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Abstract. The problem of A privately transmitting information to B
by a public announcement overheard by an eavesdropper C is considered.
To do so by a deterministic protocol, their inputs must be correlated. De-
pendent inputs are represented using a deck of cards. There is a publicly
known signature (a,b, c), where n = a + b + c + r, and A gets a cards,
B gets b cards, and C gets c cards, out of the deck of n cards. Using
a deterministic protocol, A decides its announcement based on her hand.

Using techniques from coding theory, Johnson graphs, and additive num-
ber theory, a novel perspective inspired by distributed computing theory
is provided, to analyze the amount of information that A needs to send,
while preventing C from learning a single card of her hand. In one ex-
treme, the generalized Russian cards problem, B wants to learn all of A’s
cards, and in the other, B wishes to learn something about A’s hand.

Keywords: Johnson graphs · Secret sharing · Distributed computing ·
Russian cards problem · Information Theoretic Security · Combinatorial
cryptography · Binary Constant Weight Codes · Additive number theory.

1 Introduction

The idea that card games could be used to achieve security in the presence of
computationally unbounded adversaries proposed by Peter Winkler [55] led to
an active research line e.g. [26,27,28,29,39,44,45,46,55]. It motivated Fischer and
Wright [28] to consider card games, where A,B,C draw cards from a deck D of
n cards, as specified by a signature (a,b, c), with n = a + b + c + r. Nobody
gets r cards, while A gets a cards, B gets b cards, and C gets c cards.

Fischer and Wright thought of the cards as representing correlated random
initial local variables for the players, that have a simple structure. They were
interested in knowing which distributions of private initial values allow A and B
to obtain a key, that remains secret to C. Their protocols mostly use random-
ization, and they are information-theoretic secure. However, they do not keep
the cards of A and B secret from C.
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Another research line started with an in depth, combinatorial and epistemic
logic study of van Ditmarsch [20] of the Russian cards problem, presented at the
Moscow Mathematics Olympiad in 2000, where the cards of A and B should be
kept secret from C. Here A, B and C draw (3, 3, 1) cards, respectively, from a
deck of 7 cards. First A makes an announcement that allows B to identify her set
of cards, while C cannot deduce a single card of A. After the announcement of
A, B knows the cards of each player, and hence he may announce C’s card, from
which C learns nothing, but allows A to infer the cards of B. The problem has
received a fair amount of attention since then1 e.g. [3,4,12,13,14,21,22,40,53,54],
in its generalized form of signature (a,b, c), and other variants, including mul-
tiround, multiplayer, and different security requirements. Solutions are based
either on modular arithmetic or on combinatorial designs.

The original solution for (3, 3, 1) uses modular arithmetic, where A announces
the sum of her cards modulo 7, and then B announces C’s card [42]. For the
general case when c = 1 (and r = 0), solutions exist that announce the cards sum
modulo an appropriate prime number greater or equal to n [12]. These solutions
use only two announcements. A solution using three announcements for (4, 4, 2)
is reported in [21], and a four-step protocol where C holds approximately the
square of the number of cards of A is presented in [14].

The relation to Steiner triple system and combinatorial designs goes back to
1847 Kirkman [38]. Using combinatorial designs Cordón-Franco et al. [14] prove
that solutions exist when a is a power of a prime, and present the first solutions
when c > a. The solution used 4 communication steps, as opposed to the usual
2-step protocols. Albert et al. [4] show that there is no 2-step solution if c ≥ a−1.

We provide an extensive discussion of related work in Appendix A. In ad-
dition to the papers mentioned above, through our new perspective on these
problems, we have uncovered relations with other areas: intersecting families of
sets, coding theory, additive number theory, and distributed computability.

The new approach. Given a publicly known signature (a,b, c), for a deck D of
n = a + b + c + r cards, the basic problem underlying the situations described
above, is to design a safe protocol PA, so that A makes a public announcement,
PA(a), based on her hand, a. From the announcement PA(a), and using his own
hand, b, B should learn something about A’s hand. The announcement PA(a)
is deterministically determined by the input of A, and the knowledge of the
signature. No randomized solutions are considered in this paper.

In the language of e.g. [12,14,21], a protocol PA should be informative for B
and safe from C. A protocol is safe if C does not learn any of the cards of A. It
is informative, if B learns the hand of A.

We define the notion of a protocol being minimally informative, where the
goal is that B learns something about the hand of A. We prove that the minimal
information problem is a kind of oblivious transfer problem, in the sense that,
when c + r = 1, B learns one card of A, but A does not know which one. If

1 The r = 0 case is mostly considered here, as well as in the secret key research line.
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c + r > 1 then B learns even less; he learns that A has one of the cards of a set
s, |s| = c + r.

In Section 2 we formalize this setting based on distributed computability [36],
and more specifically when the least amount of communication is studied [19].

In Section 3, using this formalization, we show that a protocol can be viewed
as a coloring of the set of vertices Pa(D), all subsets of size a of D,

PA : Pa(D)→M,

for the set of messages M that A may send. Thus, Pa(D) is the set of vertices
of a Johnson graph J(n,a), where n = |D|. We are interested in the question of
how small canM be, i.e., the number of bits, log2 |M|, that A needs to transmit
to implement either and informative or a minimally informative safe protocol.

We show in Theorem 2 that PA is informative if and only if PA is a proper
coloring of the d-distance Johnson graph Jd(n,a), d = c + r. Vertices a, a′ of
Jd(n,a) are adjacent whenever a−d ≤ |a∩a′|. In particular, we have a Johnson
graph when d = 1.

It is well-known that there is a family of maximal clicks of J(n,a) of size
a + 1, e.g. [32]. It turns out, that the inputs of A that B with input b considers
possible, form a maximal click of Jc+r(n,a), denoted Kp(b̄). The click Kp(b̄)
consists of all hands a ⊂ b̄, |a| = a, and hence p =

(
a+c+r

a

)
. Similarly, the hands

that C considers possible with input c form a click Kp(c̄) of Jb+r(n,a), and such

clicks are of size p =
(
a+b+r

a

)
.

We show also in Theorem 2 that PA is minimally informative if and only if PA
colors at least one edge of each click Kp(b̄) with two different colors. In contrast,
informative requires that PA colors every edge of Kp(b̄) with two different colors.

Thus, the chromatic number of Jd(n,a) determines the number of mes-
sages needed for a protocol PA to be informative. There are many interesting
open questions concerning the chromatic number of Johnson graphs [32]. Upper
bounds have been thoroughly studied for special cases, because they imply lower
bounds on codes e.g. [10,24]. In addition to some special cases, only the trivial
lower bound implied by the maximal clicks is known. Briefly, it is known that
n/2 ≤ χ(J(n,a)) ≤ n, often the chromatic number is a little bit smaller2, more
specifics are in Appendix B. Indeed, using coding theory techniques we show the
easy result that there is an informative protocol when c+r = 1 with n messages
(Lemma 11), and the more difficult new result for the general case, c + r ≥ 1,
that (2n)c+r messages suffice, i.e., to properly color Jc+r(n,a) (Lemma 15). It
follows that Θ((c+r) log n) bits are needed and sufficient for an informative pro-
tocol; the lower bound is implied by the size of the maximal clicks of Jc+r(n,a),
more details in Section 8.

Remarkably, only 1 bit suffices for minimal information transmission, when
b < bn/2c. We study the minimal information problem in Section 6, where we
present this and other results. We show that if additionally c ≤ bn/2c−2 the 1-bit
protocol is also safe. Also, we present a reduction from an informative protocol,

2 Apparently there is no n,a where it is known that χ(J(n,a)) < n−2. In some special
cases the exact number has been determined, Figure 9.
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showing that when c+r = 1, as a grows from 3 up to roughly n/2, the number of
different messages goes down from n/3 to 2, for a safe and minimally informative
protocol. We find it surprising that there is a safe minimally informative protocol
for the classic Russian cards case (3, 3, 1) using 2 messages (n = 7). Namely,
with a message consisting of only one bit, A can transfer one of her cards to B,
privately.

We study the classic Russian cards problem in Section 5, determined by
colorings of J(7, 3), as a concrete example of the previous ideas. There is an
informative and safe solution with 7 messages (known since [42]), and one with 6
messages [53]. Namely, using 6 messages is optimal, since the chromatic number
of J(7, 3) is known to be 6. There is also a safe informative solution using 6
messages for the weak Russian cards problem, i.e. when c = 0 and r = 1.

While the informative property requires that all vertices of each maximal click
Kp(b̄) are colored differently by PA, the safety property requires the opposite,
that not all vertices of each maximal click Kp(c̄) are colored differently. Thus,
a protocol PA can be informative and safe only if b > c. In this case, while
Kp(c̄) induces a click in Jb+r(n,a), it does not induce a click in Jc+r(n,a).

Proper coloringKp(c̄)

<latexit sha1_base64="ufbY6pJ6J2bEh9sIF1+hjT4ecXI=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahXspuKai3ghfBSwX7Ad2lZNNsG5rNhiQrlKV/w4sHRbz6Z7z5b0zbPWjrg4HHezPMzAslZ9q47rdT2Njc2t4p7pb29g8Oj8rHJx2dpIrQNkl4onoh1pQzQduGGU57UlEch5x2w8nt3O8+UaVZIh7NVNIgxiPBIkawsZJ/P5BVP8QqI7PLQbni1twF0DrxclKBHK1B+csfJiSNqTCEY637nitNkGFlGOF0VvJTTSUmEzyifUsFjqkOssXNM3RhlSGKEmVLGLRQf09kONZ6Goe2M8ZmrFe9ufif109NdB1kTMjUUEGWi6KUI5OgeQBoyBQlhk8twUQxeysiY6wwMTamkg3BW315nXTqNa9Ru3loVJr1PI4inME5VMGDK2jCHbSgDQQkPMMrvDmp8+K8Ox/L1oKTz5zCHzifP3FHkUU=</latexit>

Kp(b̄)

<latexit sha1_base64="xfjmjxtgDAJwUsOhXS3gR+DaW4c=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahXspuKai3ghfBSwX7Ad2lZNNsG5rNhiQrlKV/w4sHRbz6Z7z5b0zbPWjrg4HHezPMzAslZ9q47rdT2Njc2t4p7pb29g8Oj8rHJx2dpIrQNkl4onoh1pQzQduGGU57UlEch5x2w8nt3O8+UaVZIh7NVNIgxiPBIkawsZJ/P5BVP8QqC2eXg3LFrbkLoHXi5aQCOVqD8pc/TEgaU2EIx1r3PVeaIMPKMMLprOSnmkpMJnhE+5YKHFMdZIubZ+jCKkMUJcqWMGih/p7IcKz1NA5tZ4zNWK96c/E/r5+a6DrImJCpoYIsF0UpRyZB8wDQkClKDJ9agoli9lZExlhhYmxMJRuCt/ryOunUa16jdvPQqDTreRxFOINzqIIHV9CEO2hBGwhIeIZXeHNS58V5dz6WrQUnnzmFP3A+fwBvwZFE</latexit>

Not proper coloring

y 2 a

<latexit sha1_base64="t3ssk3UI93wMQyTFa5FrPSbWzTk=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJKUgnorePFYwX5AE8pmu2mXbnbj7kYIoX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMCxPOtHHdb2dtfWNza7u0U97d2z84rBwdd7RMFaFtIrlUvRBrypmgbcMMp71EURyHnHbDye3M7z5RpZkUDyZLaBDjkWARI9hYqZf5lz4TCA8qVbfmzoFWiVeQKhRoDSpf/lCSNKbCEI617ntuYoIcK8MIp9Oyn2qaYDLBI9q3VOCY6iCf3ztF51YZokgqW8Kgufp7Isex1lkc2s4Ym7Fe9mbif14/NdF1kDORpIYKslgUpRwZiWbPoyFTlBieWYKJYvZWRMZYYWJsRGUbgrf88irp1Gteo3Zz36g260UcJTiFM7gAD66gCXfQgjYQ4PAMr/DmPDovzrvzsWhdc4qZE/gD5/MHVmiPew==</latexit>

y 62 a0

<latexit sha1_base64="cQSIBsVmEUIGdjAOst1E+o3sh20=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSJ6kLJbCuqt4MVjBfsB3bVk02wbmk2WJKuUpf/DiwdFvPpfvPlvTNs9aOuDgcd7M8zMCxPOtHHdb2dldW19Y7OwVdze2d3bLx0ctrRMFaFNIrlUnRBrypmgTcMMp51EURyHnLbD0c3Ubz9SpZkU92ac0CDGA8EiRrCx0gMa+xe+kMZnAuGzXqnsVtwZ0DLxclKGHI1e6cvvS5LGVBjCsdZdz01MkGFlGOF0UvRTTRNMRnhAu5YKHFMdZLOrJ+jUKn0USWVLGDRTf09kONZ6HIe2M8ZmqBe9qfif101NdBVkTCSpoYLMF0UpR0aiaQSozxQlho8twUQxeysiQ6wwMTaoog3BW3x5mbSqFa9Wub6rlevVPI4CHMMJnIMHl1CHW2hAEwgoeIZXeHOenBfn3fmYt644+cwR/IHz+QM/BJGr</latexit>

Kp(b̄) ⇢ Kp(c̄)

<latexit sha1_base64="K3zOAKmi/4qBdDJdmhEk/6X7SHU=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VoNyUpBXVXcCO4qWAf0IYwM520QyeTMDMRSsjWjb/ixoUibv0Dd/6N0zagth64cDjnXu69B8ecKe04X1ZhbX1jc6u4XdrZ3ds/sA+POipKJKFtEvFI9jBSlDNB25ppTnuxpCjEnHbx5Grmd++pVCwSd3oaUy9EI8ECRpA2km/DGz+uDDCSKc6qA5VgRfWPRrKqb5edmjMHXCVuTsogR8u3PwfDiCQhFZpwpFTfdWLtpUhqRjjNSoNE0RiRCRrRvqEChVR56fyTDJ4ZZQiDSJoSGs7V3xMpCpWahth0hkiP1bI3E//z+okOLryUiTjRVJDFoiDhUEdwFgscMkmJ5lNDEJHM3ArJGElEtAmvZEJwl19eJZ16zW3ULm8b5WY9j6MITsApqAAXnIMmuAYt0AYEPIAn8AJerUfr2Xqz3hetBSufOQZ/YH18A6kMmaY=</latexit>

<latexit sha1_base64="5sZJ90X68UdQQh8YG4zOaqdPe3U=">AAAB9nicbVBNTwIxEJ3FL8QPUI9eGokRLmSXkOjFBOPFIyYiJLCSbulCQ7e7absasuF/ePGgifHqb/Hmv7Ese1DwJZN5eW8mnT4v4kxp2/62cmvrG5tb+e3Czu7efrF0cHivwlgS2iYhD2XXw4pyJmhbM81pN5IUBx6nHW9yPfc7j1QqFoo7PY2oG+CRYD4jWBvpoTW4quDqZdrOqoNS2a7ZKdAqcTJShgytQemrPwxJHFChCcdK9Rw70m6CpWaE01mhHysaYTLBI9ozVOCAKjdJr56hU6MMkR9KU0KjVP29keBAqWngmckA67Fa9ubif14v1v6FmzARxZoKsnjIjznSIZpHgIZMUqL51BBMJDO3IjLGEhNtgiqYEJzlL6+STr3mNGqOc9soN+tZHnk4hhOogAPn0IQbaEEbCEh4hld4s56sF+vd+liM5qxs5wj+wPr8AUl6kNc=</latexit>

PA(a) = PA(a0)

Safety requires that for each card y, there is a
hand of A that includes y, and another that does
not include it, both equally colored, in the com-
plement of the hand of C.

We consider the protocol χmodn in Section 7,
that sends the sum of the cards modulo n, for
c+r = 1, and show that it is informative and safe,
for a,b ≥ 3, n ≥ 7. Indeed, while informative is
a coding theory property, safety is an additive number theory property. We
prove safety using simple shifting techniques [32], getting a generalization and
simplification of results of [12].3 Thus, only two additional messages are needed
to make an informative protocol, also safe (w.r.t. the best known solutions). We
present an informative protocol for the general case c + r ≥ 1 based on more
involved coding theory ideas and discuss safety, in Section 8, but a detailed
treatment is beyond the scope of this paper.

Organization. In Section 2 we present the problems of secure information
transmission that we study in this paper. In Section 3 we review some basic
facts about Johnson graphs, and rephrase in such terms the secure information
transmission problems. In Section 4 we discuss the relation with the generalized
Russian cards problem, and some basic consequences of our formalization, e.g.
there is a safe proper coloring of J(n,a) iff there is a safe proper coloring of
J(n, n − a). In Section 5 we present the results about six-message solutions
for the weak and the classic Russian cards problem, n = 7. In Section 6 we
present the minimal information transmission results. In Section 7 we show that
n messages are sufficient for safe, informative information transmission, when

3 Cordón-Franco et al. [12] show that χmodn is safe when n is prime using [17, Theorem
4.1], analogous to the Cauchy-Davenport theorem, except for (4, 3, 1), (3, 4, 1).
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c + r = 1, and the general case is discussed in Section 8. The conclusions are in
Section 9. Additional details are at the end: further related work discussion in
Appendix A, Johnson graphs background in Appendix B, additional proofs and
figures are in Appendix C and D.

2 Secure information transmission

The model and the problem are defined here, adapting the distributed computing
formalization of [36] to the case of an eavesdropper. In Section 2.1 we present the
representation of the inputs to A,B,C as a simplicial complex, which determines
the Johnson graphs that will play a central role in this paper. In Section 2.2 the
notions of protocol, and of a protocol being (minimally) informative and safe are
defined.

2.1 The input complex

Let D = {0, . . . , n− 1}, n > 1, be the deck of n distinct cards. An element in
the deck is a card. A subset x of cards is a hand, x ∈ P(D). We may say for
short that x, |x| = m, is an m-set or m-hand, namely, if x ∈Pm(D), the subsets
of D of size m. A deal = (a, b, c) consists of three disjoint hands, meaning that
cards in a are dealt to A, cards in b to B, and cards in c to C. We say that
the hand is the input of the process. We call γ = (a,b, c) the signature of the
deal = (a, b, c) if |a| = a, |b| = b and |c| = c, following the notation introduced
by Fischer and Wright [27]. We assume that A, B and C are aware of the deck
and the signature.

It has been often assumed that n = a+b+c, but as we shall see, it is natural
to consider the case where nobody gets r cards, n = a + b + c + r. While A and
B get at least one card, a,b ≥ 1, C may get none c ≥ 0.

All possible deals for a given signature over D are represented by a simplicial
complex. The vertices are of the form (Y, y), Y ∈ {A,B,C}, and y a hand.
Such a vertex is called a Y -vertex. The input complex I(a,b, c), or I for short,
for signature γ = (a,b, c) is defined as follows. The facets of I are all the sets
{(A, a), (B, b), (C, c)}, where a, b, c is a deal of signature γ. The input complex
I consists of all such facets, together with all their subsets.

Notice that the A-vertices of I are in a one-to-one correspondence with all
subsets of size a of D, Pa(D), the B-vertices with Pb(D), the C-vertices with
Pc(D). Indeed, when c = 0, there is a single vertex for C in I.

The left part of Figure 1 illustrates the fourA-neighbors of vertex (B, {4, 5, 6}),
in I, for signature (3, 3, 1). For short, we omit the commas and parenthesis from
the set notation, and write (B, {456}).
Example 1. In distributed computing the input complex with a signature γ =
(1, 1, 1) for three processes has been considered, representing that processes get
distinct input names from a set of n names [5]. The figure from [37] shows that in
the case of n = 4, the complex is a torus subdivided into triangles. The vertices
of each triangle are colored black, gray, and white to represent the three different
processes. Inside the vertex is the card dealt to the corresponding process.
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023

123456

013

012

023

123

013

012

Fig. 1. White vertices correspond to A, and the black vertex correspond to B. The
four A-neighbours of (B, 456) for signature (3, 3, 1) form a click on the right, the cor-
responding part of J(7, 3) = GB , defined in Section 3.2.

Fig. 2. Input complex for signature γ = (1, 1, 1) with n = 4 (from [37]).

2.2 Informative and safe protocols

Fix an input complex I over D, n = a+b+c+r. In the language of e.g. [12,14,21],
a protocol should be “informative” for B and “safe” from C. In the case of the
Russian cards problem, B should learn the hand of A. We define also the notion
of “minimally informative.”

The goal is that B learns something about the hand of A, after listening
to an announcement m made by A. The announcement of A is defined by a
deterministic function PA(a) = M , for each input vertex (A, a) ∈ I, where M
belongs toM, the domain of possible messages that A may send. We say that PA
is the protocol of A. For B, there is a decision function δB(b,M) that produces
a set of cards in P(D), based on the input b of B, and the message M received4.

The minimally informative notion (consider in Section 6) requires only that
B learns something about the hand of A. As we shall see, the least one can

4 Since we have fixed D and the input complex I, implicitly PA(a) and δB(b,M)
depend on these parameters, in addition to the specific input a, resp. (b,M). This
is what we mean when we say that the players know the input complex.
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expect is that B learns that A has one of the cards of a set s, |s| = n − a − b.
Thus, if n = a+b+c+r, with c+r = 1, then B should learn one of the cards in
the hand of A. When b = 1, B should learn that A has one of the cards in a set
s, |s| = n− a− 1, more than the trivial guess s, s = D \ b, where b is B’s input
card. When c + r = 0 without any communication B knows the hand of A, so it
does not make sense to define a protocol where B learns less information. Notice
that when c + r ≥ 1, we have that n − a − b ≥ 1, and the following minimally
informative definition makes sense.

Definition 1 (Informative and minimally informative). Let PA be a pro-
tocol. If there exists δB, such that for any given input edge {(A, a), (B, b)} ∈ I,
with M = PA(a),

– δB(b,M) = a, the protocol is informative,
– for c + r ≥ 1, δB(b,M) = s ∈Pc+r(D), such that a ∩ s 6= ∅, the protocol is

minimally informative.

The previous definition does not talk about C. Indeed, it is based only on
the graph which is the subcomplex of I induced by the A-vertices and the B-
vertices. A protocol is safe if C cannot tell who holds even a single card (that she
does not hold). Consider a deal I = {(A, a), (B, b), (C, c)} ∈ I. Let PA(a) = M
be the announcement sent by A, and denote it also by PA(I). Two deals I, I ′ ∈ I
are initially indistinguishable [6] to C with input c if (C, c) ∈ I, I ′. And they are
indistinguishable after the protocol, if additionally PA(I) = PA(I ′). We require
then that for C there are always two indistinguishable inputs of A, a, a′, after
the protocol, such that x ∈ a and x 6∈ a′ or else x 6∈ a and x ∈ a′. More precisely,
for a vertex (C, c), let M be a possible message, namely, such that there exists
I = {(A, a), (B, b), (C, c)} ∈ I, and PA(I) = M . For a hand c, let c̄ = D \ c, and
4 the symmetric difference operator.

Definition 2 (Safety). A protocol PA is safe, if for any (C, c), any x ∈ c̄, and
any possible message M for (C, c), there are edges I = {(A, a), (C, c)} ∈ I, and
I ′ = {(A, a′), (C, c)} ∈ I, with PA(I) = PA(I ′) = M such that x ∈ a4a′.

Notice that while a,b ≥ 1, the previous definition applies even when c = 0.

Remark 1 (The c + r ≥ 1 assumption). If c = r = 0, there is a single vertex for
C in I, and each vertex of A and of B belong to a single triangle; without any
communication they know each other hands. Even when a = b = 1, the protocol
PA that always sends the same message, is informative and safe.

3 Protocol as vertex coloring

We represent subcomplexes of I as Johnson graphs in Section 3.1, and some
basic facts about these graphs are recalled in Section 3.2. We reformulate the
information transmission problem as properties about vertex colorings of John-
son graphs in Section 3.3, and discuss corresponding chromatic number notions
in Section 3.4.
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3.1 Representing indistinguishability by Johnson graphs

The situation when B has input b is represented by a vertex (B, b) ∈ I. The
A-vertices that B considers possible with input b, are the A-neighbors of (B, b)
in I. Thus, we define (following [19]) the graph GB in terms of I, as follows.
The vertices of GB consist of all the A-vertices of I. There is an edge joining
two vertices (A, a), (A, a′) if and only if there are edges in I connecting them
with the same vertex (B, b). To analyze GB , we omit the id A from the vertices,
and let V (GB) = Pa(D). Thus, for two distinct a, a′ ∈Pa(D), {a, a′} ∈ E(GB)
iff ∃b ∈ Pb(D) such that a, a′ ⊆ b̄ = D − b. See Figure 1. If r = c = 0, and
n = a + b, there are no two such distinct deals a, a′, and the graph has no edges
(which is why it makes sense to assume c + r ≥ 1, Remark 1).

The graph GC is defined analogously, on the same set of vertices, V (GC) =
Pa(D). When C has input c there is a vertex (C, c) ∈ I. The A-vertices that
C considers possible with input c, are the A-neighbors of (C, c) in I. Thus, for
two distinct a, a′ ∈Pa(D), {a, a′} ∈ E(GC) iff ∃c ∈Pc(D) such that a, a′ ⊆ c̄ =
D − c.
Lemma 1. For a, a′ ∈ V (GB), n = a + b + c + r, r ≥ 0, we have that {a, a′} ∈
E(GB) iff a−(c+r) ≤ |a∩a′|. Similarly, {a, a′} ∈ E(GC) iff a−(b+r) ≤ |a∩a′|.
Proof. Recall that {a, a′} ∈ E(GB) iff ∃b ⊆ D such that |b| = b and a, a′ ⊆ b̄ =
D − b.

Thus, b ≤ |D − (a ∪ a′)|. Now, |D − (a ∪ a′)| = (a + b + c + r) − |a ∪ a′|.
Also, |a∪ a′| = 2a− |a∩ a′|. It follows that b ≤ b + c + r− a + |a∩ a′|. Finally,
a− c− r ≤ |a ∩ a′|.

The argument for GC is similar.

Definition 3 (Distance d Johnson graph). For a set of n elements, the
graph Jd(n,m), 0 ≤ d ≤ m, has as vertices all m-subsets. Two vertices a, a′ are
adjacent whenever m − d ≤ |a ∩ a′|. When d = 1, we have a Johnson graph,
denoted J(n,m).

We have our basic theorem, for a,b ≥ 1, c, r ≥ 0, and n = a + b + c + r.
The basic, most studied case, is when c = 1, r = 0, or c = 0, r = 1.

Theorem 1. The graph GB for signature (a,b, c) is equal to the graph Jc+r(n,a).
In particular, GB is a Johnson graph, J(n,a), exactly when c+ r = 1. Similarly,
GC is equal to Jb+r(n,a).

Notice that when d = 0 the graph Jd(n,m) has no edges. Thus, when c+r = 0
the graph GB has no edges.

The vertices of A that B considers possible with input b, are the A-neighbors
of (B, b) in I. They are denoted Kp(b̄), where b̄ = D − b. They induce a click
in GB (overloading notation the click itself is also sometimes denoted by Kp(b̄)).
The vertices in Kp(b̄) are all a ⊆ b̄ with |a| = a. Thus, when B has input b, B
considers possible that A has any input a, a ∈ Kp(b̄). Notice that if c + r = 0
and n = a + b, then B with input b considers possible only one input for A,
namely, b̄. In this case, E(GB) = ∅.
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Lemma 2. For each hand b of B, the possible inputs of A induce a click Kp(b̄)

in GB, p =
(
n−b
a

)
, consisting of all a ∈Pa(D), such that a ⊂ b̄. Similarly, for

GC , the vertices Kp(c̄) consisting of all a ∈ Pa(D) such that a ⊂ c̄, induce a
click in GC .

We have illustrated the following in the figure of the Introduction.

Remark 2 (Subgraphs). If b ≤ c then Jb+r(n,a) is a subgraph of Jc+r(n,a) on
the same set of vertices. Hence, for each b ∈Pb(D), c ∈Pc(D), both Kp(b̄) and
Kp(c̄) induce clicks in Jc+r(n,a). Furthermore, if b ⊆ c, then Kp(c̄) ⊆ Kp(b̄).

3.2 Johnson graphs

Johnson graphs have been thoroughly studied, see Appendix B. We recall some
basic notions here, which are especially relevant to this paper.

The vertices of a Johnson graph J(n,m) consist of the m-element subsets
of an n-element set; two vertices are adjacent when the intersection of the two
vertices consists of (m− 1)-elements. We need the distance d version, Jd(n,m)
of Definition 3. When d = 1, Jd(n,m) = J(n,m).

Let δ(a, a′) denote the distance between vertices a, a′ in J(n,m). Then,
δ(a, a′) = k iff |a∩a′| = m−k. Or, in terms of symmetric difference, δ(a, a′) = k iff
|a4a′| = 2k. One can show by induction that J(n,m) has diameter min {m,n−m}.
Thus, for all d ≥ min {m,n−m}, Jd(n,m) is the complete graph on

(
n
m

)
ver-

tices.
It is easy to see and well-known that J(n,m) is isomorphic to J(n, n −m).

The same holds for the distance d version.

Lemma 3. The following are isomorphic graphs Jd(n,m) ∼= Jd(n, n−m).

Proof. Consider vertices a, b of Jd(n,m), and their complements ā, b̄. Thus, |a| =
|b| = m, and |ā| = |b̄| = n −m. The isomorphism f is f(a) = ā and f(b) = b̄.
By definition, m− d ≤ |a ∩ b| ≤ m− 1 iff (a, b) ∈ E(Jd(n,m)). Let k = |a ∩ b|.
Then, |ā ∩ b̄| = n − m − k, hence, n − m − d ≤ n − m − k ≤ n − m − 1, so
(ā, b̄) ∈ E(Jd(n, n−m)), and the lemma follows.

Remark 3 (Maximal clicks). There are two families of maximal cliques in J(n,m).
For the first, take all n −m + 1 of the m-subsets that contain a fixed (m − 1)-
subset; for the second, take the m-subsets of a fixed set of size m + 1. When
n = 2m the cliques in these two families have the same size. Maximality of the
cliques is implied by Erdös–Ko–Rado Theorem [32, Chapter 6]. In the case of
Jd(n,m), we have already encountered one family in Lemma 2. For each (m+d)-
subset b̄, there is a click in Jd(n,m), denoted Kp(b̄). The vertices of Kp(b̄) are
all m-subsets of b̄. We will encounter the other family as well, K ′p(b). A click
K ′p(b) is obtained by taking the m-subsets that contain a fixed (m−d)-subset b.

We recall a simple but useful shifting technique in Johnson graphs, and even
more generally in intersecting set families [32], we use the following version. For
a hand a, and cards i, j, with i 6∈ a, j ∈ a,

aij = (a \ j) ∪ {i} ,
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denoted by an arc a
ij−→ aij . Notice that, {a, aij} ∈ E(J(n,m)), and if a′ is

reachable from a by d arcs, then {a, a′} ∈ E(Jd(n,m)).
For a hand s, we say that a′ is s-reachable from a if there is a directed path

from a to a′ defined by a (possibly empty) sequence of arcs
ij−→, all of them with

i ∈ s. (For the following cf. [50, Lemma 1]).

Lemma 4. Let a ∈ V (Kp(b̄)). Let s = b̄ \ a. Thus, |s| = d. Then, V (Kp(b̄)) is
the set of s-reachable vertices from a.

Proof. First, notice that a is s-reachable from itself. Now, let a′ be any other
vertex of Kp(b̄). If 2d′ = |a4a′|, d′ ≤ d, order the cards in a \ a′ as x1, . . . , xd′

and those in a′ \ a as x′1, . . . , x
′
d′ . Then, a′ is reachable from a by the path

a = a0
x′1x1−→ a1

x′2x2−→ a2 · · ·
x′
d′xd′−→ ad′ = a′.

We will need the following claims.

Lemma 5. Let Kp(b̄) be a click of Jd(n,m). For any set of k vertices, 1 ≤ k < p,
{a1, . . . , ak} ⊂ Kp(b̄), there exists a set s ⊂ b̄, |s| = d, such that for any ai,
ai ∩ s 6= ∅.
Proof. Pick a ∈ Kp(b̄) not in {ai}. Let s = b̄ \ a, |s| = d. Since Kp(b̄) is the
set of s-reachable vertices from a (Lemma 4), all other vertices in Kp(b̄) are
s-reachable from a, s = b̄ \ a. And hence, for the subset {ai} of those vertices,
we have that for any ai, ai ∩ s 6= ∅.

In particular, when d = 1, the following holds.

Lemma 6. Consider J(n,m) and any Km+1(b̄). For any set of k vertices, 1 ≤
k ≤ m+ 1, {a1, . . . , ak} ⊆ Km+1(b̄), it holds that | ∩ ai| = m+ 1− k.

Proof. Consider the ai vertices in order a1, . . . , ak, and the shiftings

a1
x′1x1−→ a2

x′2x2−→ a3 · · · ak−1

x′k−1xx−1−→ ak,

where ai+1 \ ai = x′i and ai \ ai+1 = xi. Thus, by induction on i, for each i ≥ 1,
|a1 ∩ a2 ∩ . . . ∩ ai| = m+ 1− i.

3.3 Protocol as vertex coloring of a Johnson graph

Consider a protocol PA for signature (a,b, c), with n = a + b + c + r. In light
of Theorem 1, we take the view of PA as a vertex coloring, PA : Pa(D) →M.
For vertex (A, a) ∈ I, PA(a) is the message M ∈ M, sent by A when she has
input a. We assume that PA is surjective. The set of A-vertices colored M is
P−1
A (M).5

Recall that a vertex coloring of a graph is proper if each pair of adjacent
vertices have different colors. The following theorems reformulate the informative
and safety notions of Definitions 1 and 2.

5 Thus, P−1
A (M) is equivalent to an “announcement” by A in the terminology of [4],

or the “alternative hands” for A, in the notation of [20, Proposition 24].
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Theorem 2 (Informative characterization). Let PA : Pa(D) → M be a
protocol.

– PA is informative if and only if PA is a proper vertex coloring of Jc+r(n,a).

– When c + r ≥ 1, PA is minimally informative if and only if for each b ∈
Pb(D) there is some edge {a, a′} in the click Kp(b̄) of Jc+r(n,a), such that
PA(a) 6= PA(a′).

Proof. The first condition (informative) is clearly necessary for the protocol to
be informative; if there is a vertex (B, b) such that two neighbours (A, a), (A, a′)
have the same color, M , then B cannot distinguish them, produces the same
output, δB(b,M). Conversely, if all vertices in Kp(b̄) have different colors, then
B with hand b will learn the hand of A. More formally, there is a function πb
of the colors of the A-neighbour of (B, b), for each (B, b) ∈ I, known a priori
to B, such that πb(M) = a when PA(a) = M . The decision function for B is
δB(b,M) = πb(M).

The second condition (minimally informative) is defined only when c+r ≥ 1,
and hence Kp(b̄) has at least two vertices. The condition is clearly necessary,
otherwise, when B has input b, he will output the same value on all of A possible
hands (and there are at least two), independently of what the hand of A is. If
B’s output is a set s, |s| = n − a − b, then it could be that the input of A
was actually a ⊂ D \ s, |a| = a. Conversely, let VM ⊂ Kp(b̄) be the subset of
vertices ai such that PA(ai) = M . Notice that 0 < |VM | < p, since there is an
edge {a, a′} ∈ E(Kp(b̄)) with χ(a) 6= χ(a′). By Lemma 5 there exists a set s ⊂ b̄,
|s| = c + r = n − a − b, such that for any ai, ai ∩ s 6= ∅. Thus, we may define
δB(b,M) = s.

Remark 4 (Informative). Some observations of the informative reformulation.

– Each edge of Jc+r(n,a) is in some click Kp(b̄). Thus, PA being a proper
vertex coloring is equivalent to the property that for all edges {a, a′} ∈
E(Kp(b̄)), it holds that PA(a) 6= PA(a′), for any such click. In contrast, the
minimally informative property requires only that not all edges of each click
have both endpoints colored equally.

– By Lemma 3, Jc+r(n,a) ∼= Jc+r(n, n − a), thus there is an informative
protocol for one if and only if there is an informative protocol for the other.
This equivalence does not generally hold for minimally informative protocols,
e.g. the protocol χ2 of Section 6.1.

The reason is that a click Kp(b̄) in Jc+r(n, n − a) translates into a click
K ′p(b) in Jc+r(n,a) (see Remark 3). When c + r = 1 safety is preserved, see
Theorem 5.

– If d = c + r, d′ = c′+x′, and d ≤ d′, then Jd(n,a) is a subgraph of Jd
′
(n,a)

(Remark 2). Thus, if PA is a proper vertex coloring of Jd
′
(n,a) then it is

also a proper vertex coloring of Jd(n,a) (similarly, for n′ > n).

We have the following special case. By Lemma 6, for the case when c+ r = 1
(recall Theorem 1), we have that B learns at least one card of A.
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Lemma 7. Let c+r = 1. For a minimally informative protocol PA, there exists
a decision function for B, δB, such that when the hand of A is a and PA(a) = M ,
then δB(b,M) = x, for some x ∈ a.

Recall from Section 3.1 the graph GC . The vertices of GC consist of all the
A-vertices of I. There is an edge joining two vertices (A, a), (A, a′) if and only if
there are edges in I connecting them with the same vertex (C, c). Then, V (GC) =
V (GB) = Pa(D), and for two distinct hands a, a′ of size a, {a, a′} ∈ E(GC) iff
∃c ∈Pc(D) such that a, a′ ⊆ c̄ = D− c. Namely, we have the graph Jb+r(n,a),
whereKp(c̄) induces a click, for every c ∈Pc(D). In the following the set of colors
of vertices of a click is denoted, PA(Kp(c̄)) = {M | P (a) = M,a ∈ Kp(c̄)}.

Theorem 3 (Safety characterization). Let PA : Pa(D)→M. The following
conditions are equivalent.

1. PA is safe.
2. Consider any c ∈ Pc(D), and any y ∈ c̄. For each M ∈ PA(Kp(c̄)), there

exist a, a′ ∈ Kp(c̄) with PA(a) = PA(a′) = M such that y ∈ a4a′.

Proof. The equivalence is straightforward, recalling the one-to-one correspon-
dence between hands c, |c| = c and C-vertices of I, and observing that c∩ a for
an A-hand a is equivalent to the existence of a deal I ∈ I including (A, a), (C, c).
Indeed, for any a in P−1

A (M), there exists one c, |c| = c with c ∩ a = ∅.

Remark 5 (Safety).

– Informative requires PA to be a proper vertex coloring of Jc+r(n,a), while
safety requires that PA is not a proper vertex coloring of Jb+r(n,a).

– Thus, by Remark 2, a protocol can be informative and safe only if b > c.
In this case, while Kp(c̄) induces a click in Jb+r(n,a), it does not induce a
click in Jc+r(n,a), by Remark 3. (cf. [4, Lemma 2]).

– Joining color classes P−1
A [M ] ∪ P−1

A [M ′] of a protocol preserves safety, but
not necessarily informative properties (see Section 6.2).

Notice that it could be that there is a hand c for C, for which some message
M is never sent by PA. But as was observed in [12, Proposition 6], with protocols
that send the sum of the cards modulo n this is not the case, see Section 6 and 7.

The following argument is similar to [20, Proposition 29].

Lemma 8. Let a ≥ 2, c ≥ 1, PA be a safe protocol. Consider any M . For any
vertex a ∈ P−1

A (M), any z ∈ a, and any card y, there must be another vertex
a′ ∈ P−1

A (M) that also includes card z, and y ∈ a4a′.

Proof. Suppose that y ∈ a (the other case is similar). Since PA is safe, there
must be another vertex in P−1

A (M) that does not include y. Consider all vertices
in P−1

A (M) that do not include y, denoted Vȳ . If one of them also includes z we
are done.

Thus, suppose that none of them contains z. Let a′ ∈ Vȳ be such that y 6∈ a′.
Thus, z is also not in a′ (else we are done).
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Consider a c-hand c that contains y in the complement of a′. Thus, C with
hand c may hear M , but if so she knows that A does not have card z, a contra-
diction to the safety of PA.

Notice that c ≥ 1 is necessary, otherwise, Lemma 8 may not hold; an example
is protocol χ1 of Theorem 8. And clearly, a ≥ 2 is also necessary for the lemma
to hold.

Remark 6 (The assumption a ≥ 2). A simple consequence of Theorem 3 is that
we should concentrate on the case that a ≥ 2. If a = 1 then a safe protocol
PA must always send the same message M . Otherwise, if PA(y) 6= PA(y′) for
y, y′ ∈ D, then when C has a hand c, such that y, y′ ∈ c̄, then when C hears
PA(y) she knows that A does not have card y′. Thus a safe protocol PA cannot
be minimally informative, and thus cannot be informative either.

3.4 Chromatic numbers

For an informative, not necessarily safe protocol, the minimum number of bits
to communicate her full hand is log2 χ, where χ is the chromatic number of
Jc+r(n,a). In the case of c + r = 1, namely a Johnson graph, computing the
chromatic number is an important open question e.g. [32, Chapter 16]. It is
however known that n/2 ≤ χ(J(n,a)) ≤ n and hence, when c + r = 1, the
number of bits necessary and sufficient for an informative protocol is Θ(log n).
We show in Section 8 that in general, the number of bit is Θ((c + r) log n).

The safe chromatic number of Jd(n,m), d = c + r, denoted χsf , is the
cardinality of the smallest color set M for which the graph has a safe proper
coloring, or ∞ if no such coloring exists. We will see cases where it is ∞ in
Theorem 6. Recall that the safety property depends on c, which is why we have
to specify that d = c + r. For the same c, we have that χ ≤ χsf . As we shall
see in Section 5, there are cases where χ < χsf , namely, χ(J(7, 3)) = 6 and
χ(J(7, 3)) = 7.

Similarly, χmin is the cardinality of the smallest color set M for which the
graph has a minimal informative coloring, and if we require additionally safety,
then it is denoted χsfmin. Thus, χmin ≤ χsfmin ≤ χsf . We will see that χsfmin
can be much smaller than χsf . In an extreme case, for n even, we have that
χsfmin(J(n, n/2)) = 2 (Corollary 2), while χsf (J(n, n/2)) ≥ χ(J(n, n/2)) > n/2
(since χ(J(n,m)) ≥ max {n−m+ 1,m+ 1}, see Appendix B).

4 Russian cards problems

In Section 4.1 we present the generalized Russian cards problem and discuss its
relation with our information transmission problem. Some general bounds that
will be useful later on are in Section 4.2.
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4.1 The problem statement

The Russian cards problem has signature (3, 3, 1), and the generalized Russian
cards problem has signature (a,b, c). The players A, B and C each draw a, b
and c cards, respectively, from the deck D of n = a + b + c + r cards. In this
context, two-step protocols have been thoroughly studied, usually when r = 0.
First A and then B makes an announcement, both heard by C. If a protocol
PA is informative and safe, and r = 0, one may assume that PB , the protocol
of B, is simply to announce C’s set of cards. First, since the protocol PA is
informative, B knows the cards of A after A’s announcement, and hence he can
deduce the cards of C. After the announcement PB , A can deduce the cards of
B. The announcement made by B is the set of cards of C, and hence does not
give any new information to C.

We consider also the case where r > 0. Then on input b, once B learns the
hand a of A, he announces D \ (a ∪ b), a superset of C’s hand. We work under
this security assumption for r > 0. Namely, that we allow C to learn only cards
that are not held by either A or B. Among the cards held jointly by A and B,
she does not learn who holds which card. With this clarification, we continue
to focus only in PA, the protocol of A. We have the following consequence of
Theorem 2.

Theorem 4. There is a 2-step solution for the Russian problem (a,b, c), n =
a + b + c + r with A making the first announcement, if and only if there is a
safe proper coloring of Jc+r(n,a).

4.2 General bounds

In light of Theorem 4, we keep on presenting our results in terms of safe proper
colorings of Jc+r(n,a), but one should keep in mind that they are all bounds on
when there is a 2-step solution for the Russian problem (a,b, c), n = a+b+c+r
with A making the first announcement.

Recall that when c+r = 1 there are two cases: c = 1, r = 0, and c = 0, r = 1.
Thus, the fallowing has two instantiations. The cases (a,b, 1) and (b+1,a−1, 1),
and the cases (a,b, 0) and (b+1,a−1, 0). Remarkably, the following result does
not hold for minimally informative protocols (see Corollary 2).

For a protocol PA : Pa(D) → M, the protocol P̄A : Pn−a(D) → M is
defined by

P̄A(a) = PA(ā),

where as usual, ā = D \ a.
The following shows that there is a safe proper coloring of J(n,a) iff there is

a safe proper coloring of J(n, n− a).

Theorem 5 (duality). Assume c + r = 1, so n = a + b + 1. A protocol PA
is informative and safe for (a,b, c) if and only if the protocol P̄A is informative
and safe for (b + 1,a− 1, c).
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Proof. There are two cases: c = 1, r = 0, and c = 0, r = 1. First we show the
equivalence for the informative property, in both cases.

Notice that n− a = b + 1. By Lemma 3, we have that J(n,a) ∼= J(n, n− a),
under the isomorphism f(a) = ā. Thus, if PA is an informative, i.e., proper
vertex coloring of J(n,a), then P̄A(a) = PA(f(a)) is a proper vertex coloring of
J(n, n− a).

Now, consider the case c = 1, r = 0, and assume that PA is safe for (a,b, 1).
That is, for every card c ∈ Pc(D), c = 1, y ∈ c̄, and M ∈ PA(Kp(c̄)), there
exists a, a′ ∈ Kp(c̄), PA(a) = PA(a′) = M such that y ∈ a4a′.

To prove that P̄A is safe, we need to consider a card c ∈ Pc(D), and the
vertices of K ′p(c̄) in J(n, n− a), which are ā ∈Pn−a(D), such that ā ⊆ c̄.

Let y ∈ c̄, ā ∈ K ′p(c̄) with P̄A(ā) = M . Suppose y ∈ a (the case when y 6∈ a
is similar).

Thus, PA(a) = M and c ∈ a. By Lemma 8 there exists a′ ∈Pa(D), y 6∈ a′,
PA(a′) = M , such that c ∈ a′.

Now, let a′ ∈ Pa(D), y 6∈ a′, PA(a′) = M , with c ∈ a′. Then, c is in
both a and a′, and hence c is in neither ā nor ā′. Namely, ā, ā′ ∈ K ′p(c̄). But

P̄A(ā) = PA(ā′) = M . And we are done, because y ∈ ā4ā′.
For the converse, assume PA is safe for (b+1,a−1, 1) = (n−a,a−1, 1), and

consider c ∈Pc(D), and the vertices of Kp(c̄) in J(n,a), which are a ∈Pa(D),
such that a ⊆ c̄.

Let y ∈ c̄, a ∈ Kp(c̄) with PA(a) = M . Suppose y ∈ a (the case when y 6∈ a
is similar).

Consider ā, and hence P̄A(ā) = PA(a). Thus, c ∈ ā. By Lemma 8 there exists
ā′ ∈Pn−a(D), y 6∈ ā′, P̄A(ā′) = M , such that c ∈ ā′.

Then, c is in both ā and ā′, and hence c is in neither a nor a′. Namely,
a, a′ ∈ Kp(c̄). But PA(a) = PA(a′) = M . And we are done, because y ∈ a4a′.

Finally, we prove the safety equivalence, for the second case, where c = 0, r =
1. Solving the weak Russian cards problem for the case (a,b, 0) is equivalent to
solving it for the case (b + 1,a − 1, 0). This case is easier, it does not need
Lemma 8. If PA is safe for (a,b, 0), then we take c and c̄ as the empty set. Then,
for any y ∈ D, and M , there exists a, a′ such that PA(a) = PA(a′), such that
y ∈ a4a′. Then, y ∈ ā4ā′, which is what is needed for P̄A to be safe, since
P̄A(ā) = P̄A(ā′).

And the converse is the same. If P̄A is safe, then for every M , and any y, it
holds y ∈ ā4ā′ for some ā, ā′ of size n− a such that P̄A(ā) = P̄A(ā′). And thus,
y ∈ a4a′, with PA(a) = PA(a′).

For instance, there is solution for the (4, 2, 1) case, because it is equivalent
to a solution to (3, 3, 1), the classic Russian cards case6. However, there is no
solution for the (2, 4, 1) case, as we show in the next theorem (and was observed
in [4]). The reason is that in this case we get the graph J(7, 2), which has no safe

6 This is the example of [4], “we get a 7-line good announcement for (4, 2, 1). It may
further be observed that this is the complement of a 7-line good announcement for
(3,3,1) as found above (for no apparent reason related to designs)”.
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proper coloring. Thus, while we assume that A makes the first announcement;
to analyze the other case, one may exchange values of a and b. It may be more
convenient that A makes the first announcement, or that B makes it, in terms
of both solvability and communication complexity. For the first case, a coloring
has to be found for J(n,a), and for the second case, one for J(n,b).

Theorem 6. If c + r ≥ min {a, n− a} − 1, c ≥ 1, then there is no safe proper
coloring of Jc+r(n,a).

Proof. Recall that the diameter of J(n,a) is min {a, n− a}. If c + r = d ≥
min {a, n− a} then Jd(n,a) is a complete graph, and each vertex must have a
different color, so if A announces M then C learns that her hand is the single
hand in χ−1(M).

Assume therefore that d = min {a, n− a}− 1, a ≥ 2. We have that {a, a′} ∈
E(Jd(n,a)) iff |a ∩ a′| ≥ 1. If χ is a safe proper coloring, consider a vertex
a ∈ χ−1(M) that includes some card x, for some color M . The safety requirement
implies that there must be another vertex a′ ∈ χ−1(M) that also includes card
x, by Lemma 8, since c ≥ 1. A contradiction to the claim that χ is a proper
coloring, because then |a ∩ a′| ≥ 1.

The requirement that c ≥ 1 is needed. Suppose c = 0. For the case n =
4,a = 2,b = 1, r = 1, the following PA a safe proper coloring of J(4, 2), with
three messages 0, 1, 2.
P−1
A [0] = {01, 23}
P−1
A [1] = {02, 13}
P−1
A [2] = {03, 12}

Recall that a protocol can be informative and safe only if b > c (Remark 5).
Thus, combining this fact with Theorem 6, we get the following.

Corollary 1. There is no informative and safe protocol if c ≥ b or if c + r ≥
min {a, n− a} − 1, c ≥ 1.

There are several particular cases of interest, some previously observed7.

5 Six messages solutions to the Russian cards problem

We study the classic Russian cards problem [20], with signature (3, 3, 1), and
also we consider the weak variant where C gets no cards at all, (3, 3, 0), both
with n = 7. By Theorem 1 in both the classic or the weak variant, we need to
consider colorings of the Johnson graph J(7, 3). These provide concrete examples
of the previous ideas.

7 Using two different proof techniques, it was shown that if a ≤ c + 1, there is no
informative and safe solution (r = 0), in [4, Corollary 2]) and [53, Theorem 6].
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The classic Russian cards problem with signature (3, 3, 1) and n = 7 has
been thoroughly studied, an exhaustive analysis can be found in [20]8. It is well-
known that there is a uniform solution with seven messages (Theorem 12), each
announcement of the same size. Only one solution is known that we are aware of
with six messages [53], non-uniform. We show there is no uniform safe solution
with 6 announcements (where all except one announcement are of the same size).

5.1 Upper bounds: information transmission with 6 messages

The chromatic number of Johnson graphs has been well studied e.g. [24], but
in general, determining the chromatic number of a Johnson graph is an open
problem [32, Chapter 16]. It is known that χ(J(7, 3)) = 6, and hence there is
an informative protocol with 6 messages, and no less9, by Theorem 2. We also
present an explicit solution below, which is informative, but not safe for the weak
version, and then a solution that is informative and safe for the weak version,
but not for the classic version. At the end we prove there is no uniform solution
with 6 messages for the classic version.

Theorem 7. There is an informative (non-safe) protocol for the Russian cards
problem sending 6 different messages, and this is optimal.

While GB = J(7, 3) is the same for the Russian cards problem and for its
weak version, for the protocol to be safe one needs to consider the possible inputs
of C. In the Russian cards problem, the C-vertices are Pc(D), c = 1, while in
the weak version, there is a single C-vertex, (C, ∅). We will show, that the graph
J(7, 3) has a safe proper coloring in either version. Thus, there are solutions to
the weak problems (3, 3, 0) and (4, 2, 0), and similarly, for the classic problems,
(3, 3, 1) and the (4, 2, 1), by the duality Theorem 5.10

In the case of the weak Russian cards problem, there is a solution using 6 dif-
ferent messages. Namely, for J(7, 3), the informative and safe chromatic number
w.r.t. V (GC) = ∅ is equal to the chromatic number χp = χ = 6. Complemen-
tary protocols (Theorem 5) solve the cases (3, 3, 1) and (4, 2, 1), using 6 different
messages, and this is optimal in terms of the number of messages (colors).

Theorem 8. There is a solution for the weak Russian cards problem with 6
messages, and this is optimal.

8 Notice that for a given deal, there are 102 “direct exchanges” for the Russian cards
problem [20, Corollary 41]. The direct exchanges are characterized in this paper, and
the characterization can be naturally rephrased in our framework. A direct exchange
corresponds in our notation to a color class, χ−1(M), the set of hands of A on which
the protocol sends message M .

9 The same lower bound is [53, Theorem 4], proved by reduction to a combinatorial
design theorem.

10 This explains the issue raised in [4] (Example p.12): “ Applying this construction,
we get a 7-line good announcement for (4, 2, 1). It may further be observed that this
is the complement of a 7-line good announcement for (3, 3, 1) as found above (for no
apparent reason related to designs).”
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First, it is not hard to design proper 6-colorings of J(7, 3), the following is
an example:
χ−1[0] = {012, 034, 056, 135, 146, 236, 245}
χ−1[1] = {016, 024, 035, 123, 145, 256, 346}
χ−1[2] = {015, 023, 046, 124, , 136, 345}
χ−1[3] = {013, 026, 045, 125, 234, 356}
χ−1[4] = {014, 025, 036, 126, 456}
χ−1[5] = {134, 156, 235, 246}
For each i ∈ {0, 1, 2, 3, 4} the coloring is safe, because there are vertices a, a′ ∈
χ−1[i], with x ∈ a and x 6∈ a′, for each x ∈ {0, . . . , 6}. However, this coloring is
not safe w.r.t. c = 0, i.e. for the weak version, because there is no a ∈ χ−1[5],
with 0 ∈ a. That is, if C listens to announcement 5 she learns that A does not
have card 0.

To obtain a safe coloring w.r.t. c = 0, we may fix χ−1[5] by adding a vertex a
that contains card 0, but taking care that a is not adjacent to any vertex already
there. We construct a safe variant χ1 of χ, by removing the vertex a1 = {012}
from χ−1[0] and adding it to χ−1

1 [5]. We get the following 6 coloring, safe w.r.t.
c = 0, because by removing a1 from χ−1[0] we have not disrupted the safety of
the announcement 0.

χ−1
1 [0] = {034, 056, 135, 146, 236, 245}
χ−1

1 [1] = {016, 024, 035, 123, 145, 256, 346}
χ−1

1 [2] = {015, 023, 046, 124, 136, 345}
χ−1

1 [3] = {013, 026, 045, 125, 234, 356}
χ−1

1 [4] = {014, 025, 036, 126, 456}
χ−1

1 [5] = {012, 134, 156, 235, 246}

However, the previous coloring, is not safe w.r.t. the Russian cards problem,
where the C-vertices are Pc(D), c = 1. For example, if C has card 1 and A
announces color 5, then C knows that A has hands 235 or 246, and can deduce
that A has card 2 and also that she does not have card 0. Also, if C has card 0
and A announces color 4 then she knows that A has hands 126 or 456, and can
deduce that A does not have 3 and she has 6.

There is an informative and safe coloring of the Russian cards problem with
six messages [53],
χ−1

2 [0] = {013, 026, 045, 124, 156, 235, 346}
χ−1

2 [1] = {015, 023, 046, 126, 134, 245, 356}
χ−1

2 [2] = {016, 024, 035, 123, 145, 256}
χ−1

2 [3] = {012, 036, 135, 234, 456}
χ−1

2 [4] = {056, 034, 125, 146, 236}
χ−1

2 [5] = {014, 025, 136, 246, 345}
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5.2 Impossibility of uniform solutions

Here we discuss a new technique to study the structure of six message solutions to
the Russian cards problem. The previous solution with six messages, partitions
the 35 hands of A into color classes of size 5, 5, 5, 6, 7, 7. We prove now that this
is optimal for a six message uniform solution, namely, two color classes must
be of size 7. Thus, there is no solution with six messages with classes of sizes
5, 6, 6, 6, 6, 6 nor 5, 5, 6, 6, 6, 7.

Theorem 9. There is no uniform solution to the Russian cards problem with
six messages.

Proof. Assume for contradiction that there is such a protocol PA, which parti-
tions all the 35 possible hands of A into 6 color classes. One class must have 5
hands, by a counting argument, not all can have at least 6, and it is not hard to
check that a color class cannot have only 4 hands. Also, a color class cannot have
more than 7 hands (as observed in [20]). Thus, the most uniform solution in-
duces a partition of sizes 5, 6, 6, 6, 6, 6. And the less-uniform solutions are either
of sizes 5, 5, 6, 6, 6, 7, or 5, 5, 5, 6, 7, 7.

A partition with 5 hands must have a single card, say 0, that appears in 3
hands. All other cards appear twice. There are 15 hands containing 0. Consider
all remaining 12 hands containing 0 in the other color classes, say 2 through 6.

In the remaining 5 classes there must be 3 with two hands containing 0, and
2 classes with three hands containing 0. Recall that each card must appear at
least twice in a color class, Lemma 8. Also, no color class can have 4 hands
containing 0, because then two hands would have an intersection of 2 cards (and
share an edge of J(7, 3), violating the properness of the coloring).

Consider three color classes of size 6, denoted a, b, c, each one has exactly two
hands containing 0. The case where one of these classes is of size 7, and hence
it has three hands containing 0, is similar; it will be discussed at the end.

The 3 color classes a, b, c with two hands containing 0 define a graph G0 on
the vertices D \ 0 = {1, 2, 3, 4, 5, 6}, each vertex representing a card. An edge of
this graph is colored with an element from {a, b, c}, meaning that if an edge x, y
is colored i, then the hand 0xy is in class i ∈ {a, b, c}.

Since two hands in a class cannot have an intersection of more than one card,
it follows that the edges of the same color are independent in G0.

Now, assume for contradiction that a vertex, say 1, has degree 3. The three
edges {1, v1} , {1, v2} , {1, v3} are colored with different elements from {a, b, c}.
As we shall see, this implies that 1 appears in three hands of each class, a, b, c.
Therefore, it appears in two hands, of each of the remaining classes, d, e, f . We
can thus consider the graph G1 on the vertices D \ 1, with edges colored with
elements from {d, e, f}, meaning that if an edge x, y is colored i, then the hand
1xy is in class i. The vertex 0 of G1 must then have degree 3, because as we
shall see, this is needed for 0 to appear three times in each class d, e, f . But
this implies that 0 is incident to one of v1, v2, v3, say vi, since the graph has
only 6 vertices. Namely, {0, vi} is and edge of G1, and {1, vi} is and edge of G0,
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G0

Fig. 3. First configuration on top 12, 34; 13, 56; 25, 46. Second configuration on bottom
12, 46; 13, 56; 25, 34. On the right part of the trees of possible ways of completing them.

so the hand 01vi appears twice, in a class of {a, b, c} and a class of {d, e, f}, a
contradiction to the assumption that a vertex has degree three in G0.

Thus, the edges of G0 either they form a cycle or two triangles. There are
two types of cyclic configurations for the three classes a, b, c with two hands
containing 0: either for each i ∈ {a, b, c}, the edges colored i are opposite in the
cycle or not. For instance, 12,34; 13,56; 25,46 (all plus 0) or else 12,46;13,56;25,34
(all plus 0). See Figure 3 for these two cyclic configurations, and Figure 4 for
the triangles case. These figures illustrate the case where 0 appears in exactly
two hands, and the color classes are of size 6.

We need to complete each set of two hands to form a color class of 6 hands,
by adding 4 more hands. These 4 more hands do not contain 0. The process to
do it, is represented by three graphs, Ga, Gb, Gc. Now the vertices of the graph
Gi, i ∈ {a, b, c} are the four cards spanned by the two independent edges of the
class Gi. There are four edges on these four vertices forming a cycle in each Gi;
each edge corresponds to a combination that does not appear in one of the two
independent edges of Gi (because two cards that already appeared in a hand,
cannot occur in another hand). The goal is to color these four edges, with the
two remaining colors (0 is no longer available, because it already appears in two
hands).

Notice that a loop on a vertex x could in principle be used, coloring it with
the two remaining colors, giving the hand xyz, if the two remaining colors are
yz. However, at most one such loop can be used (using two such loops, would
give hands with intersection yz, with violets the requirement that the color is
proper). And using a loop prevents using the two adjacent edges, leaving only
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Fig. 4. The a, b, c classes define two triangles. On the right part are the trees of possible
ways of completing first a, then b and then c, to have each 6 hands. Each hand is
represented by an edge.

the other two, non-adjacent edges to be used, ie, coloring only 3 edges. It follows
that no such loop can be used, because we need to color 4 edges, to obtain
together with the 2 hands containing 0, the total number of hands which is 6 in
the color class.

Consider all 4 combinations of taking one card from each pair (of 2 values
different from 0). Then add each of the two remaining cards to complementary
pairs, as illustrated in the figures. For example, in Figure 3, for the pairs (a) 12,34
one most add values 56. And there are only two options of getting independent
edges. Add 5 to 13 and to 24; add 6 to 14 and to 23, as in the figure. Or else
add 6 to 13 and to 24; add 5 to 14 and to 23.

Once 5 is added to 13 and to 24, and 6 to 14 and to 23, the next move is
determined, to complete class (b). In the figure a blue arrow shows that 146
would be in common to the next class, if we added 2 to 15 and 36; and 4 to
16 and 35. Thus, the only option is the complementary choice. But then, either
way, it is not possible to add 1 and 3 to class (c). In the figure one choice is
shown, where 236 is repeated in classes (a) and (c). The reader can verify that
in either of the two types of configurations, this process cannot be completed.
The full tree for for the first configuration is in Figure 11.

To complete the proof, we describe how to deal with a class of size 7, where
0 occurs in 3 hands. Actually, exactly the same argument is used, considering
two hands that contain 0. This is illustrated in Figure 5, where the hand 015 of
class c is underlined, to indicate that it does not play a role on the right side
of the figure (in fact, this prevents it from using 15 to label a loop). Namely, in
the figure, the two hands of class (c) are selected, 023, 046, to complete them
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with 4 hands not containing 0, into a color class of size 7 (together with 015).
Thus, we have the vertices 1245 on the graph for color class (c) on the right,
and the possible combinations represented by four edges forming a cycle. Each
edge must be colored with 1 or 5, forming two independent edges colored 1 and
5. The tree of possibilities is therefore the same as before.
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Fig. 5. Color class c is of size 7, where 0 is in three hands, 023, 046, 015. The first two
hands 023, 046 play the same role, as in the other figures. They have to be completed
with four more hands, to make a total of 7 hands.

6 Minimal information transmission

We study first the protocol, χ2, that sends the sum of the cards modulo 2. The
techniques are simple, but serve as an introduction to the more complicated case
of χmodn, the mod n version of this protocol, studied in Section 7.

We show in Section 6.1 that χ2 is minimally informative only if b < bn/2c.
Thus, χ2 is not minimally informative for the classic Russian cards case (3, 3, 1).

In Section 6.2 we describe how to transform an informative protocol into a
minimally informative protocol. Applying the reduction to χmodn, when c+r = 1,
as a grows from 3 up to roughly n/2, the number of different messages goes down
from n/3 to 2.

This reduction shows that there is a safe minimally informative protocol for
the Russian cards case (3, 3, 1) using 3 messages. Finally, we present a solution
to the Russian cards case using only 2 messages, in Section 6.3. Given that there
is no uniform safe informative protocol using 6 messages (Theorem 9), indeed
this 2-message protocol splits color classes of an informative protocol.

6.1 Minimal information with 2 messages

For signature (a,b, c), with n = a+b+c+r, consider a protocol χ2 : Pa(D)→
{0, 1}, defined by

χ2(a) =
∑

x ∈ a (mod 2).
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The protocol χ2 is minimally informative Recall Lemma 2. For each input
vertex (B, b) denoting that B gets hand b, there are m =

(
n−b
a

)
possible hands

ai for A, corresponding to vertices (A, ai). In Jc+r(n,a) these vertices form a
maximal click Kp(b̄) of GB , p =

(
n−b
a

)
, consisting of all hands a ⊂ b̄, |a| = a. If

b ≥ bn/2c then for b of size b, b̄ may consist of cards of the same parity, and
thus all a ⊂ b̄, |a| = a have the same parity, and χ2 is not minimally informative.

Lemma 9. Assume that c + r ≥ 1, a ≥ 1, b < bn/2c. Then χ2 is a minimally
informative protocol.

Proof. We use two facts. Since b < bn/2c then |b̄| > n − bn/2c, for any b with
|b| = b, and b̄ must contain both even and odd cards. Since c+r ≥ 1 (as required
by the minimally informative definition), then a < |b̄|.

To show that χ2 is minimally informative, consider any click Kp(b̄). Let a ⊂ b̄,
|a| = a, be a vertex of Kp(b̄) with the largest number of odd cards. Since there
are both even and odd cards in b̄, a contains at least one odd card, y. Since
a contains the largest possible number of odd cards, it contains the minimum
number of even cards. Thus, there is at least one even card y′ ∈ b̄ \ a, given
that |a| < |b̄|. Let a′ = (a \ y) ∪ y′. Thus, a′ is also a vertex of Kp(b̄), and
χ2(a) 6= χ2(a′).

The protocol χ2 is safe Lemma 9 implies that χ2 is minimally informative
when n = 7,a = 3,b = 2, c = 2, r = 0, namely, for J2(7, 3). But it is not safe,
because if C has hand {1, 3} and the announcement is 0 she knows that A does
not have card 5. Or if the announcement is 1, she knows that A has card 5. More
generally, the number of odd cards in D is bn/2c. If c = bn/2c− 1 then when C
holds c odd cards she can deduce from the announcement whether A holds the
remaining odd card. Thus, assume that c ≤ bn/2c − 2, and additionally, a ≥ 2
(Remark 6).

In Section 7.3 we discuss the modulo n case and the relation of proving safety
with additive number theory. The proof here for the modulo 2 case provides a
simple illustration of the ideas.

The safety characterization of Theorem 3(2) instantiated for protocol χ2,
says that (cf. [12, Proposition 6]) χ2 is safe (with respect to c) if and only
if for each c-set c, y ∈ c̄, and M ∈ {0, 1}, there exists two a-sets a, a′ ∈ c̄,
χ2(a) = χ2(a′) = M such that y ∈ a4a′.

Lemma 10. Assume that a,b ≥ 2 and c ≤ bn/2c − 2. Then χ2 is a safe
protocol.

Proof. Consider any c-set c, and y ∈ c̄. Let z, z′ ∈ D\(c∪y) be cards of different
parity, which they exist because c ≤ bn/2c−2. First, let a1 be any a-set in c̄ that
does not include y, and which includes z but not z′, which exists because b ≥ 2.
Let a2 = (a1 \ z) ∪ z′. Thus, χ2(a1) 6= χ2(a2). Similarly, let a′1 be any a-set in
c̄ which includes y, and which includes z but not z′. And let a′2 = (a′1 \ z) ∪ z′.
Thus, χ2(a′1) 6= χ2(a′2).
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We are done, because for each M ∈ {0, 1}, there is one i ∈ {1, 2} such
that χ2(ai) = M and does not include y, and there is one i ∈ {1, 2} such that
χ2(a′i) = M and does include y.

Combining Lemma 9 and Lemma 10 we get the following theorem.

Theorem 10. Let n = a + b + c + r. If a,b ≥ 2, c ≤ bn/2c− 2, c + r ≥ 1, and
b < bn/2c, then χ2 is minimally informative and safe.

Thus, for example, when n = 7, a = 3, b = 2, c = 1, r = 1, namely, J2(7, 3),
then χ2 is both minimally informative and safe. Similarly for n = 7, a = 4,
b = 2, c = 1, r = 0, namely, J(7, 4). Which is interesting, because it shows that
the duality Theorem 5 does not hold for minimally informative protocols; notice
that J(7, 4) ∼= J(7, 3), but χ̄2 is not minimally informative for J(7, 3) (neither
is χ2). More generally, for the Russian cards case, we get the following.

Corollary 2. Assume c + r = 1. Then, χ2 is minimally informative and safe,
whenever a > dn/2e − 1 and b < bn/2c.

6.2 Reducing informative to minimally informative protocols

As observed in Section 6.1, the protocol χ2 is not minimally informative when
a ≤ dn/2e − 1 or b ≥ bn/2c, and thus, in particular, for the Russian cards
problem (3, 3, 1), r = 0. We present here a protocol for this case, based on the
χmodn protocol studied in Section 7. Notice that the protocol χmodn is safe and
informative when c + r = 1.

The protocol uses the idea that, merging two color classes of a protocol PA,
P−1
A [M ] ∪ P−1

A [M ′], leads to a new protocol that preserves safety (but possibly
not informative properties). Actually, the idea works for any safe and informative
protocol PA : Pa(D)→M. If |M| = m, let us denote M = Zm.

If PA : Pa(D)→ Zm is a safe proper coloring of Jc+r(n,a), c + r ≥ 1, define

the protocol, P
[p]
A : Pa(D)→ Zdm/(p−1)e, where

P
[p]
A (a) = PA(a) (mod dm/(p− 1)e),

p =
(
a+c+r

a

)
=
(
n−b
a

)
.

Theorem 11 (Information reduction). If PA is a safe and informative pro-

tocol then P
[p]
A is a safe and minimally informative protocol. Thus, if m is the

different number of messages used by PA, then dm/(p− 1)e is the number of

messages used by P
[p]
A .

Proof. Notice that each color class of P
[p]
A consists of a union of at most p − 1

color classes of PA. Since the protocol P
[p]
A is defined in terms of merging color

classes of PA, if PA is safe then P
[p]
A is safe (follows directly from Theorem 3).

Furthermore, P
[p]
A is minimally informative, because the number of vertices in

a click Kp(b̄) is p =
(
a+c+r

a

)
=
(
n−b
a

)
. Since PA is informative, any two vertices
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of Kp(b̄) belong to different color classes of PA. Since each color class of P
[p]
A

consists of at most p− 1 color classes of PA, then not all such p vertices can be

assigned the same color by P
[p]
A .

In the case of c + r = 1, the protocol χmodn studied in Section 7 is a safe
and informative protocol (Theorem 12), using n different messages. In this case,
p = a + 1. Thus we have the following.

Corollary 3. The protocol χ
[a+1]
modn is minimally informative and safe for a,b ≥

3, c + r = 1, using dn/ae different messages. In particular, it uses 3 messages
for the case (3, 3, 1), r = 0.

Notice that not every minimally informative safe protocol can be obtained by
reduction from an informative protocol. Theorem 10 states that χ2 is minimally
informative and safe in some cases where

c ≥ b or c + r ≥ min {a, n− a} − 1. (1)

For instance, the case of signature (6, 6, 8), r = 0, satisfies the hypothesis of the
theorem and hence χ2 is minimally informative and safe. But recall that in such
cases (1) there is no informative and safe protocol (Corollary 1).

6.3 A solution to the Russian Cards problem with two messages

In this section we present a solution found by Zoe Leyva-Acosta and Eduardo
Pascual-Aseff, using a computer program. The following protocol χ is a mini-
mally informative 2-coloring of J(7, 3).

χ−1(0) = {012, 013, 014, 015, 016, 023, 024, 025, 036, 046, 056, 126, 134, 135,
234, 236, 245, 246, 345, 356, 456}

χ−1(1) = {026, 034, 035, 045, 123, 124, 125, 136, 145, 146, 156, 235, 256, 346}

In Table 1 we show for each 3-set b, how χ partitions the 3-set vertexes in
Kp(b̄) into two color classes, so that the reader can verify that this is in fact a
minimally informative coloring for J(7, 3). To verify that χ is also a safe coloring,
in Table 2 we show how χ partitions Kp(c̄) for each card c into two color classes.
The reader can check that in all such partitions and for any card other than c,
there is a hand which contains it and another that doesn’t.

7 The modular protocol χmodn for c + r = 1

For signature (a,b, c), with n = a + b + c + r, consider the protocol χmodn :
Pa(D)→ Zn, defined by

χmodn(a) =
∑

x ∈ a (mod n).

All operations in this section are modulo n, working in Zn, even when not ex-
plicitly stated. We show that χmodn is informative and safe when c + r = 1. It is
easy to see that χmodn is not informative when c + r > 1, and more complicated
techniques are needed, discussed in Section 8.
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b χ−1(0) ∩Kp(b̄) χ−1(1) ∩Kp(b̄) b χ−1(0) ∩Kp(b̄) χ−1(1) ∩Kp(b̄)

012 {345, 356, 456} {346} 126 {345} {034, 035, 045}
013 {245, 246, 456} {256} 134 {025, 056} {026, 256}
014 {236, 356} {235, 256} 135 {024, 046, 246} {026}
015 {234, 236, 246} {346} 136 {024, 025, 245} {045}
016 {234, 245, 345} {235} 145 {023, 036, 236} {026}
023 {456} {145, 146, 156} 146 {023, 025} {035, 235}
024 {135, 356} {136, 156} 156 {023, 024, 234} {034}
025 {134} {136, 146, 346} 234 {015, 016, 056} {156}
026 {134, 135, 345} {145} 235 {014, 016, 046} {146}
034 {126} {125, 156, 256} 236 {014, 015} {045, 145}
035 {126, 246} {124, 146} 245 {013, 016, 036} {136}
036 {245} {124, 125, 145} 246 {013, 015, 135} {035}
045 {126, 236} {123, 136} 256 {013, 014, 134} {034}
046 {135} {123, 125, 235} 345 {012, 016, 126} {026}
056 {134, 234} {123, 124} 346 {012, 015, 025} {125}
123 {046, 056, 456} {045} 356 {012, 014, 024} {124}
124 {036, 056, 356} {035} 456 {012, 013, 023} {123}
125 {036, 046} {034, 346}

Table 1. Color partitions of Kp(b̄) for each b, according to χ

c χ−1(0) ∩Kp(c̄) χ−1(1) ∩Kp(c̄)

0
{126, 134, 135, 234, 236, 245,
246, 345, 356, 456}

{123, 124, 125, 136, 145, 146,
156, 235, 256, 346}

1
{023, 024, 025, 036, 046, 056,
234, 236, 245, 246, 345, 356,
456}

{026, 034, 035, 045, 235, 256,
346}

2
{013, 014, 015, 016, 036, 046,
056, 134, 135, 345, 356, 456}

{034, 035, 045, 136, 145, 146,
156, 346}

3
{012, 014, 015, 016, 024, 025,
046, 056, 126, 245, 246, 456}

{026, 045, 124, 125, 145, 146,
156, 256}

4
{012, 013, 015, 016, 023, 025,
036, 056, 126, 135, 236, 356}

{026, 035, 123, 125, 136, 156,
235, 256}

5
{012, 013, 014, 016, 023, 024,
036, 046, 126, 134, 234, 236,
246}

{026, 034, 123, 124, 136, 146,
346}

6
{012, 013, 014, 015, 023, 024,
025, 134, 135, 234, 245, 345}

{034, 035, 045, 123, 124, 125,
145, 235}

Table 2. Color partitions of Kp(c̄) for each c, according to χ

7.1 χmodn is informative and coding theory

The result that χmodn is informative when c + r = 1 is known and easy [12].
But our perspective that this is equivalent to being a proper vertex coloring of
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J(n,a) exposes the connection with coding theory. It is actually the argument
(generalized in Section 8 to c + r > 1) behind a classic coding theory proof
that shows a lower bound on A(n, 4, w), the maximum number of codewords in
any binary code of length n, constant weight w, and Hamming distance 4 [33,
Theorem 1].

Lemma 11. For c + r = 1, χmodn is a proper vertex coloring of J(n,a), for
1 ≤ a < n.

Proof. Let a = {x1, x2, . . . , xa} and a′ = {x′1, x2 . . . , xa} be adjacent vertices of
J(n,a), x1 6= x′1. Thus, a ∩ a′ = {x2, . . . , xm} and a4a′ = {x1, x

′
1}. If a ≥ 2,

let k =
∑
x ∈ a ∩ a′ (mod n), else remove k from the following equation. Then∑

x ∈ a ≡ x1 + k (mod n), and
∑
x ∈ a′ ≡ x′1 + k (mod n). Thus, χmodn(a) 6=

χmodn(a′), since x1 6= x′1 and 0 ≤ x1, x
′
1 ≤ n− 1.

Notice that taking the sum modulo a number smaller than n may not give
a proper coloring. For example, for J(7, 3), a = {012}, a′ = {126}, ∑x ∈ a
(mod 6) =

∑
x ∈ a′ (mod 6) = 3. Yet, we know from Theorem 7 that there is a

proper coloring of J(7, 3) with 6 colors.

7.2 Additive number theory for safety

We have already hinted in Section 6.1 that proving that the modular protocol is
safe translates into a question about additive number theory. For each M ∈ Zn,
we look for solutions to the following linear congruence in Zn,

x1 + x2 + · · ·xa ≡M (mod n) (2)

with distinct xi ∈ Zn. Additionally, for any given c-subset c of Zn, we want that
no xi ∈ c. Such a solution is denoted a, since it corresponds to an a-set, a vertex
a ∈ Kp(c̄), and it is said to avoid c. For y ∈ Zn and a solution a to the linear
congruence, we say that y ∈ a, if y = xi for some xi in the solution. Finally, we
need to show that for any y ∈ Zn, y 6∈ c there are two c-avoiding solutions, a, a′,
such that y ∈ a and y 6∈ a.

The safety proofs are based on simple properties about solutions to equa-
tion (2), stated for the general case of c + r ≥ 1. And Lemma 14, which does
not talk about c + r at all.

We already used the shifting technique in Section 3.2. For a vertex a, and

cards i, j, with i 6∈ a, j ∈ a, aij = (a \ j) ∪ {i} , denoted by an arc a
ij−→ aij .

For set c, we say that a′ is c-avoiding-reachable from a if there is a directed path

defined by a (possibly empty) sequence of arcs
ij−→, all of them with i 6∈ c. The

weight of arc a
ij−→ aij is i− j, and the weight of a sequence of arcs is the sum of

their weights. We are interested in zero-sum paths, because if there is a zero-sum
path from a to a′, then χmodn(a) = χmodn(a′). We use the following simple idea
repeatedly, illustrated in Figure 6.
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Lemma 12. Let c be a c-set and a an a-set, a ⊆ c̄, with a ≥ 2. Consider two
cards z1, z2 ∈ a. If there exists an integer i, 1 ≤ i ≤ b(z2 − z1 − 1)/2c such that
both z1 + i 6∈ a ∪ c and z2 − i 6∈ a ∪ c, then let y1 = z1 + i and y2 = z2 − i. The
following is a zero-sum, c-avoiding path from a to a′

a
y1z1−→ a1

y2z2−→ a′.

Thus, χmodn(a) = χmodn(a′), and a′∩(c∪{z1, z2}) = ∅ and a∩(c∪{y1, y2}) = ∅.

An immediate application of Lemma 12 is the following, illustrated in Fig-
ure 6.

Lemma 13. Assume a ≥ 2, c ≥ 0, and a + c < n/2. Let c be a c-set and a an
a-set, a ⊆ c̄. For any two z1, z2 ∈ a there exist y1, y2 such that the following is
a zero-sum, c-avoiding path from a to a′

a
y1z1−→ a1

y2z2−→ a′.

Thus, χmodn(a) = χmodn(a′), and a′∩(c∪{z1, z2}) = ∅ and a∩(c∪{y1, y2}) = ∅.

Proof. Let `1 = z2− z1− 1 and `2 = z1− z2− 1. Thus, `1 is the number of cards
in the interval (z1, z2) and `2 is the number of cards in the interval (z2, z1).

Let i, 1 ≤ i ≤ b`1/2c be the smallest positive integer such that both z1 +
i 6∈ a ∪ c and z2 − i 6∈ a ∪ c. If there exists such an integer, we are done,
taking y1 = z1 + i and y2 = z2 − i, noticing that y1 6= y2, since i ≤ b`1/2c.
Figure 6 illustrates three cases. Otherwise, repeat the same argument on the
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Fig. 6. Case n = 12,a = 5, c = 1, r = 0 of Lemma 13, where a = {x1, x2, x3, x4, x5}.
In case (c) there is no two-step c-avoiding path for x1, x5

other side, and we are done if there exists i, 1 ≤ i ≤ b`2/2c such that both
z1 − i 6∈ a ∪ c and z2 + i 6∈ a ∪ c. Thus (if we are not done), there is a subset
a1 of {z1 + 1, z1 + 2, . . . , z2 − 1} such that a1 ⊆ a ∪ c, and |a1| ≥ b`1/2c, and
similarly, a subset a2 of {z1 − 1, z1 − 2, . . . , z2 + 1} such that a2 ⊆ a ∪ c, and
|a2| ≥ b`2/2c, and such that |a1|+ |a2|+ | {z1, z2} | = a + c.
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Hence, a+c ≥ b`1/2c+b`2/2c+2. But recall that `1 +`2 = n−2, and thus, a
simple case analysis about the parity of `1 and `2 shows that b`1/2c+b`2/2c+2 ≥
n/2, a contradiction to the assumption that a + c < n/2.

The previous Lemma 13 does not apply for J(7, 3), because in this case
a = 3, c = 1 and a + c > n/2. Indeed, the claim of the lemma is false in this
case. For example, taking a = {0, 1, 4}, and selecting x1 = 0, x3 = 4, the only
possible a′ is a′ = {5, 6}, so in this case neither 5 nor 6 can take the value for c,
they cannot be avoided. To deal with the symmetric case, where a + c = bn/2c,
the following lemma will be useful.

Notice the effect of shifting by one a vertex a = {x1, x2, . . . , xa}. Namely,
χmodn({x1 + 1, x2 + 1, . . . , xa + 1}) = χmodn({x1, x2, . . . , xa}) + a. Thus,

Remark 7 (Relatively prime). If a, n are relatively prime, then for each m ∈ Zn,
there exists an xm, such that am = {xm, xm + 1, . . . , xm + a− 1}, χmodn(am) =
m.

When we are satisfied that a has only a − 1 consecutive cards, we can use
the following stronger claim.11

Lemma 14. Let 2 ≤ a ≤ n/2. For each M ∈ Zn, and each x1 ∈ D, there is an
a-set a ∈ χ−1

modn(M), consisting of at least a − 1 consecutive cards, starting in
either x1 or x1 + 1.

Proof. For the general case where a, n may not be relatively prime, assume
w.l.o.g. that x1 = 0. We prove that there are n distinct a-sets ar, such that for
each M , one of them is in χ−1

modn(M). Each vertex ar consists of a−1 consecutive
values starting at either 0 or 1, plus one additional value. For a−1 ≤ r ≤ 2a−2,
let ar = {0, 1, . . . ,a− 2, r}. Thus,

aa−1 = {0, 1, . . . ,a− 2,a− 1} ,
aa = {0, 1, . . . ,a− 2,a} ,

aa+1 = {0, 1, . . . ,a− 2,a + 1} ,
...

a2a−2 = {0, 1, . . . ,a− 2, 2a− 2} .
Notice that each ar consists of a set of a distinct values, since we are assuming
a ≤ n/2. Now, for 2a − 1 ≤ r ≤ n + a − 2, let ar = {1, 2, . . . ,a − 1, r − a + 1}.
Thus,

a2a−1 = {1, . . . ,a− 1,a} ,
a2a = {1, . . . ,a− 1,a + 1} ,

a2a+1 = {1, . . . ,a− 1,a + 2} ,
...

an+a−2 = {1, . . . ,a− 1, n− 1} .
11 Lemma 14 is similar to [12, Lemma 5], except that this one gives additional structure

to the a-sets a, for a ≤ n/2.
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Again, each ar consists of a set of a distinct values, since we are assuming
a ≤ n/2. Notice that χmodn(a2a−1) = χmodn(a2a−2)+1 (mod n). And in general,
χmodn(ar+1) = χmodn(ar) + 1 (mod n). In total, we have that aa−1, . . . , an+a−2

are n distinct values (mod n). Thus, for each M , there is one ar ∈ χ−1
modn(M).

7.3 If c + r = 1 then χmodn is safe

Now we show that when c+r = 1, the well-known codes described in Section 7.1,
defined by χ−1

modn, are safe. We prove it using the elementary additive number
theory properties (the theorem generalizes and simplifies results of [12])12 of
Section 7.2.

Recall the safety characterization of Theorem 3. Instantiated for protocol
χmodn it says that13 χmodn is safe if and only if for each c-set c, y ∈ c̄, and
M ∈ χmodn(Kp(c̄)), there exist a-sets a, a′ ⊆ c̄, χmodn(a) = χmodn(a′) = M
such that y ∈ a4a′. Thus, we can assume that c = 1, r = 0, because proving
that the protocol is safe in this case, implies that it is safe when c = 0, r = 1.

The conditions that a,b ≥ 3 are necessary, by Corollary 1. Also, n ≥ 7,
because if a = 3 and n = 6, then the protocol is not safe. For instance, if C has
hand 5 and hears announcement 4 (because A has hand {0, 1, 3}), then she can
deduce that A does not have card 4.

In the proof we will assume that a ≤ bn/2c, by the duality Theorem 5.
Furthermore, to make the proof more elegant, we prove the (almost) symmetric
cases where a+c ≥ n/2 separately, in Appendix D. Then, we can use Lemma 13
directly.

Theorem 12. The protocol χmodn is informative and safe when c + r = 1,
a,b ≥ 3, n ≥ 7.

Proof. We already saw that χmodn is informative, in Lemma 11. To prove safety,
as explained above, we may assume that c = 1, r = 0. Also, we may assume that
a ≤ bn/2c, by the duality Theorem 5.

We have considered the cases where: n = 2a + 1 in Lemma 17, a = n/2− 1
with both n and a even in Lemma 18, and 2a = n in Lemma 19. Thus, we may
assume that a + 1 < n/2, and we can use Lemma 13 directly.

Consider an M ∈ Zn and c ∈ D. Let y ∈ c̄. First we show that there is an
a-set a1 ⊆ c̄, such that y ∈ a1 and χmodn(a) = M .

12 In [12, Corollary 9] it is shown that the protocol is safe when n prime, with a proof
based on a non-trivial theorem by Dias da Silva and Hamidoune [17, Theorem 4.1].
Which is analogous to the Cauchy–Davenport theorem, the first theorem in additive
group theory [43]. Then, this result was extended to [12, Theorem 13], proving that
a protocol that announces the sum of the cards modulo p is safe, except for (4, 3, 1),
(3, 4, 1), where p is the least prime greater than or equal to a + b + 1. For this,
Bertrand’s postulate, as well as a theorem of Nagura [48] was used (stating that one
can always find a prime number relatively close to a given integer).

13 It is similar to [12, Proposition 6], except that this proposition also says that if χmodn
is safe, then for each value M of D, there is an a ⊆ c̄ for which χmodn(a) = M .
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For M ∈ Zn and x1 = y − 1, let a1 = {x1, x2, . . . , xa} be the set defined by
Lemma 14. Thus, χmodn(a1) = M , and a1 consists of at least a− 1 consecutive
cards starting in either x1 or x1 +1, thus, y ∈ {x1, x2}, and in both cases, y ∈ a1.
If a1 ⊆ c̄ we are done.

Thus, assume c ∈ a1. Then, we use Lemma 13, to remove c from a1, without
touching y. Namely, we apply the lemma with c and any other card of a different
from y. We have shown that there is an a-set a1 ⊆ c̄, such that y ∈ a1 and
χmodn(a1) = M . Figure 7 illustrates three cases, that can be dealt with, even
when n/2 = a + 1.
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Fig. 7. Case n = 12,a = 5, c = 1, r = 0
.

To complete the proof, we need to show that there is an a-set a2 ⊆ c̄, such
that y 6∈ a2 and χmodn(a2) = M . This is done again by a direct application of
Lemma 13, removing from a1 any two cards that include y, without including c.

8 Informative transmission: the general case c + r ≥ 1

In this section we briefly discuss an informative solution when c+r ≥ 1. As far as
we know, this is the first informative protocol, and there is no safe and informa-
tive general solution known. Swanson et al. [54] discuss informative protocols and
their relation to combinatorial designs. They explain the combinatorial difficulty
of the case c + r ≥ 1.

We have seen in Section 7.1 that χmodn is informative when c + r = 1, but
not when c + r > 1, namely, χmodn is not a proper vertex coloring of Jc+r(n,a).
We are now behind the classic coding theory proof that shows a lower bound
on A(n, 2δ, w), the maximum number of codewords in any binary code of length
n, constant weight w, and Hamming distance 2δ. Namely, the proof that shows
that the vertices in χ−imodn in this case define a binary code of length n, constant
weight w, and Hamming distance 2δ.

We rephrase the coding theory argument from [33, Theorem 4] in our nota-
tion. Let q be a primer power (positive integer power of a single prime number),
q ≥ n. Let the elements of the Galois field GF(q) be w0, w1, . . . , wq−1. For a
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vertex a of Jd(n,a), let ai = 1 if i ∈ a, and else ai = 0. Namely, for the following
lemma we view a as a vector a = (a0, . . . , an−1) ∈ Fna . Define χ̄(a) to be the
vector (χ1(a), χ2(a), . . . , χd(a)),

χ1(a) =
∑
ai=1

wi,

χ2(a) =
∑
i<j

ai=aj=1

wiwj ,

χ3(a) =
∑
i<j<k

ai=aj=ak=1

wiwjwk,

· · ·

(3)

Then, for v ∈ GF(q)d, the set of vertices colored v is χ̄−1(v).
Recall that if d ≥ min{a, n− a} then Jd(n,a) it is a complete graph.

Lemma 15. χ̄ is a proper vertex coloring of Jd(n,a), d ≥ 1, and d < min{a, n−
a}.
Proof. Consider two vertices a, b of Jd(n,a) viewed as vectors of Fna , and such
that χ̄(a) = χ̄(b). Assume for contradiction that a and b are adjacent. Thus,
there are 2γ distinct coordinates r1, . . . , rγ , s1, . . . , sγ , γ ≤ d, where a and b
disagree, and on all other coordinates they agree. Say, ari = 1 while bri = 0,
and conversely, asi = 0 while bsi = 1 (1 ≤ i ≤ γ). Write αi = wri , βi = wsi
(1 ≤ i ≤ γ). Since χ̄(a) = χ̄(b) we have

σ1 =
∑
i

αi =
∑
i

βi

σ2 =
∑
i<j

αiαj =
∑
i<j

βiβj

· · ·
σd =

∑
i1<···<id

αi1 · · ·αid =
∑

i1<···<id
βi1 · · ·βid

Therefore, α1, . . . , αγ , β1, . . . , βγ are 2γ distinct zeros of the polynomial

xγ − σ1x
γ−1 + σ2x

γ−2 − · · · ± σγ .
But a polynomial of degree γ over a field has at most γ zeros.

Thus, the set of colors needed is of size at most qd. Which implies that there is
always a set of size at most (2n)d to properly color Jd(n,a), because Bertrand’s
postulate states that there is a prime p such that n < p ≤ 2n.

On the other hand, there is a corresponding (asymptotically in terms of n,
for c + r constant) lower bound14. Namely, by Lemma 2, the clicks Kp(b̄) in GB
have size p =

(
a+c+r

a

)
, and by Lemma 3, Jd(n,m) ∼= Jd(n, n−m). Thus,

14 Recall that
(
z+k
k

)
= kz

Γ (z+1)
(1 + z(z+1)

2k
+O(k−2)), as k →∞. Thus, in more detail,

the lower bound in the number of bits is Θ((c + r) logn− (c + r) log(c + r)).
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Theorem 13. Θ((c + r) log n) bits are needed and sufficient for an informative
protocol.

9 Conclusions

We have presented a new perspective that brings closer together previous re-
search on secret sharing and Russian card problems, by defining the underlying
basic problem of safe information transmission from A to B in the face of an
eavesdropper C. The new perspective inspired by distributed computing is based
on a formalization in terms of Johnson graphs, which facilitates using known
results about these graphs, closely related to coding theory, and motivates de-
veloping new additive number theory proofs. We are able thus to prove new
results, as well as explaining and unifying previously known results.

We have assumed, following these previous research lines, that the inputs are
correlated, using a deck of cards. Considering a deterministic protocol PA for A,
we stayed with the common definition of safety, requiring that C does not learn
any of the cards of A after listening to her announcement. Also, we considered
the standard definition of informative, requiring the B learns her whole hand.
We defined a new requirement, of minimal information transfer, requiring that
always B learns something about A’s hand.

Many interesting avenues remain for future work. Some problems would im-
ply solutions in coding theory, where much research has beed done; the smallest
number of messages needed for informative information transmission is equiv-
alent to finding the chromatic number of a Johnson graph, a question of wide
interest which is open even in the case of J(n,a), not to mention the general
case of Jd(n,a). For d = c + r = 1, we have described solutions which show that
no more than 2 additional messages are needed to go from the known proper
coloring solutions with n − 2 messages (or more), to a proper coloring that is
additionally safe, with n messages. A thorough study of the general case d ≥ 1
is beyond the scope of this paper.

The colorings for minimal information transmission do not seem to have been
studied before. Even very concrete cases remain open. We showed that there is a
minimally informative safe protocol for the Russian cards problem (3, 3, 1) with
only two messages, but the solution was found using a computer program. The
modular algorithm χ2 works only in the cases described by Theorem 10, and
this solution uses 3 messages.

It would be of course interesting to consider randomized solutions, and the
relation to the Fischer, Paterson and Rackoff [26] approach. They consider the
problem of A and B agreeing on a bit that is secret from C, using randomized
protocols. They then mention that it is not clear how to get rid of randomization,
because the protocol itself is known also to C, and illustrate the difficulty with
the following example, using the notion of key set {x, y}. This notion plays a
crucial role in the algorithms of this paper, and subsequent ones. A key set
consists of one card of A and one of B, equally likely, given the information
available to C, that A holds x and B holds y, or the opposite. Then A and B
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can obtain a secret bit r from the key set, say r = 0 if A holds the smaller card.
If A announces a key set {x, y} by picking the smallest card in her hand for x
and the smallest card not in her hand for y, then she may be revealing her entire
hand by announcing {x, y}. Nevertheless, they describe a deterministic protocol
where A and B exchange message several rounds to agree on a bit that is secret
to C, that works when c ≤ min(a,b)/3, a,b ≥ 1. Notice that the solutions that
we discuss do hide form C the location of the cards of A,B, while this is not the
case for their protocol (but we have not shown that our solutions satisfy their
requirment that all inputs are equally likely).

Our protocols that send one bit, by which B learns one of the cards of A, are
somewhat reminiscent of the widely studied oblivious transfer problem [51], but
passive, in the sense that the whole interaction consists of A sending a message
to B, and A does not know which of her cards were learned by B. Namely, B
has no say as to which card he wishes to learn.

Notice that a solution to the Russian cards problem implies a solution to the
secret key problem. When c = 1, r = 0, consider the N =

(
n−1
a

)
possible deals

to A and B, all possible from the perspective of C, indexed from 0 to N − 1 in
some predetermined way, and let r the index of the actual deal. Both A and B
can compute r, while C has no information about it [26]. Thus, A and B can
share a string of log2N bits, without revealing any of their cards to C, using
the Russian cards protocol with signature (a,b, 1), where A sends a string of
log2(n) bits and B answers with a log2(n) bit string (again, not clear that they
are all equally likely).

Many other interesting problems remain open, about the relation with com-
binatorial designs that has been thoroughly studied e.g. [54], about stronger se-
curity requirements e.g. [40], about fault-tolerant solutions [36], and more than
two parties e.g. [22]. It would be interesting to understand the role of Johnson
graphs in multi-round protocols; there exists work both from the secret sharing
side e.g. [27], and from the Russian cards side [14,21], and of course in distributed
computing, although without preserving privacy [19].
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30. Friedman, R., Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Asynchronous agreement
and its relation with error-correcting codes. IEEE Trans. Computers 56(7), 865–
875 (2007). https://doi.org/10.1109/TC.2007.1043, https://doi.org/10.1109/

TC.2007.1043

31. Godsil, C., Royle, G.F.: Algebraic Graph Theory, Graduate Texts in Mathematics,
vol. 207. Springer (2001)

https://doi.org/https://doi.org/10.1007/978-3-030-54921-3_17
https://link.springer.com/chapter/10.1007/978-3-030-54921-3_17
https://link.springer.com/chapter/10.1007/978-3-030-54921-3_17
https://doi.org/10.1023/A:1026168632319
https://doi.org/10.1007/s10878-009-9252-7
https://doi.org/10.1007/s10878-009-9252-7
https://doi.org/10.1007/s10878-009-9252-7
https://doi.org/https://doi.org/10.1016/0166-218X(96)00104-7
http://www.sciencedirect.com/science/article/pii/0166218X96001047
http://www.sciencedirect.com/science/article/pii/0166218X96001047
https://doi.org/10.1145/3149.214121
https://doi.org/10.1090/dimacs/002/11
https://doi.org/10.1090/dimacs/002/11
https://doi.org/10.1090/dimacs/002/11
https://doi.org/10.1007/BF00190803
https://doi.org/10.1007/BF00190803
https://doi.org/10.1109/TC.2007.1043
https://doi.org/10.1109/TC.2007.1043
https://doi.org/10.1109/TC.2007.1043


Unconditionally Secure Information Transmission in Russian Cards Problems 37
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A.1 Russian cards

Many instances of the generalized Russian cards problem have been studied,
included where the cards are dealt over more than three agents and work on
cryptography. The generalized Russian cards problem has close ties to the field
of combinatorial designs, particularly for perfect security notions [40,54]. The
traditional security requirement of the Russian cards problem, which is the one
we consider, C may not know with certainty who holds any given card, that does
not mean that she may not have a high probability of guessing this information
correctly. To this end, stronger notions of security have been studied in these
papers.
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or equal to n = a+b+c. They hold whenever a,b > 2 and c = 1, except for the
cases (3, 4, 1) and (4, 3, 1). The exceptional cases (3, 4, 1) and (4, 3, 1) are treated
separately using Haskell, and shown to work with modulo n. They observe that
because C holds a single card, this also implies that A and B will learn the
card deal from the announcement of the other player. For the general case when
c ≥ 1 they give a characterization of when the protocol is safe, but notice that
the protocol is informative only when c = 1.

Albert et al. [3] investigate both the problem of communicating the entire
hand and communicating a secret bit. The analysis includes a sum announcement
protocol for the case (k, k, 1), where k ≥ 3; both players announce the sum of
their cards modulo 2k+1. In addition, they show that state safe implies bit safe,
and pose the open question of whether a protocol for sharing a secret bit implies
the existence of a protocol for sharing states/card deals.

There are several additional ways of restating the safety property of Defini-
tion 2, such as CA2 and CA3 from [4].

Lemma 16 (Safety characterization). Let PA : Pa(D)→M. The following
conditions are equivalent.

1. PA is safe.
2. For each M ∈ M, c-set c, the following holds. Let Xc̄ be the subset of

P−1
A (M) avoiding c. If Xc̄ 6= ∅ then for any y 6∈ c, there exist a, a′ ∈ Xc̄ such

that y ∈ a4a′.
3. For each M ∈M,

CA2 for every c-set c the members of P−1
A (M) avoiding c have empty in-

tersection, and
CA3 for every c-set c the members of P−1

A (M) avoiding c have union con-
sisting of all cards D except those of c.

A.2 Johnson graphs and algebraic graph theory

As we show here, Johnson graphs capture the relations induced by correlated
inputs defined by a deck of cards. Furthermore, certain vertex colorings of John-
son graphs turn out to capture essence behind information transmission with
such correlated inputs. Johnson graphs, Kneser graphs and other related highly
symmetric graphs have been well studied through algebraic methods [31], and
in spectral analysis of graphs [1]. They are related to the Erdös–Ko–Rado Theo-
rem, one of the fundamental results in combinatorics about intersecting families
of sets. Its proof uses a simple yet useful operation called shifting, that we use too.
The symmetry and algebraic properties of Johnson graphs are well understood,
yet, although their chromatic number is important, especially in coding theory,
it remains an open problem, see [32, Chapter 16] where there is a summary of
known results, as well as in [10].

A.3 Coding theory

Vertex colorings of Johnson graphs are closely related to coding theory. Coding
theory captures necessary properties for information transmission with such cor-
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related inputs; but the properties are not sufficient for the safety requirement
that C does not learn about the inputs, for this, additional properties about the
codes are needed. The independence number of the Johnson graph J(n,m) is
the size of the largest constant weight code with word length n, weight m, and
minimum distance 4. The chromatic number is the minimum number of parts in
a partition into such constant weight codes. There is a lot of literature, due to its
combinatorial interest and also applications. For instance, Smith et al. [52] ex-
tend known tables of constant weight codes of length n ≤ 28 up to 63, motivated
by the generation of frequency hopping lists for use in assignment problems in
radio networks. Large distance between codewords gives smaller overlap between
lists. This leads to fewer clashes on the same frequency and so less interference.
Similarly, a larger number of codewords allows larger list re-use distances in the
network and again leads to lower interference.

A binary constant weight code of word length n and weight w and distance
d is a collection of (0, 1)-vectors of length n, all having w ones and n−w zeros,
such that any two of these vectors differ in d places. The Johnson graph J(n,w)
is the graph on the binary vectors of length n and weight w, adjacent when they
have Hamming distance 2.

The chromatic number of J(n,w) is the minimum number of disjoint con-
stant weight codes of length n, weight w, and distance 4, for which the union is
the set of all n-tuples with weight w. It is also the minimum number of disjoint
packings of (w − 1)-subsets by w-subsets, for which the union is the set of all
w-subsets of the n-set. Let (n, d, w) denote a code of length n, constant weight
w, and distance d, and let A(n, d, w) denote the maximum size of an (n, d, w)
code. Graham and Sloan [33] proved, for d = 4, that χ(J(n,w)) ≤ n for all
0 ≤ w ≤ n. The proof is actually by the same algorithm of the Russian cards
problem: putting the structure of abelian group on the coordinate positions, and
all words with given sum of the elements in the support form a constant weight
code with minimum distance 4. They present a generalization for all d, using
an algorithm where a color is a vector, giving an upper bound for the number
of colors need to color Jd(n,w), and that we describe in Section 7. This and
other more complicated methods, as well as explicit tables are described in [9],
where the importance in combinatorics and coding of A(n, d, w) is emphasized.
Although the chromatic number of Johnson graphs have been thoroughly stud-
ied, there seem to be no non-trivial general lower bounds. Apparently only a few
cases are known where χ(J(n,w)) < n, and in those cases, χ(J(n,w)) ≥ n− 2,
see Brouwer and Etzion [10]. In general, determining the chromatic number of a
Johnson graph is an open problem of wide interest [32].

A.4 Combinatorial Designs

Coding theory is an enormous topic in its own right, but some results are closely
connected to another old and large topic: combinatorial designs. The theory of
designs concerns itself with questions about subsets of a set possessing a high
degree of regularity, thus, the generalized Russian cards problem has close ties to
the field of combinatorial designs. The signature (3, 3, 1) was first considered by
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Kirkman [38], who suggests a solution using a design. The design consists of seven
triples, which are precisely the lines that form the projective geometric plane.
Particularly for perfect security notions, designs are important, as demonstrated
in [40,53,54]. Such notions require C not gaining any probabilistic advantage
in guessing the fate of some set of δ cards, perfect δ-security. An equivalence
between perfectly δ-secure strategies and (c+ δ)-designs on n points with block
size a, when announcements are chosen uniformly at random from the set of
possible announcements is established. Also, example solutions are provided,
including a construction that yields perfect 1-security against when c = 2, and
a construction strategy with a = 8,b = 13, and c = 3 that is perfectly 2-secure.
Notice that such stronger security notions requiere protocols that use a larger
set of possible messages.

A.5 Additive number theory

While coding theory properties are necessary for informative properties of the
protocol, to be safe, additional properties are needed, which define additive num-
ber theory problems, at least when working with additive protocols such as those
in [12] and those we consider in Section 6 and 7. Announcing the cards modulo 7
was among the answers to a Moscow Mathematics Olympiad problem [42] that
motivated subsequent work on Russian card problems.

Although finding solutions to a linear congruence is a classic problem, less
seems to be known when the solution is required to be with distinct values [2,35],
the question seems to have been studied first only fairly recently in [2], and a
characterization of when a linear congruence

α1x1 + α2x2 + · · ·αnxn ≡ α (mod n)

with α, α1, . . . αn ∈ Z has solutions with distinct values has been presented
in [34]. The characterization implies that in our case (where the first a coeffi-
cient αi = 1 and the others are equal to 0) the congruence has a solution, for
every α ∈ Zn, a fact that can be proved directly rather easily (see [12, Lemma
5]), but to prove safety we need a more detailed analysis, as explained in Sec-
tion 7.3. The question has interesting applications and relations to weighted sub-
sequence sum questions, as described in these papers. Some work exists moti-
vated by a 1964 conjecture by Erdös, and Heilbronn[23] giving lower bounds of
the number of distinct sums of a-subsets of Zn, later proven by Dias da Silva
and Hamidourne [17], which is what is used to analyze the modular algorithm
in [12].

A.6 Unconditionally Secure Secret Key Exchange

The idea that card games could be used to achieve perfect cryptography with-
out further assumptions proposed by Peter Winkler in 1981 in the context of the
game of Bridge, led to a sequence of papers by Fischer and Wright. Peter Win-
kler [55] developed bidding conventions whereby one bridge player could send
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her partner secret information about her hand that was totally unrelated to the
actual bid and completely undecipherable to the opponents, even though the
protocol was known to them. Much work has continued to be done, especially
on the randomized setting, see e.g. for a more recent paper [39], and information
theoretic [44].

Fischer and Wright’s [28] motivation of considering card games, whereA,B,C
draw cards from a deck of d cards, as specified by a signature (a,b, c), with
a + b + c = n = d (in [29] they also discuss a bit the case where there is a
card which nobody gets), is as follows. It is desired correlated random initial
local variables for the players, that have a simple structure and a small amount
of initial information. By looking at her own cards, a player gains some infor-
mation about the other players’ hands: a set of cards that appear in no other
player’s hand. It is noted that if the initial local variables are uncorrelated, an
eavesdropper can simulate any player over all random choices and all possible
initial random values and learn the secret key. Thus, Fischer and Wright ask: We
would like to know which distributions of private initial values allow any team
that forms to obtain an n-bit secret key. Although their protocols use random-
ization, they require they always work, the key to be completely secret from a
computational unbounded eavesdropper, and exactly known by all players (so
standard techniques based on computational difficulty cannot be used).

Fischer and Wright [29] have explored in this and other papers the problem
of players sharing a secret key using a deal of cards while their conversation is
overhead by E, inspired by the work of Winkler. They present a general model
for communication among players overheard by a passive eavesdropper E, in
which all players including E are given private inputs that may be correlated.
They study secret key exchange in this model. In particular, they consider the
situation in which the team players are dealt hands of cards of prespecified sizes
from a known deck of distinct cards. They consider both the cases where E gets
the remaining card, and where she gets no card. They start with an example of
a deck of four cards, A is given two, and B one. They explain that, if E does
not see the remaining card or if A and B can use randomization, then A and
B can agree on a perfectly secret bit. If E sees the remaining card or A and B
are required to behave deterministically, then A and B cannot agree even on a
weakly (strong requires equal probability) secret bit. More generally, in N -valued
multiparty secret key exchange the players chose a value v from a known set of
N values. In the perfect version E considers all N values equally likely, while
in the weak version she considers all N values possible. They define it in terms
of three requirements. Agreement is met if all parties know the secret key B;
secrecy is met if the eavesdropper’s probability of guessing B correctly is the
same before and after hearing the communication; uniformity requires that B
has equal probability of being any of the 2n possible n-bit sequences. Notice
that there is no explicit requirement saying that the eavesdropper should not
learn any of the input bits of the players (and indeed in some of their protocols
the eavesdropper learns cards of the other players, e.g. the one-bit secret key
exchange protocol in [27]), while this is a requirement for Russian cards games.
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In particular, they show that secret key exchange is not possible if the player’s
inputs are not correlated. A signature (s1, . . . , sk; d) specifies the hands size si for
each player and the deck size d. The perfect (resp. weak) capacity of a signature
is the largest N such that N -valued perfrect (resp.) weak) secret key exchange
is possible when the deal is chosen randomly as specified by the given signature.
Previous work was informal, and some studied the case of N = 2 and two players.

Fischer and Wright [28] proposed a method for reducing the problem of a
multi-party n-bit secret key exchange to the problem of a 2-party n-bit secret
key exchange. They present a simulation (that needs randomization), and needs
that the deals in the multiparty signature are large enough. Hence, using this
method, one can easily extend a protocol from A,B so that it performs a p-party
n-bit secret key exchange with p ≥ 3. In this paper they also describe the trans-
formation protocol for two parties. This protocol is later improved in [39], where
a detail and clear analysis is presenting, showing that the improved transforma-
tion protocol establishes an n-bit secret key exchange for a signature (a, b; e) if
and only if Ψ(a, b; e) ≥ n, Ψ a function which is approximately proportional to d,
where d is the number of distinct cards in the deck. For key set protocols, Fischer
and Wright show that A and B can share a bit if and only if a + b ≥ c + 2,
this is reported in [46] (journal version of [45]), where a characterization for the
signatures that are solvable by key set protocols is presented, and observe that
actually the transformation protocol of Fischer and Wright [28] can deal with a
case that is not solvable by key set, namely (3, 2; 4). All this is for randomized
protocols, the only case of deterministic protocols that we are aware of is Fischer,
Paterson and Rackoff [26], where they give a protocol for secret bit transmission,
and show it works if c ≤ min(a, b)/3. Notice that this protocol is not private
against the deal: A,B reveal some of their cards in the process.

A.7 Distributed Computability

In a distributed system a set of processes communicate with each other to solve
problems. The simplest kind is one where they start with input values, and decide
on output values, once. In a task the domain is a set of input assignments to the
processes, the range is a set of output assignments, and the task specification ∆
is an input/output relation between them. An input vector I specifies in its i-th
entry the (private) input to the i-th process, and an output vector O ∈ ∆(I)
states that it is valid for each process i to produce as output the i-th entry of O,
whenever the input vector is I. In more detail, a task T = (I,O, ∆) is defined by
an input complex I, an output complex O, and a carrier map ∆. An important
example of a task is consensus, where each process is given an input from a set
of possible input values, and the participating processes have to agree on one of
their inputs.

Delporte et al. [19] observed that the least amount of communication that
A and B need to send to each other, one has to consider a vertex coloring of
the graphs IA and IB . As explained here, when I corresponds to a signature
(a,b, c), the proper coloring needed is of Jc+r(n,a). This is the minimum needed
so that A and B can learn each other inputs, otherwise there will be input vectors
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indistinguishable to them. Here we explore the additional requirement that input
vectors are indistinguishable to C after listening to the conversation.

Notions of indistinguishability are central in computer science, particularly
in distributed computing. Representing the indistinguishability structure appro-
priately, exposes what can and cannot be done in a given situation [6].

A distributed computing model has to specify various details related to how
the processes communicate with each other and what type of failures may occur,
e.g. [7,41]. It turns out that different models may have different power, i.e., solve
different sets of tasks.

The theory of distributed computability has been well-developed since the
early 1990’s [37], with origins even before [8,25], and overviewed in a book [36]. It
was discovered that the reason for why a task may or may not be computable is
of a topological nature. The input and output sets of vectors are best described
as simplicial complexes, and a task can be specified by a relation ∆ from the
input complex I to the output complex O. The main result is that a task is
solvable in the layered message-passing model if and only if there is a certain
subdivision of the input complex I and a certain simplicial map δ to the output
complex O, that respects the specification ∆.

Notice that the requirement that A and B decide on each others inputs is
closely related to the interactive consistency problem (and other vector consensus
variants e.g. [15]), introduced early on [49] in a system where processes may fail,
and has continued to be studied up to day due to its practical importance. Once
a solution to interactive consistency is obtained, a solution to consensus can
be obtained, if each process decides e.g. on the majority of the inputs it has
received.

A.8 Correlated input complex

In distributed computing a common situation is when the inputs are not cor-
related. The input complex I is called colorless: any input may be assign to
any process. Colorless tasks have both input and output complex colorless. Cor-
related inputs make the task computability analysis much more complicated.
Thus, the book [36] treats first colorless tasks, and then presents more advanced
topological techniques to deal with the general setting.

In various situations related to renaming, the input complex consists of as-
signing distinct input names to the processes, from some domain on input names.
This leads to a card game where each process gets a single card. Correlated out-
puts have been considered for this input complex, many encompassed by the
Generalized symmetry breaking family of tasks [11]. In this paper the question
is considered of which correlated inputs are sufficient to solve other tasks, espe-
cially set agreement, in a wait-free read/write context.

The condition-based approach started in [47] studies subcomplexes of tasks
that have a colorless input complex (consensus or set agreement), that make an
unsolvable task either solvable or more efficiently solvable. Namely, how much
correlation among inputs is required to solve a given task. Relations with coding
theory are investigated in [30].
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B Johnson graphs

In a Johnson graph J(n,m) the vertices are m-subsets of a n-set, and two ver-
tices a, a′ are adjacent when a ∩ a′ = m − 1. In Figure B some examples are
depicted. In other words, when the symmetric difference is |a4a′| = 2. The
special case of J(7, 3) corresponds to GB (= GB) of the classic Russian cards
problem. The Johnson distance d of two m-sets is half the size of their symmet-
ric difference. Thus, the graph Jd(n,m) describes the distance-d relation, and
J1(n,m) is denoted J(n,m).
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J(3, 1)

<latexit sha1_base64="MFcCYbtb1DM9rTmOPeH0bNBzsyg=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdrai3ghfxVMF+QLuUbJptY7PJkmSFsvQ/ePGgiFf/jzf/jWm7B60+GHi8N8PMvCDmTBvX/XJyS8srq2v59cLG5tb2TnF3r6lloghtEMmlagdYU84EbRhmOG3HiuIo4LQVjK6nfuuRKs2kuDfjmPoRHggWMoKNlZq35bMT77hXLLkVdwb0l3gZKUGGeq/42e1LkkRUGMKx1h3PjY2fYmUY4XRS6CaaxpiM8IB2LBU4otpPZ9dO0JFV+iiUypYwaKb+nEhxpPU4CmxnhM1QL3pT8T+vk5jw0k+ZiBNDBZkvChOOjETT11GfKUoMH1uCiWL2VkSGWGFibEAFG4K3+PJf0jyteNXK1V21VDvP4sjDARxCGTy4gBrcQB0aQOABnuAFXh3pPDtvzvu8NedkM/vwC87HN7FWjeA=</latexit>

J(4, 2)

<latexit sha1_base64="b4POg+ybgm0PJUd+grjFpPU6wcQ=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpTdUlFvBS/iqYL9gHYp2TTbxmaTJckKZel/8OJBEa/+H2/+G9N2D1p9MPB4b4aZeUHMmTau++XkVlbX1jfym4Wt7Z3dveL+QUvLRBHaJJJL1QmwppwJ2jTMcNqJFcVRwGk7GF/P/PYjVZpJcW8mMfUjPBQsZAQbK7Vuy7Wz6mm/WHIr7hzoL/EyUoIMjX7xszeQJImoMIRjrbueGxs/xcowwum00Es0jTEZ4yHtWipwRLWfzq+dohOrDFAolS1h0Fz9OZHiSOtJFNjOCJuRXvZm4n9eNzHhpZ8yESeGCrJYFCYcGYlmr6MBU5QYPrEEE8XsrYiMsMLE2IAKNgRv+eW/pFWteLXK1V2tVD/P4sjDERxDGTy4gDrcQAOaQOABnuAFXh3pPDtvzvuiNedkM4fwC87HN7RijeI=</latexit>

J(5, 2)

<latexit sha1_base64="X/MGWkipXpp96f3JvBs6HkLI8ko=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoMQQcJuiK9bwIt4imAekCxhdjJJxszOLDOzQljyD148KOLV//Hm3zhJ9qCJBQ1FVTfdXUHEmTau++1kVlbX1jeym7mt7Z3dvfz+QUPLWBFaJ5JL1QqwppwJWjfMcNqKFMVhwGkzGN1M/eYTVZpJ8WDGEfVDPBCszwg2VmrcFc/PyqfdfMEtuTOgZeKlpAApat38V6cnSRxSYQjHWrc9NzJ+gpVhhNNJrhNrGmEywgPatlTgkGo/mV07QSdW6aG+VLaEQTP190SCQ63HYWA7Q2yGetGbiv957dj0r/yEiSg2VJD5on7MkZFo+jrqMUWJ4WNLMFHM3orIECtMjA0oZ0PwFl9eJo1yyauUru8rhepFGkcWjuAYiuDBJVThFmpQBwKP8Ayv8OZI58V5dz7mrRknnTmEP3A+fwC2No3k</latexit>

Fig. 8. Some Johnson graphs.

Notice that the Kneser graph, K(n,m) is the graph on the m-subsets of
an n-set, adjacent when they are disjoint. And the generalized Johnson graph
J(n,m, i) is the graph on the m-subsets of an n-set, adjacent whenever their
intersection is i. The graphs J(n,m,m− 1) are the Johnson graphs, the graphs
J(n,m, 0) are the Kneser graphs. The Kneser graph J(5, 2, 0) is the famous
Petersen graph. All these are highly symmetric graphs that recur throughout
the book [31]. It is observed there that the following are isomorphic graphs
J(n,m, i) ∼= J(n, n−m,n− 2m+ i), i ≤ m ≤ n, by the function that maps an
m-set to its complement.

Johnson graphs are related to coding theory, Quantum probability [1, Chap-
ter 6: Johnson Graphs] and Steiner systems, and have been thoroughly studied.
Some of the more relevant facts to our study are (we provide citations unless
they are easy to prove):

1. The following are isomorphic graphs J(n,m) ∼= J(n, n−m). Also, J(n, 1) ≡
J(n, n − 1) ∼= Kn. J(n, 2) called a triangular graph, which is the line graph
of Kn.

2. Let δ(a, a′) denote the distance between vertices a, a′ in J(n,m). Then,
δ(a, a′) = k iff a ∩ a′ = m − k. Thus two k-subsets are adjacent in the
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Kneser graph K(n, k) if and only if they are at maximum possible distance
in J(n, k).

3. J(n,m) is distance-regular of diameter min {m,n–m}.
4. The set of maximal cliques in J(n,m) are of size n−m+1 and m+1 see [50].
5. The chromatic number of Johnson graphs have been well studied e.g. [24],

see Figure 9. But in general, determining the chromatic number of a John-
son graph is an open problem [32, Chapter 16]. For the triangular graph,
χ(J(n, 2)) = n for odd n, and χ(J(n, 2)) = n − 1 for even n. It is known
that χ(J(n,m)) ≤ n. Often the chromatic number is a little bit smaller. For
n ≡ 1, 3 (mod 6), n > 7, χ(J(n, 3)) = n − 2. For the Russian cards case,
notice that it is known that χ(J(7, 3)) = 6.

6. As far as we know the only general (for specific instances, there are others)
lower bound on the chromatic number is χ(J(n,m)) ≥ max {n−m+ 1,m+ 1},
implied by the maximal cliques in the Johnson graph.

7. The Johnson graph is vertex transitive and distance transitive. For J(7, 3),
its automorphism group is S7.

8. J(n,m) is regular of degree m(n − m). Thus, it has vertex connectivity
m(n−m). See [18].

9. For vertex-transitive graphs with maximum degree ∆ ≥ 13 and clique num-
ber ω, the Borodin-Kostochka conjecture, χ ≤ max {ω,∆− 1} was proved
in [16]. Also, if ω < ∆ then χ ≤ ∆− 1.

Fig. 9. Bounds on the chromatic number of Johnson graphs [10, Table 4]
.

C Impossibility of uniform solutions to the Russian cards
problem

Here we present additional details about six-message solutions to the Russian
cards problem, and the impossibility of Section 5.2, in which Theorem 9 states
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that there is no uniform solution to the Russian cards problem with only six
messages, namely, where at most one color class is of size 7.

In the proof of Theorem 9, it is shown that it it is not possible to design
three color classes, where all vertices of G0 are of degree two. Figure 10 shows
that it is possible, using vertices of degree 3.
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a- 014 023  125 136 246 345 


b- 015 036  126 134 235 456


c- 012 034  135 146 245 236

a- 026 045  124 156 235 346 


b- 024 056  125 146 236 345


c- 025 046  126 145 234 356

Fig. 10. It is possible to design three color classes with vertices of degree 3, here are
two examples.

The full tree is of configurations 12, 34; 13, 56; 25, 46 is in Figure 11.

D Symmetric cases of the χmodn protocol

We begin with the case of Remark 7 where a, n are relatively prime (which
includes [12, Corollary 9]). In particular, this takes care of cases where n = 2a+1,
such as the classic15 (3, 3, 1).

Lemma 17. The protocol χmodn is safe when c + r = 1, a,b ≥ 3, n ≥ 7 and
a, n are relatively prime.

Proof. Assume that a ≤ bn/2c, by the duality Theorem 5.
Consider an M ∈ Zn and c ∈ D. Let y ∈ c̄.
Since a, n are relatively prime (Remark 7), there exists an x, such that a =

{x, x+ 1, . . . , x+ a− 1} satisfies χmodn(am) = m. Assume w.l.o.g. that x = 0.
We consider several easy, similar cases, where we use Lemma 12 to obtain

a′1, a
′
2 ∈ c̄ such that y ∈ a′14a′2.

15 Interestingly, this is the case that had to be treated separately in [12]. The cases
(4, 3, 1) and (3, 4, 1) where checked using a Haskell script.
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Fig. 11. The full tree for configuration 12, 34; 13, 56; 25, 46

Case 1: assume that both y and c are in a.
Let z1 = c and z2 = y, and apply the Lemma 12 to obtain a′1 ∈ c̄, such that
y 6∈ a′1. Then, let z1 = c and z2 any card from a different from y, and apply
Lemma 12 to obtain a′2 ∈ c̄, such that y ∈ a′2.

Case 2: assume that y ∈ a and c 6∈ a.
In this case, we already have a = a′2 ∈ c̄, such that y ∈ a′2. Thus, let z1 = a−y−1
and z2 = y. Notice that if z1 6= z2 then there exists an integer i, 1 ≤ i ≤ b`1/2c
such that both z1 + i 6∈ a ∪ c and z2 − i 6∈ a ∪ c, and we can apply Lemma 12
to obtain a′1 ∈ c̄, such that y 6∈ a′1. Else, the conditions of the lemma hold for
either z1 = y − 1 or z1 = y + 1, with z2 = y, to obtain a′1 ∈ c̄, such that y 6∈ a′1.

Case 3: assume that y 6∈ a and c 6∈ a.
In this case, we already have a = a′1 ∈ c̄, such that y 6∈ a′1. Thus, let z1 = 0
and z2 = a − 1. If there exists an integer i, 1 ≤ i ≤ b`1/2c such z1 + i = y and
z2 − i 6= c, we can apply Lemma 12 to obtain a′2 ∈ c̄, such that y ∈ a′2. Else, the
conditions of the lemma hold for z1 = 0 and z2 = a − 2, to obtain a′2 ∈ c̄, such
that y ∈ a′2.

Case 4: assume that y 6∈ a and c ∈ a is similar.

We now prove the symmetric case16 where a = n/2.

Lemma 18. If a = n/2− 1 with both n and a even, the protocol χmodn is safe
when c + r = 1, a ≥ 3, n ≥ 7.

Proof. We have that gcd(n,a) = 2, and hence for half of the values in zn there
is an m there are exactly two opposite sequences of a cards, a and a′ with

16 Interestingly, this is the case that had to be treated separately in [12]. The cases
(4, 3, 1) and (3, 4, 1) where checked using a Haskell script.
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χmodn(a) = χmodn(a′), all even. For the other half, there is a sequence of a− 1
consecutive, separated at the end by 1, all odd. Thus, in either case, there are
exactly two values that are not covered by these opposite a-sets. And it is then
easy to reach these two values. Figure 12 illustrates the two cases.
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Fig. 12. Symmetric case n = 10,a = 4, c = 1, r = 0
.

Lemma 19. If n = 2a, the protocol χmodn is safe when c+r = 1, a ≥ 3, n ≥ 7.

Proof. The arguments are similar to the above, we present only a sketch. We use
Remark 7, to choose without loss of generality c = n/2. Consider the two a-sets
a1 = {0, 1, . . . , c− 1}, and a2 = {c+ 2, c+ 3, . . . , 0, 1}. Notice that χmodn(a1) =
χmodn(a2), because a2 = a1 + (n/2 + 2)a. Thus, for each card y 6∈ {c, 0, 1},
y ∈ a14a2. To complete the proof of this case, we use Lemma 12 as follows.
Consider y = 0, and let a′1 be

a1
−2,0−→ a1

c+1,c−1−→ a′1.

Thus, y = 0 ∈ a14a′1, and χmodn(a1) = χmodn(a′1). Similarly, consider y = 1,
and let a′2 be

a2
2,1−→ a1

c+1,c+2−→ a′2.

Thus, y = 1 ∈ a24a′2, and χmodn(a2) = χmodn(a′2).
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