestone2 is v0, v1, v2, v3, v4 and the corresponding
sequence of port numbers is p0, p1, p2, p3. Let Γ

′ = B0 ·B1 ·B2 ·B3 and Γ = 11 ·Γ′.

2. [ℓ = 5]: Here the path from s to milestone2 is v0, v1, v2, v3, v4, v5 and the corre-
sponding sequence of port numbers is p0, p1, p2, p3, p4. Let Γ

′ = B0 ·B1 ·B2 ·B3 ·B4

and Γ = 10 · Γ′.

3. [ℓ = 6]: Here the path from s to milestone2 is v0, v1, v2, v3, v4, v5, v6 and the cor-
responding sequence of port numbers is p0, p1, p2, p3, p4, p5. Let Γ

′ = B0 · B1 · B2 ·
B3 ·B4 ·B5 and Γ = 01 · Γ′.

8

4. [ℓ ≥ 7]: Here the path from s to milestone2 is v0, v1, . . . vℓ and the corresponding
sequence of port numbers is p0, p1, . . . , pℓ. In this case, the sequence of port num-
bers p0, p1, p2, p3, pℓ−3, pℓ−2, pℓ−1 is coded. Let Γ

′ = B0 ·B1 ·B2 ·B3 ·Bℓ−3 ·Bℓ−2 ·Bℓ−1

and Γ = 00 · Γ′.

Let Γ̂ be the transformed binary encoding of Γ and z is the length of Γ̂. Let Ni(w), for
1 ≤ i ≤ 5, be the set z consecutive neighbors of w starting from the node w((i−1)(z+2)).
To be specific, Ni(w) = {w((i−1)(z+2)), w((i−1)(z+2)+1), . . . , w(((i−1)(z+2)+z−1)}.
For each i, 1 ≤ i ≤ 5, pebbles are placed at the nodes of Ni(w) as follows. For 1 ≤ a ≤ z,
if the a-th bit of Γ̂ is 1, then place a pebble at the node w((i − 1)(z + 2) + a− 1) only
if w((i − 1)(z + 2) + a − 1) 6∈ {s(0), s(1)}. If ℓ ≥ 8, then place a pebble at each of the
nodes v5, . . . , vℓ−3. Fig. 2 shows pebble placement in Case L-H.

Figure 2: Showing Pebble placement for Case L-H. Here the nodes that are used for pebble
placements may be in L0 ∪ L1 ∪ L2.

Case L-L-H: The placement of pebbles in this case is similar to the placement in Case L-H.
The path coded in the neighbors of w is a subpath of the path P starting from s. As
before, depending on the position of the milestone2, different sequences of port numbers
are coded in the neighbors of milestone1. Since milestone1 ∈ L2 in this case, s(0), s(1)
may be connected to milestone1. For this reason, as before, the subpath is coded in
five disjoint sets of neighbors of milestone1.

Formal description of placements of pebbles in this case in described below. Let
milestone2 = vℓ. As per the definition of milestones, ℓ ≥ 5.

1. [ℓ = 5]: Here the path from s to milestone2 is v0, v1, v2, v3, v4, v5 and the corre-
sponding sequence of port numbers is p0, p1, p2, p3, p4. Let Γ

′ = B0 ·B1 ·B2 ·B3 ·B4

and Γ = 11 · Γ′.

2. [ℓ = 6]: Here the path from s to milestone2 is v0, v1, v2, v3, v4, v5, v6 and the cor-
responding sequence of port numbers is p0, p1, p2, p3, p4, p5. Let Γ

′ = B0 · B1 · B2 ·
B3 ·B4 ·B5 and Γ = 10 · Γ′.

9

3. [ℓ = 7]: Here the path from s to milestone2 is v0, v1, v2, v3, v4, v5, v6, v7 and the
corresponding sequence of port numbers is p0, p1, . . . , pℓ. In this case, the sequence
of port numbers p0, p1, p2, p3, p4, p5, p6 is coded. Let Γ

′ = B0 ·B1 ·B2 ·B3 ·B4 ·B5 ·B6

and Γ = 01 · Γ′.

4. [ℓ ≥ 8]: Here the path from s to milestone2 is v0, v1, . . . vℓ and the corresponding
sequence of port numbers is p0, p1, . . . , pℓ. In this case, the sequence of port num-
bers p0, p1, p2, p3, p4, pℓ−3, pℓ−2, pℓ−1 is coded. Let Γ′ = B0 ·B1 ·B2 ·B3 ·B4 ·Bℓ−3 ·
Bℓ−2 ·Bℓ−1 and Γ = 00 · Γ′.

Let Γ̂ be the transformed binary encoding of Γ and z is the length of Γ̂. Let Ni(w), for
1 ≤ i ≤ 5, be the set z consecutive neighbors of w starting from the node w((i−1)(z+2)).
To be specific, Ni(w) = {w((i−1)(z+2)), w((i−1)(z+2)+1), . . . , w(((i−1)(z+2)+z−1)}.
For each i, 1 ≤ i ≤ 5, pebbles are placed at the nodes of Ni(w) as follows. For 1 ≤ a ≤ z,
if the a-th bit of Γ̂ is 1, then place a pebble at the node w((i − 1)(z + 2) + a− 1) only
if w((i − 1)(z + 2) + a − 1) 6∈ {s(0), s(1)}. If ℓ ≥ 8, then place a pebble at each of the
nodes v5, . . . , vℓ−3.

Remark 2.1 It can be noted that maximum of 8 port numbers must be coded in this case
in each of the five disjoint sets of neighbors of milestone1. The transformed binary
representation of each port can be of at most 2(1 + ⌊log ∆⌋) length. Also, two bits are
used as marker to represent the distance between first and second milestones. Hence in
each set, a string of length 16(1+⌊log ∆⌋)+2 is coded. Therefore, over all, among 5 sets,
the nodes that are used to code the sequences of port numbers is 80⌊log ∆⌋ + 90. Also
there are two zeros must be coded in between two consecutive sets to show separations
between them and at the end at least 8 nodes kept blank (this is because if s(1) appears
in one of the first 4 blank nodes after these 5 sets). Hence the degree of milestone1
must be at least 80⌊log ∆⌋ + 106. Since every milestone is heavy, and ∆ ≥ 210 (for
∆ ≥ 210, ∆ ≥ 80⌊log ∆⌋ + 106), therefore, such a coding can be done in the neighbors
of milestone1.

Case L-L-L: This is the case where the two nodes s(0) and s(1) that are used for markers
are not connected to milestone1 as milestone1 ∈ Lj , for some j ≥ 3. Hence, it is
easy to code the paths in the neighbors of milestone1 like Case H. The only difference
here is, the subpath coded is a path starting from vj−3. Depending on the position of
milestone2, either the sequence of port number corresponding to the entire path from
vj−3 to milestone2 or the sequence pj−3, pj−2, pj−1, pj, pj+1, pj+2, and the last three
ports before milestone2 are coded. For every light nodes starting from v1 to vj−3, a
pebble is placed on these nodes that guides the agent towards milestone1. One more
difficulty here is the case when v1 ∈ {s(0), s(1)}, as we can not place a pebble in any
of the nodes s(0), s(1), otherwise it is not possible to recognize the Case L-L-L. To
overcome this difficulty, we place a pebble at s, if milestone1 ∈ L3. Now, the agent,
starting from s, first identify the Case L-L-L by not seeing any pebbles in s(0), and
s(1). If s contains a pebble, the agent learns that milestone1 ∈ L3. It then explores
all possible paths of length 3 and finds the node with maximum degree. This node is
milestone1. If no pebble is placed at s, and it finds any pebble at a node s(i), i > 1,
then it understands that s(i) = v1. Else, if no pebble is found at any of the nodes

10

s(2), s(3), . . ., and no pebble is present at s, then it understands that v1 ∈ {s(0), s(1)}.
In this case, the agent first moves to s(0), assuming it is the node v1. If it finds a
neighbor of v1, except s that contains a pebble, then it moves to that node (this must
be the v2). Else, it moves back to s and then moves to s(1), assuming it as v1. If it
finds a neighbor of v1, except s that contains a pebble, then it moves to that node (this
must be the node v2). If no pebble is found at any neighbor of s(1) as well, then the
agent learns that milestone1 ∈ L4. The agent explores all possible paths of length 3
from s(0) and explores all possible paths of length 3 from s(1) and finds the node with
maximum degree. The agent moves to this node as this is the node milestone1. The
coding in the neighbors of milestone1 is done in the same way as described for Case H.

The formal description of the pebble placement is as follows. Let j be the integer such
that w = milestone1 ∈ Lj and let ℓ be the integer such that milestone2 = vℓ.

1. [ℓ− j = 3]: Here the path from vj−3 tomilestone2 is vj−3, vj−2, vj−1, vj , vj+1, vj+2, vj+3

and the corresponding sequence of port numbers is pj−3, pj−2, pj−1, pj , pj+1, pj+2.
Let Γ′ = Bj−3 · Bj−2 · Bj−1 ·Bj ·Bj+1 · Bj+2 and Γ = 11 · Γ′.

2. [ℓ− j = 4]: Here the path from vj−3 to milestone2 is vj−3, vj−2, vj−1, vj , vj+1,

vj+2, vj+3, vj+4 and the corresponding sequence of port numbers is pj−3, pj−2, pj−1, pj, pj+1, pj+2, pj+3.
Let Γ′ = Bj−3 · Bj−2 · Bj−1 ·Bj ·Bj+1 · Bj+2 ·Bj+3 and Γ = 10 · Γ′.

3. [ℓ− j = 5]: Here the path from vj−3 tomilestone2 is vj−3, vj−2, vj−1, vj , vj+1, vj+2, vj+3, vj+4, vj+5

and the corresponding sequence of port numbers is pj−3, pj−2, pj−1, pj, pj+1, pj+2, pj+3, pj+4.
Let Γ′ = Bj−3 · Bj−2 · Bj−1 ·Bj ·Bj+1 · Bj+2 ·Bj+3 ·Bj+4 and Γ = 01 · Γ′.

4. [ℓ− j ≥ 6]: Here the path from vj−3 to milestone2 is vj−3, vj−2 . . . vℓ and the corre-
sponding sequence of port numbers is pj−3, pj−2, . . . pℓ−1. In this case, the sequence
of port numbers pj−3, pj−2, pj−1, pj , pj+1, pj+2, pj+3, pℓ−3, pℓ−2, pℓ−1 is coded. Let
Γ′ = Bj−3 ·Bj−2 ·Bj−1 ·Bj ·Bj+1 ·Bj+2 ·Bj+3 ·Bℓ−3 ·Bℓ−2 ·Bℓ−1 and Γ = 00 · Γ′.

Let Γ̂ be the transformed binary encoding of Γ and let z be the length of the string Γ̂.

For 1 ≤ a ≤ z, place a pebble at w(a − 1) if the a-th bit of Γ̂ is 1. If ℓ − j ≥ 7, then
place a pebble at each of the nodes vj+4, . . . vℓ−3. Also, for 2 ≤ i ≤ j− 3, place a pebble
at each of the node vi. If j = 4, place a pebble at s. If v1 6∈ {s(0), s(1)}, then place a
pebble at v1.

Phase 3: Placing Pebbles to encode paths between other milestones

The coding of the paths between milestonej to milestonej+1, for j ≥ 2 are done in the
similar fashion as described in Case H. The only difference here is the encoding is done in the
neighbors of milestonej starting from milestonej(0). For the last milestone, the path from
the last milestone to the treasure is coded in the same way as described for the other cases.

Let the total number of milestones be y. For m = 2, 3, . . . , y − 1, let vj be the node on P

such that milestonem = vj and milestonem+1 = vℓ. For m = y, set ℓ = t.

1. ℓ− j ≤ 3 then ℓ ≤ j +3. The path from vj to vℓ is vj , vj+1 . . . vℓ and the corresponding
sequence of port numbers is pj, pj+1, . . . , pℓ−1. Let Γ

′ = Bj ·Bj+1 · · ·Bℓ−1 and Γ = 11·Γ′.

2. ℓ − j = 4 then ℓ = j + 4. The path from vj to vℓ is vj , vj+1, vj+2, vj+3, vj+4 and the
corresponding sequence of port numbers is pj , pj+1, pj+2, pj+2, pj+3. Let Γ

′ = Bj ·Bj+1 ·
Bj+2 · Bj+3 and Γ = 10 · Γ′.

11

3. ℓ − j = 5 then ℓ = j + 5. The path from vj to vℓ is vj, vj+1, vj+2, vj+3, vj+4, vj+5

and the corresponding sequence of port numbers is pj, pj+1, pj+2, pj+2, pj+3, pj+4. Let
Γ′ = Bj · Bj+1 ·Bj+2 ·Bj+3 · Bj+4 and Γ = 10 · Γ′.

4. If ℓ− j ≥ 6, and ℓ 6= t then let Γ′ be the binary representation of the sequence of port
numbers pj, pj+1, pj+2, pℓ−3, pℓ−2, pℓ−1. If ℓ = t then Γ is the binary representation of
the sequence of port numbers pj, pj+1, pj+2. Γ = 00 · Γ′.

For 1 ≤ a ≤ z, place a pebble at w(a− 1) if the a-th bit of Γ is 1. If ℓ− j ≥ 7, then place
a pebble at each of the nodes vj+4, . . . vt−3. If ℓ = t, then place a pebble at each of the nodes
vt−2 and vt−1.

1. [ℓ = 3]: Here the path from milestone1 to milestone2 is v0, v1, v2, v3 and the corre-
sponding sequence of port numbers is p0, p1, p2. Let Γ

′ = B0 · B1 · B2 and Γ = 11 · Γ′.

2. [ℓ = 4]: Here the path from milestone1 to milestone2 is v0, v1, v2, v3, v4 and the cor-
responding sequence of port numbers is p0, p1, p2, p3. Let Γ′ = B0 · B1 · B2 · B3 and
Γ = 10 · Γ′.

3. [ℓ = 5]: Here the path from milestone1 to milestone2 is v0, v1, v2, v3, v4, v5 and the
corresponding sequence of port numbers is p0, p1, p2, p3, p4. Let Γ

′ = B0 ·B1 ·B2 ·B3 ·B4

and Γ = 01 · Γ′.

4. [ℓ ≥ 6]: Here the path from milestone1 to milestone2 is v0, v1, . . . vℓ and the correspond-
ing sequence of port numbers is p0, p1, . . . pℓ. As mentioned earlier, the sequence of port
numbers p0, p1, p2, pℓ−3, pℓ−2, pℓ−1 is coded in this case. Let Γ′ = B0 · B1 · B2 · Bℓ−3 ·
Bℓ−2 ·Bℓ−1 and Γ = 00 · Γ′.

Let Γ̂ be the transformed binary encoding of Γ. Let z be the length of the string Γ̂. For
1 ≤ i ≤ z, place a pebble on s(1 + i), if the i-th bit of Γ̂ is 1. If ℓ ≥ 7, then place a pebble on
each of the nodes v4, . . . vℓ−3.

2.0.2 Treasure Hunt by The Mobile Agent

The main idea behind the treasure hunt algorithm executed by the agent is to move from one
milestone to the next milestone until the treasure is found. Initially, the agent is at the node
s. The position of the first milestone is learned by the agent by visiting the two neighbors
s(0) and s(1) of s. Based on whether a pebble is present in either of these nodes, the agent
determines the location of milestone1 and then moves to the same. According to the pebble
placement strategy, the neighbors of every milestone are used to code the path towards the
next milestone. From a milestone, the agent visits a set of its neighbors and decode the
sequence of port numbers corresponding to the path from the current milestone to the next
milestone. Using this information and identifying the pebbles placed at the light nodes along
the paths, the agent reaches to the next milestone. This process continues until the treasure
is found. The detail description of the treasure hunt algorithm is give below.

The agent follows Algorithm 1 to find the treasure. Starting from the node s, it first visits
the two nodes s(0) and s(1). If pebbles are found at both the nodes, then the agent follow
Algorithm 2; If a pebble is found at s(0) but no pebble is found at s(1), then the agent follow
Algorithm 3; If a pebble is found at s(1) but no pebble is found at s(0), then the agent follows

12

Algorithm 1: TreasureHunt

1 Starting from s, the agent visits two nodes s(0), and s(1) one by one and comes back
to s.

2 if Both the nodes s(0), and s(1) contains a pebble each then

3 Subroutine H (Algorithm 2)
4 else if s(0) contains a pebble and s(1) does not contain any pebble then

5 Subroutine L-H (Algorithm 3)
6 else if s(0) does not contain any pebble and s(1) contains a pebble then

7 Subroutine L-L-H (Algorithm 4)
8 else if Neither s(0) nor s(1) contains a pebble then

9 Subroutine L-L-L (Algorithm 5)

Algorithm 4, otherwise the agent follows Algorithm 5 if no pebbles are found in either of these
two nodes.

If two pebbles are found at each of the nodes s(0) and s(1), the agent learns that s is
heavy. According to Algorithm 2, the agent visits the nodes s(2), s(3), . . . until it found two
nodes s(z + 1) and s(z + 2) such that no pebbles are found in both of these nodes. Let
Γ̂ = b2b3 . . . bz be the binary string such that bi = 1 if a pebble is found at s(i), else bi = 0.
Let Γ be the string obtained from Γ̂ by replacing each ‘11’ by ’1’ and each ‘10’ by 0 of Γ̂
from left to right, taking two bits a a time. The first two bits of Γ represents the distance of
milestone2 from s. The agent, knowing the degree of s, compute αs = 1 + ⌊log deg(s)⌋. Let
q0 be the integer that is represented by the substring Γ(3, 4 + αs). The agent moves along
the port p to reach the node v1. Once it moves to u1, it learns its degree and computes αv1 .
It then compute the integer q1 that is coded in the substring Γ(5 + αs, 6 + αs + αv1). The
agent moves along the port q1 to reach the node v2. The agent continues to move this way
distances 3,4,5, if the first two bits represent the markers ‘11’,‘10’,‘01’, respectively to reach
milestone2. For the marker ‘00’ represented by s(2) and s(3), the agent moves distance 3 as
per the above strategy, to reach a node v3. It then visits all the neighbors of v3 and move
to the neighbor that contains a pebble. This process continues until for a node, none of its
neighbors contains any pebble. In this case, the agent retrieve the next three ports encoded
in the rest of the substring of Γ, one by one and moving to the respective node and move
along three edges to reach to milestone2.

If a pebble is found in s(0) but no pebble is found in s(1), the agent learns thatmilestone1 ∈
L1. In this case, it executes Subroutine L-H. The agent visits all the neighbor of s and
finds the neighbor w with maximum degree. In case of tie, the agent moves to the node
with maximum degree to which s is connected via smallest port number is . This node w is
milestone1. The agent, after moving to w from s, starts visiting all the neighbors of w one
by one until it finds four consecutive neighbors w(z), w(z + 1), w(z + 2), and w(z + 3) none
of which contain any pebble. The agent construct the binary string Γ′ = b0b1 . . . bz−1, where
bi = 1 if a pebble was found at w(i), else bi = 0. This string is split into substrings that
are separated by the substring ‘00’ and the agent computes the substring Γ̂ whose occurrence
among these substrings is maximum. Let Γ be the string obtained from Γ̂ by replacing each
‘11’ by ‘1’ and each ‘10’ by ‘0’ of Γ̂ from left to right, taking two bits a a time. The agent
computes the ports one by one as described for Algorithm 2 and move towards the second
milestone. The only difference here is after computing Γ, the agent comes back to s from

13

Algorithm 2: Subroutine H

1 CurrentNode = s.
2 The agent visits the neighbors of s starting from s(2), in the increasing order of the
port number through which s is connected to them until it finds two consecutive
neighbors where no pebbles are placed.

3 Let Γ̂ = b2b3 . . . bz be the binary string where bi is 1 if a pebble is found at s(i) and
the last two nodes visited in the previous step by the agent are s(z + 1) and s(z + 2).

4 Let Γ be the binary string obtained from Γ̂ by replacing every ‘11’ by a ‘1’ and every
‘10’ by a ‘0’ from left to right by taking two bits at a time.

5 CurrentIndex = 3.
6 MinDistance = 3
7 FindNextMilestone(b2, b3,Γ,MinDistance) (Algorithm 7)
8 Progress(CurrentNode) (Algorithm 8)

milestone1 and the path coded at Γ starts from s.

Algorithm 3: Subroutine L-H

1 The agent visits all the neighbors of s and let w be the node that have the maximum
degree among all the neighbors of s. In case where multiple nodes with maximum
degree exists, let w be the node to which s is connected via the smallest port number.

2 The agent moves to w. Let q be the incoming port at w of the edge (s,w).
3 The agent visits the neighbors of w in the increasing order of the port number
through which w is connected to them until it finds four consecutive neighbors where
no pebbles are placed.

4 Go back to s from w using port number q. CurrentNode = s.
5 Let Γ′ = b0b1 . . . bz′ be the binary string where bi is 1 if a pebble is found at w(i) and
the last four nodes visited in the previous step by the agent are
w(z′), w(z′ + 1), w(z′ + 2), w(z′ + 3).

6 Partition Γ′ into substrings that are separated by two consecutive zeros. Let Γ̂ be the
string that matches with most of these substrings.

7 Let Γ be the string obtained from Γ̂ by replacing every ‘11’ by ‘1’ and every ‘10’ by ‘0’
from left to right by taking two bits at a time. Let b and b′ be the first two bits of Γ.

8 CurrentIndex = 3. MinDistance = 4
9 FindNextMilestone(b, b′,Γ,MinDistance) (Algorithm 7)
10 Progress(CurrentNode) (Algorithm 8)

If a pebble is found at s(0) but no pebble at s(1), the agent learns that milestone1 ∈ L2.
In this case, the agent executes Subroutine L-L-H (Algorithm 4). From s, it explores all
possible paths of length 2 from s and moves to the maximum degree node in L2 to which
s is connected through the lexicographycally shortest path. After moving to w, the agent
computes the binary string Γ in the same way as described in case of Algorithm 3 and
proceed towards the second milestone. Here, the string Γ that is computed by the agent,
codes the path starting from s and the agent, after learning Γ, moves back to s and moves
forward according to subpath coded in Γ towards the second milestone.

If no pebbles are found at both s(0) and s(1), the agent learns that milestone1 ∈ Lj for

14

Algorithm 4: Subroutine L-L-H

1 The agent visits all the neighbors of s and let w be the node the maximum degree
node in L2 to which s is connected through the lexicographycally shortest path.

2 The agent moves to w.
3 The agent visits the neighbors of w in the increasing order of the port number
through which w is connected to them until it finds four consecutive neighbors where
no pebbles are placed.

4 Go back to s.
5 CurrentNode = s.
6 Let Γ′ = b0b1 . . . bz′−1 be the binary string where bi is 1 if a pebble is found at w(i)
and the last four nodes visited in the previous step by the agent are
w(z′), w(z′ + 1), w(z′ + 2), w(z′ + 3).

7 Partition Γ′ into substrings that are separated by consecutive zeros. Let Γ̂ be the
string that matches with most of these substrings.

8 Let Γ be the string obtained from Γ̂ by replacing every ‘11’ by a ‘1’ and every ‘10’ by

a ‘0’ of Γ̂ by taking two bits at a time from left to right. Let b, b′ be the first two bits
of Γ, respectively.

9 MinDistance = 5. CurrentIndex = 3
10 FindNextMilestone(b, b′,Γ,MinDistance) (Algorithm 7)
11 Progress(CurrentNode) (Algorithm 8)

some j ≥ 3. It then visits all the neighbors of s and identify the node v1 by finding a neighbor
with a pebble. Here, as mentioned in the pebble placement algorithm, the problem occurs
when v1 ∈ {s(0), s(1)}, as these two nodes are already used as marker and therefore no pebble
can be placed here. In this case, the agent considers both s(0) and s(1) as possible candidates
for v1.

Once milestone2 is reached, the agent moves according to Algorithm 8. Until the treasure
is found, the agent, learn the sequence of port numbers that leads towards the next milestone
by visiting the neighbors of the current milestone. Then following this sequence of port num-
bers and using the pebbles placed on the light nodes, the agent moves to the next milestone.
This process continues until the treasure is found.

During the execution of the tresure hunt algorithm, the agent uses a set of global variables,
CurrentNode, MinDistance, and CurrentIndex. The variable CurrentNode denotes the
node from which the current call of the algorithms are executed. The MinDistance variable
stores the integers which is the minimum number of ports that are coded in the neighbor of the
current milestone. The CurrentIndex indicates the position of the binary string (represents
the sequence of port numbers towards the next milestone) from which the coding of the port
number along the shortest path from CurrentNode starts.

The following lemmas ensure the correctness of the proposed algorithm.

Lemma 2.1 In time O((dist(s,milestone1) log∆+ log3∆)), the agent successfully reaches to
milestone1 starting from the node s.

Proof. We prove the lemma for each of the cases, Case H, Case L-H, Case L-L-H, and Case
L-L-L, one by one.

15

Algorithm 5: Subroutine L-L-L

1 CurrentNode = s.
2 Visit all the neighbors of CurrentNode.
3 if Treasure is found then

4 Stop and terminate.
5 if a pebble found at a node v then

6 Move to v. Set CurrentNode = v. Go to Step 1.
7 else

8 if CurrentNode 6= s then

9 Visit all the paths from CurrentNode of length 3. Let w be the node of
maximum degree connected to CurrentNode by the lexicographicaly
shortest path of length 3.

10 Move to w. Store the incoming ports of the path from v to w in a stack.

11 else

12 if s contains a pebble then

13 Go to Step 8.
14 else

15 Move to s(0). Let q be the port number of the edge (s, s(0)) at s(0). Visit
all the neighbors of s(0).

16 if a pebble is found at a neighbor v of s(0) then
17 Move to v. Set CurretNode = v. Go to Step 1.
18 else

19 Return to s using port q from s(0). Move to s(1). Let q′ be the port
number of the edge (s, s(1)) at s(1). Visit all the neighbors of s(1).

20 if a pebble is found at a neighbor v of s(1) then
21 Move to v. Set CurretNode = v. Go to Step 1.
22 else

23 Move back to s. Go to Step 8.

24 The agent visits the neighbors of w in the increasing order of the port number
through which w is connected to them until it finds two consecutive neighbors
where no pebbles are placed.

25 Let Γ̂ = b0b1 . . . bz−1 be the binary string where bi is 1 if a pebble is found at the
node w(i) and the last two nodes visited in the previous step by the agent are w(z)
and w(z + 1).

26 Let Γ be the string obtained from Γ̂ by replacing every ‘11’ by a ‘1’ and every ‘10’ by

a ‘0’ of Γ̂ by taking two bits at a time from left to right. Let b, b′ be the first two bits
of Γ, respectively.

27 Move back to CurrentNode using the path stored in the stack.
28 CurrentIndex = 3, MinDiatnace = 6.
29 Algo FindNextMilestone(b, b′,Γ,MinDistance)(Algorithm 7)
30 Progress(CurrentNode) (Algorithm 8)

16

Algorithm 6: Movement(i,x, Γ)

1 Let p be the integer that is represented by the substring constructed from Γ(i, x).
2 The agent move from the current node to the node u to which the current node is
connected via port p.

3 if Treasure found then

4 Stop and terminate.
5 else

6 CurrentNode = u. CurrentIndex = x+ 1

Algorithm 7: FindNextMilestone(a, b,Γ, i)

1 if a = 1 and b = 1 then

2 for j ← 1 to i do

3 Movement(CurrentIndex,αCurrentNode, Γ) (Algorithm 6)

4 else

5 if a = 1 and b = 0 then

6 for j = 1 to i+ 1 do

7 Movement(CurrentIndex,αCurrentNode, Γ)

8 else

9 if a = 0 and b = 1 then

10 for j = 1 to i+ 2 do

11 Movement(CurrentIndex,αCurrentNode, Γ)

12 else

13 for j = 1 to i do

14 Movement(CurrentIndex,αCurrentNode, Γ)
15 while a pebble is found in some neighbor of CurrentNode do

16 Move to the neighbor u of CurrentNode that contains a pebble.
CurrentNode = u

17 for i = 1 to 3 do

18 Movement(CurrentIndex,αCurrentNode, Γ)

19 Progress(CurrentNode) (Algorithm 8)

• Case H: s is itself milestone1, and therefore the lemma is trivially true.

• Case L-H: milestone1 ∈ L1. As per the definition of milestone1, here the maximum
degree node in L1 (in the case of tie, the node to which s is connected by the edge with
minimum port number) is milestone1. According to the placement of pebbles, a pebble
is placed at s(0) and no pebble is at s(1). According to Algorithm 1, the agent, finding
a pebble at s(0) and no pebble at s(1) executes Algorithm 3. It moves to the node
whose degree is maximum among all neighbors of s and to which s is connected via the
smallest port number. Hence, the agent, following Algorithm 3, reaches milestone1.
Note that the time to reach milestone1 is O(log∆), as s is a light node, and therefore,
deg(s) in O(log∆).

• Case L-L-H: milestone1 ∈ L2. In this case, as per the definition of milestone1, the
maximum degree node in L2 (in the case of tie, the node to which s is connected by

17

Algorithm 8: Progress(CurrentNode)

1 The agent visits the neighbors of CurrentNode starting from CurrentNode(0), in
the increasing order of the port number through which CurrentNode is connected to
them until it finds two consecutive neighbors where no pebbles are placed.

2 Let Γ̂ = b0b1 . . . bz be the binary string where bi is 1 if a pebble is found at the node
connected to s through port i and the last two nodes visited in the previous step by
the agent are s(z + 1) and s(z + 2).

3 Let Γ be the binary string obtained from Γ̂ by replacing every 11 by a 1 and every 10
by a 0 from left to right by taking two bits at a time.

4 Let b, b′ be the first two bits of Γ.
5 CurrentIndex = 3. MinDistance = 3
6 FindNextMilestone(b, b′,Γ,MinDistance) (Algorithm 7)
7 Progress(CurrentNode) (Algorithm 8)

a path of length 2 which is lexicographically shortest) is milestone1. According to the
placement of pebbles, a pebble is placed at s(1), and no pebble is at s(0). According
to Algorithm 1, the agent, finding a pebble at s(1) and no pebble at s(0), executes
Algorithm 3. It moves to the node whose degree is maximum among all nodes which
are connected to s by a path of length 2 (in the case of tie, the node to which s is
connected by a path of length 2 which is lexicographically shortest). Hence, the agent,
by executing Algorithm 4, reaches milestone1. Note that the time to reach milestone1
is O(log2 ∆), as s and all the nodes in L1 are light nodes, and therefore the total number
of paths from s of length 2 is O(log2∆).

• Case L-L-L: milestone1 ∈ Lj, for some j ≥ 3. As per the pebble placement strategy,
no pebbles are placed on either of s(0) and s(1). Further, if milestone1 ∈ L3, then the
node with maximum degree in L3 is chosen as milestone1. No pebble is placed in any
of the nodes in L1 and L2. Now, after not founding any pebble at s(0) and s(1), if there
is a pebble in s, then the agent learns that milestone2 ∈ L3. According to Algorithm 5,
the agent explores all possible paths of length 3 and moves to the node with maximum
degree (tie is broken as earlier). This ensures that it reaches to milestone1.

If milestone1 ∈ Lj, for j ≥ 3, then a pebble is placed at each of the nodes v2, . . . , vj−3

and a pebble is placed at v1 if v1 6∈ {s(0), s(1)}. As per the definition of milestone1
in this case, the node in Lj with maximum degree and at a distance 3 from vj−3 is
defined as milestone1. According to the pebble placement algorithm, no pebbles are
placed at s(0) and s(1). If v1 6∈ {s(0), s(1)}, then a pebble is placed at v1. The agent,
according to Algorithm 5, starting from s visits all the neighbor of s, and moves to
v1, which is the node that contains a pebble. Then from v1, it moves to v2, as this
is the only neighbor of v1 that contains a pebble, and continue this process until it
reaches to vj−3, none of whose neighbors contains any pebbles (except vj−4 but this
the agent can detect by storing the incoming ports every time). Therefore, by Step 8
of Algorithm 5, the agent explores all possible paths of length 3 from vj−3 and moves
to the node that have maximum degree at distance 3 from vj−3. Hence, the agent
successfully reaches to milestone1 in this case as well. The only case remains to show
is that when milestone1 ∈ Lj, for j ≥ 3 and v1 6∈ {s(0), s(1)}. In this case, both

18

of the nodes s(0), s(1) are possible position for the node v1 and the agent explores as
per the other case assuming s(0) as v1 once and then s(1) as v1 next. Hence, by a
similar argument as mentioned in the previous cases (Cases H, L-H, L-L-H), the agent
reaches to milestone1 successfully. Next, we compute the time taken by the agent from
s to milestone1. Note that each of the nodes s, v1, v2, . . . , vj−3 are light nodes in this
case. Since, a pebble is placed at each of these nodes and the agent moves to these
nodes one by one by exploring all the neighbors and finding the pebble, the total time
taken by the agent is O((j− 3) log∆), i.e, O(dist(s,milestone1) log∆). Once the agent
reaches to vj−3, it finds the milestone1 by exploring all possible paths of length 3,
that will take O(log3)∆-time. Therefore, the total time taken to reach milestone1 is
O((dist(s,milestone1) log∆ + log3∆)).

In the next two lemmas, we prove that from milestone1 the agent reaches to milestone2
for each of the different cases. The first lemma proves this for the Case H and Case L-L-L
and the second lemma proves this for the Case L-H and Case L-L-H.

Lemma 2.2 The agent successfully reaches to milestone2 form milestone1 for Case H and
Case L-L-L.

Proof. The proofs for Case H and Case L-L-L are similar. The only difference is that the
path coded in the neighbors of milestone1 starts from milestone1 itself in Case H, whereas,
in Case L-L-L, the path coded in the neighbors of vj = milestone1 starts from vj−3. We first
describe the proof for Case H.

In Case H, recall that s is heavy and therefore milestone1 = s. Suppose that milestone2 ∈
Lj. According to Algorithm 2, the agent, visits all the neighbors of s one by one, starting
from s(2), in the increasing order of the port number until it finds two consecutive neighbors
without pebbles. It then computes the binary string Γ̂ = b2 · · · bz, where bi = 1 if a pebble
is found in s(i), else bi = 0. Then the string Γ is constructed from Γ̂ by replacing every ‘11’
by a ‘1’ and every ‘10’ by ‘0’ from left to right of Γ̂ by taking two bits at a time. As per
the pebble placement algorithm, Γ represents a sequence of port numbers that leads towards
milestone2. To be specific, depending on the position of milestone2, the following two cases
may happen.

• [milestone2 ∈ Lj, j ≤ 6]: In this case, the sequence p0, p1, . . . , pj is encoded using
the pebbles, i.e., Γ′ is the binary representation of the sequence p0, p1, . . . , pj , where
Γ = b2b3 · Γ

′ and one of b2 and b3 is 1. The agent identify this by finding at least
one pebble at s(2) or s(3). After learning Γ′, and knowing the degree of s, the agent
compute the substring containing first 1 + ⌊log degree(s)⌋ bits and decode the integer
p0. After decoding p0, it moves to the node v1 from s by taking the port p0. As soon
as the agent reaches v1, it learns the degree of v1 and then decode the integer p1 which
is decoded in the next 1 + ⌊log deg(v1)⌋ bits of Γ′. Following this port from v1, the
agent reaches v2 and learns the degree of v2. Continuing this way, the agent decodes
the integers p2, . . . , pj−1 one by one and finally reaches to node vj which is milestone2.

• [milestone2 ∈ Lj, for j > 6]: Here the sequence p0, p1, p2, pj−3, pj−2, pj−1 is coded
in Γ′. According to the pebble placement algorithm, there are no pebble at s(2) and
s(3). The agent identify this case by not finding any pebbles both at s(2) and s(3).
According to Algorithm 2, the agent set CurrentIndex = 4 and Mindistance = 3,

19

and call the subroutine FindNextMilestone(0, 0,Γ,MinDistance). Since b2 = 0 and
b3 = 0, according to Steps 12 - 17 of FindNextMilestone, the agent decodes the
port numbers p0, p1, p2 one by one and then reaches v1, v2, and v3 respectively. Once
it reaches v3, it starts exploring all the neighbors of CurrentNode and moves to the
node that contains a pebble and update CurrentNode (Ref. Step 15). It continues to
move in this way until it finds no pebble in the neighborhood of CurrentNode (except
the node from where it reaches CurrentNode). According to the pebble placement
algorithm, this situation arises when vj−3 is the CurrentNode. From vj−3, the agent
decodes pj−3, from Γ, and moves to vj−2, and decodes pj−2 from Γ and moves to vj−1,
and then finally, decodes pj−1 and reach to vj which is milestone2.

In Case L-L-L, the proof is similar as in Case H. After learning the sequence Γ which is encoded
in the neighbors of milestone1, the agent returns back to vj−3 and move one by one along P

by decoding the port numbers pj−3, pj−2, . . ., to reach milestone2. In case milestone2 more
than 6 distance apart from vj , the agent first moves to vj+3 from vj−3 by decoding first 6 ports
one by one. After that it’s movement is guided by the light nodes from vj+4 to vℓ−3, where
milestone2 = vℓ. Once it reaches to vℓ−3, the agent finds no pebble in the neighborhood of
CurrentNode which is vℓ−3 (except the node from where it reaches CurrentNode, i.e., vℓ−4).
From vℓ−3, the agent decodes pℓ−3 from Γ, and moves to vℓ−2, and decodes pℓ−2 from Γ and
moves to vℓ−1, and then finally, decodes pℓ−1 from Γ and reaches to vℓ which is milestone2.

Lemma 2.3 The agent successfully reaches to milestone2 from milestone1 for Case L-H and
Case L-L-H.

Proof. We prove the lemma for Case L-H. The proof for Case L-L-H is similar.
According to Lemma 2.1, the agent successfully reaches to the node w = milestone1. After

reaching milestone1, the agent computes the binary string Γ̂ (Ref. Step 5 of Algorithm 3).
According to the pebble placement algorithm, the sequence of port numbers corresponding
to the path from s to milestone2 is coded in 5 disjoint sets of neighbors of milestone1. We
show that the agent correctly computes this encoding of the path. In this case, a pebble is
placed in s(0) and no pebble is at s(1). Consider the following cases.

• s(0), s(1) 6∈ {w(0), w(1), . . . , w(5z + 11)}. In this case, Γ is the string that is equals to
Γ̂00Γ̂00Γ̂00Γ̂00Γ̂. Hence, the string separated by ‘00’ which occurs most of the time is
Γ̂. Hence, Γ̂ in learned correctly by the agent in this case.

• s(0) ∈ Ni(w) and s(1) ∈ Nj(w) for some i, j ≤ 5. In this case, the string Γ̂ can not be
correctly coded in the sets Ni(w) and Nj(w). To be more specific, one bit of the string
encoded in Ni(w) and one bit of the string encoded in Nj(w) may differ from Γ̂. (in case
i = j, at most two bits can differ from Γ). Therefore, In this case, the string Γ′ which
is computed by the agent is the string that is equals to Γ100Γ200Γ300Γ400Γ5, where
Γi,Γj 6= Γ̂ and Γk = Γ̂, for k ∈ {1, 2, 3, 4, 5} \ {i, j}. It can be seen that Γ̂ is the most
occurring substring separated by 00, and hence Γ̂ is correctly computed in this case.

• s(0) ∈ {w(i(z+2)−2), w(i(z+2)−1), for some 1 ≤ i ≤ 4, i.e, s(0) (it contains a pebble
in this case) is a node that are left blank to represent two consecutive zeros. Without
loss of generality, suppose that s(0) = w(z). In this case Γ′ is the string that looks like
Γ̂10Γ̂00Γ̂00Γ̂00Γ̂. The substrings that are separated by ‘00’ are Γ1, and three substrings

20

equals to Γ̂, where Γ1 = Γ̂10Γ̂. Hence, Γ̂ is the substring that is the most occurred
substring and therefore, Γ̂ is correctly computed in this case as well.

• s(0) ∈ {w(5z + 8), w(5z + 9), w(5z + 10), w(5z + 11)}. This is the case where the node
s(0) appears as one of the four nodes after all the nodes of the five sets Ni(w). Here,
the string Γ′ looks like Γ̂00Γ̂00Γ̂00Γ̂00Γ1 where Γ1 is a substring whose one of the four
end bits corresponds to s(0). In this case as well, Γ̂ is the most occurred string and
therefore the agent correctly learn Γ̂.

Once the agent correctly learn Γ̂, it computes Γ by replacing every ‘11’ by ‘1’ and every
‘10’ by ‘0’. If the first two bits of Γ is the substring ‘11’, or ‘10’, or ‘01’ then the agent learns
that milestone2 is at 4 or 5, or 6 distance apart, respectively from s. The agent returns
back to s from w and move one edge at a time by decoding the integers p0, p1, p2, . . . , pℓ, for
ℓ = 4, 5, 6 and then successfully reaches tomilestone2. If the first two bits of Γ is the substring
‘00’, then agent learns that milestone2 is at least 7 distance apart. The agent returns back
to s from w, and move one edge at a time by decoding the integers p0, p1, p2, and p3, to
reach the node v4. According to the pebble placement algorithm, if milestone2 ∈ Lℓ, then no
pebble is placed on any node in Lℓ−2, and a pebble is placed at each of the nodes v5, . . . , vℓ−3.
The agent, from v4 moves to v5, then to v6, and so on until the node vℓ−3 by moving to the
neighbor of the current node that contains a pebble. Once it reaches to vℓ−3, it can not find
any other neighbor of vℓ−3, other than vℓ−4 that contains a pebble. The agent learns in this
point that it reaches to vℓ−3 and then it starts decoding the rest three port numbers one by
one and following them, to finally reach to milestone2.

Lemma 2.4 After reaching milestonej, for some j ≥ 2, the agent successfully either reaches
to milestonej+1, if exists, or finds the treasure.

Proof. We prove this lemma using induction. By Lemma 2.1, the agent successfully reaches
milestone1. To prove the base case, we prove that from milestone1, it reaches to milestone2
successfully.

Let y be the total number of milestones. Suppose that the agent successfully reached to
milestonej for j < y. It then executes Algorithm 8 (subroutine Progress) according to
which it visits all the neighbors of CurrentNode which is milestonej and compute the string
Γ′. As per the pebble placement algorithm, Γ′ represents a sequence of port numbers that
leads towards milestonej+1. To be specific, depending on the position of milestonej+1, the
following cases may happen.

• If milestonej ∈ Lℓ and milestonej+1 ∈ Lℓ′ , such that ℓ′ − ℓ ≤ 6. In this case, the
sequence pℓ, pℓ+1, . . . , pℓ′−1 is encoded in the neighbors of, i.e., Γ′ is the binary represen-
tation of the sequence p0, p1, . . . , pj , where Γ = b1b1 · Γ

′ and one of b1 and b2 is 1. The
agent identify this by finding at least one pebbles at milestonej(0) and milestonej(1).
After learning Γ′, and knowing the degree of milestonej, the agent compute the sub-
string containing first 1+ ⌊log degree(s)⌋ bits and decode the integer pℓ. After decoding
pℓ, it moves to the node vℓ+1 from vℓ by taking the port pℓ. As soon as the agent reaches
vℓ+1, it learns the degree of vℓ+1 and then decode the integer pℓ+1 which is decoded in
the next 1 + ⌊log deg(vℓ+1)⌋ bits of Γ

′. Following this port from vℓ+1, the agent reaches
vℓ+2 and learns the degree of vℓ+2. Continuing in this way the agent finally reaches to
node vℓ′ which is milestone2.

21

• Ifmilestonej+1 ∈ Lℓ′ , for ℓ
′−ℓ > 6. In this case, the sequence pℓ, pℓ+1, pℓ+2, pℓ′−3, pℓ′−2,

pℓ′−1 is coded in Γ′. According to the pebble placement algorithm, there are no pebble
at milestonej(0) and milestonej(1). The agent identify this case by not finding any
pebbles at milestonej(0), and milestonej(1). According to Algorithm 8, the agent set
CurrentIndex = 3 andMindistance = 3, and call FindNextMilestone(0, 0,Γ,MinDistance)
(Algorithm 7). According to Step 12- 17 of Algorithm 7, the agent decodes the port
numbers pℓ, pℓ+1, pℓ+2 one by one and then reaches vℓ+1, vℓ+2, and vℓ+3, respectively.
Once it reaches vℓ+3, it starts exploring all the neighbors of CurrentNode and moves to
the node that contains a pebble and update CurrentNode (Ref. Step 15 of Algorithm
7). It continues to move in this way until it finds no pebble in the neighborhood of
CurrentNode (except the node from where it reaches CurrentNode). According to the
pebble placement algorithm, this situation arises when vℓ′−3 is the CurrentNode. From
vℓ′−3, the agent decodes pℓ′−3 from Γ, and moves to vℓ′−2, and decodes pℓ′−2 from Γ and
moves to vℓ′−1, and then finally, decodes pℓ′−1 and reach to vℓ′ which is milestonej+1.

Hence using the induction hypothesis, the agent reaches to milestoney. In the neighbors
of milestoney, the path from milestoney to the treasure is coded. If the distance of t from
milestoney is ≤ 6, then the entire path to the treasure is coded in the neighbors of milestoney.
The agent, in a similar fashion as described earlier, learn this path by decoding the port
numbers one by and one and finally finds the treasure. In case the path to the treasure is
of length at least 7, then only first three ports from milestone1 are coded in the neighbors
of milestoney. The agent from milestoney = vℓ reached to the node vℓ+3, and then it starts
exploring all the neighbors of CurrentNode = vℓ+3 and moves to the node that contains a
pebble and update CurrentNode of Algorithm 7). It continues to move this way and finally
finds the treasure and stop.

We now present our final result in the following theorem.

Theorem 2.1 The agent finds the treasure in O(D log∆ + log3∆)-time.

Proof. There are O(log∆) pebbles that are placed in the neighbors of each milestone and at
most one pebble is placed on each of the light nodes on P . Since there can be at most D

3
milestones and O(D) light nodes, hence the total number of pebbles used is O(D log ∆).

The agent visits O(log∆) neighbors of each milestone and all the neighbors of each light
node on P . The total time taken to find the treasure from milestone1 is D(log∆). Also, by
Lemma 2.1, the agent reaches to milestone1 in O(dist(s,milestone1) log∆ + log3 ∆)-time.
Since dist(s,milestone1) ≤ D, the time for treasure hunt is O(D log ∆ + log3 ∆).

3 Lower bound

In this section, we show a a lower bound Ω(D log∆) for time of treasure hunt. To be specific,
we construct a class of instances of treasure hunt such that if the time for treasure hunt is
‘short’, then any algorithm using any number of pebbles can not find the treasure within this
short time for some instances.

Let T be a complete tree of height D where the degree of the root r and each internal
node is ∆. There are ∆ · (∆−1)D−1 leaves in T . Let p = ∆ · (∆−1)D−1 and u1, . . . , up be the
leaves of T in lexicographical ordering of the shortest path from the root r. For 1 ≤ i ≤ p,
we construct an input Bi as follows. The tree T is taken as the input graph, r as the starting

22

point of the agent, and ui as the position of the treasure. Let B be the set of all inputs Bi,
1 ≤ i ≤ p.

Suppose that there exists an algorithm A that can solve the treasure hunt in time t for
all graphs of maximum degree ∆ and D being the distance between the initial position of
the agent and the treasure. The movement of the agent according to A can be viewed as a
sequence of port numbers p1, p2, . . . , pt, where the values of the port numbers depend only on
the placement of pebbles. To be specific, at any time t′ ≤ t, the agent takes a port p if a pebble
is placed in the current vertex, else it takes a port p′. Note that p and p′ may be the same
port. In other words, depending on the placement of the pebbles, at any step, the agent can
take one of the two possible ports, and therefore total at most 2t possible sequences of port
numbers the agent may follow from its initial position to find the treasure. This observation
is formally proved in the following lemma.

Lemma 3.1 For any treasure hunt algorithm A taking t-time, there are at most 2t possible
sequences of port numbers the agent may follow for the treasure hunt.

Proof. We use induction to prove the above statement. Consider the execution of the algo-
rithm for t = 1, i.e., the agent traverse exactly one edge. There are two possible cases. If
no pebble is placed at the starting position of the agent, the agent must take some specified
port p, following A. If a pebble is placed at the starting node, then the agent must take some
specified port q (may be p = q). Hence, there are at most one of the two different sequences
of port numbers can be followed by the agent, according to A. Suppose that, the statement is
true for any t′ < t, i.e., there are at most 2t

′
possible different sequences of port numbers, one

which the agent might follow depending on the position of the pebbles. Let Q be a sequence
of port numbers among these 2t

′

different sequences. Let v be the position of the agent after
following Q starting from the initial position. As argued, in the case for t = 1, there are two
possible port numbers one of which the agent can take in time t′ +1 depending on whether a
pebble is placed or not at the current node v. Since this statement is true for every possible
sequences of port numbers of length t′, this implies that there are at most 2 × 2t

′
= 2t

′+1

many possible sequences of port numbers of length t′+1. Therefore, the statement is followed
by induction.

The following theorem proves the lower bound result.

Theorem 3.1 There exists a graph G of maximum degree ∆ (≥ 2) and diameter D (≥ 3)
such that any deterministic algorithm must require Ω(D log ∆)-time for the treasure hunt
irrespective of the number of pebbles placed on the nodes of G.

Proof. Suppose that there exists an algorithm that solves the treasure hunt in time at most
D log(∆−1)

2 for the class of inputs B. By Lemma 3.1, there are at most 2
D log(∆−1)

2 = (∆− 1)
D

2

different possible sequences of port numbers the agent can follows. Since |B| = ∆(∆− 1)D−1,

therefore, by the Pigeon hole principle, there exist at least (∆−1)
D

2 inputs in B for which the

agent follows the same sequence of port numbers. Since D log(∆−1)
2 < (∆ − 1)

D

2 , for ∆ ≥ 3,

it is not possible to reach the treasure for (∆− 1)
D

2 many inputs using the same sequence of

port numbers of length D log(∆−1)
2 . This contradicts the fact that A solves the treasure hunt

in time at most D log(∆−1)
2 for the class of inputs B. Hence the theorem follows.

23

4 Conclusion

We propose an algorithm for the treasure hunt problem that finds the treasure in an anony-
mous graph in O(D log ∆+log3 ∆)-time. We also prove a lower bound of Ω(D log∆). Clearly,
there is a small gap between the upper and lower bounds, however, the gap is smaller than
any polynomial of ∆. A natural open question is to find tight upper and lower bounds for the
problem. Another interesting problem is to study trade-off between number of pebble and
time for treasure hunt in anonymous networks.

References

[1] Steve Alpern and Shmuel Gal. The theory of search games and rendezvous, volume 55
of International series in operations research and management science. 2003.

[2] Ricardo A. Baeza-Yates, Joseph C. Culberson, and Gregory J. E. Rawlins. Searching in
the plane. Inf. Comput., 106(2):234–252, 1993.

[3] A. Beck and D.J. Newman. Yet more on the linear search problem. Israel J. Math, 8:419
– 429, 1970.

[4] Lucas Boczkowski, Amos Korman, and Yoav Rodeh. Searching a tree with permanently
noisy advice. In ESA, pages 54:1–54:13, 2018.

[5] A. Bonato and R.J. Nowakowski. The Game of Cops and Robbers on Graphs, American
Mathematical Society, 2011.

[6] Sébastien Bouchard, Yoann Dieudonné, Arnaud Labourel, and Andrzej Pelc. Almost-
optimal deterministic treasure hunt in arbitrary graphs. CoRR, abs/2010.14916, 2020.

[7] Sébastien Bouchard, Yoann Dieudonné, Andrzej Pelc, and Franck Petit. Deterministic
treasure hunt in the plane with angular hints. Algorithmica, 82(11):3250–3281, 2020.

[8] Timothy H. Chung, Geoffrey A. Hollinger, and Volkan Isler. Search and pursuit-evasion
in mobile robotics - A survey. Auton. Robots, 31(4):299–316, 2011.

[9] Erik D. Demaine, SÃ¡ndor P. Fekete, and Shmuel Gal. Online searching with turn cost.
Theoretical Computer Science, 361(2):342 – 355, 2006.

[10] Yann Disser, Jan Hackfeld, and Max Klimm. Tight bounds for undirected graph explo-
ration with pebbles and multiple agents. J. ACM, 66(6):40:1–40:41, 2019.

[11] Yuval Emek, Tobias Langner, David Stolz, Jara Uitto, and Roger Wattenhofer. How
many ants does it take to find the food? Theoretical Computer Science, 608:255 – 267,
2015.

[12] G. M. Fricke, J. P. Hecker, A. D. Griego, L. T. Tran, and M. E. Moses. A distributed
deterministic spiral search algorithm for swarms. In 2016 IEEE/RSJ (IROS), pages
4430–4436, 2016.

[13] Barun Gorain and Andrzej Pelc. Deterministic graph exploration with advice. ACM
Trans. Algorithms, 15(1):8:1–8:17, 2019.

24

[14] Artur J. and Jakub Lopuszanski. On the two-dimensional cow search problem. Informa-
tion Processing Letters, 109(11):543 – 547, 2009.

[15] Ming-Yang Kao, John H. Reif, and Stephen R. Tate. Searching in an unknown envi-
ronment: An optimal randomized algorithm for the cow-path problem. Inf. Comput.,
131(1):63–79, 1996.

[16] Elmar Langetepe. Searching for an axis-parallel shoreline. Theoretical Computer Science,
447:85 – 99, 2012.

[17] Tobias Langner, Barbara Keller, Jara Uitto, and Roger Wattenhofer. Overcoming ob-
stacles with ants. In OPODIS, pages 9:1–9:17, 2015.

[18] Avery Miller and Andrzej Pelc. Tradeoffs between cost and information for rendezvous
and treasure hunt. In OPODIS, pages 263–276, 2014.

[19] Andrzej Pelc and Ram Narayan Yadav. Information complexity of treasure hunt in
geometric terrains. CoRR, abs/1811.06823, 2018.

[20] Andrzej Pelc and Ram Narayan Yadav. Cost vs. information tradeoffs for treasure hunt
in the plane. CoRR, abs/1902.06090, 2019.

[21] K. Spieser and E. Frazzoli. The cow-path game: A competitive vehicle routing problem.
In 2012 IEEE (CDC), pages 6513–6520, 2012.

[22] Amnon Ta-Shma and Uri Zwick. Deterministic rendezvous, treasure hunts, and strongly
universal exploration sequences. ACM Trans. Algorithms, 10(3):12:1–12:15, 2014.

25

	1 Introduction
	1.1 Model and Problem Definition
	1.2 Our Result
	1.3 Related Work

	2 Treasure Hunt Algorithm
	2.0.1 Pebble Placement:
	2.0.2 Treasure Hunt by The Mobile Agent

	3 Lower bound
	4 Conclusion

