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ABSTRACT

In this work we extend the recently proposed synchronous broadcast algorithm amnesiac flooding to
the case of intermittent communication channels. In amnesiac flooding a node forwards a received
message in the subsequent round. There are several reasons that render an immediate forward of a
message impossible: Higher priority traffic, overloaded channels, etc. We show that postponing the
forwarding for one or more rounds prevents termination. Our extension overcomes this shortcom-
ing while retaining the advantages of the algorithm: Nodes don’t need to memorize the reception
of a message to guarantee termination and messages are sent at most twice per edge. This exten-
sion allows to solve more general broadcast tasks such as multi-source broadcasts and concurrent
broadcasts for systems with bounded channel capacities.

Keywords Distributed Algorithms, Flooding, Intermittent Channels, Bounded Capacities

1 Introduction

Broadcasting is the task of delivering a message from one network node to all other nodes. Broadcast algorithms
constitute a fundamental component of many distributed systems and are often used as subroutines in more complex
algorithms. There are numberless applications of broadcast. Demers et al. discuss the maintenance of a database
replicated at many sites in a large corporate network [1]. Each database update can be injected at various nodes,
and these updates must be propagated to all nodes in the network. The replica become fully consistent only when
all updating activity has stopped and the system has become quiescent. The efficiency of the broadcasting algorithm
determines the rate of updates the system can handle.

A common broadcasting algorithm is flooding. The originator v0 of a message m forwards m to all neighbors and
when a node receivesm for the first time, it sends it to all its neighbors in the communication graphG(V,E). Flooding
uses 2|E| messages and terminates after at most εG(v0) + 1 rounds, εG(v0) denotes the maximal distance of v0 to any
other node. In this form flooding is a stateful algorithm, it requires each node to keep a record of already forwarded
messages. This requires storage per node in the order of the number of broadcasted messages. Since nodes are unaware
of the termination of the broadcast, these records have to be stored for an unknown time.

For synchronous distributed systems stateless broadcasting algorithms are known. Hussak and Trehan proposed amne-
siac flooding (AAF) [2]. Every time a node receives message m, it forwards it to those neighbors from which it didn’t
receive m in the current round. In contrast to classic flooding, a node may forward a message twice. Surprisingly
amnesiac flooding terminates and each message is sent at most twice per edge. Crucial for the termination of AAF is
that the forwarding of messages is always performed in the round immediately following the reception. We show in
Sec. 4 that algorithm AAF no longer terminates when message forwarding is suspended for some rounds. There can
be several reasons for suspending forwarding, when traffic with a priority higher than broadcast has to be handled,
or when the capacity of a communication channel is exhausted due to several concurrent broadcasts. Surprisingly it

ar
X

iv
:2

01
1.

05
77

2v
1 

 [
cs

.D
C

] 
 1

1 
N

ov
 2

02
0

https://orcid.org/0000-0001-9964-8816


Synchronous Concurrent Broadcasts for Intermittent Channels with Bounded Capacities A PREPRINT

requires only a simple extension to make AAF to work correctly despite a limited number of suspensions. Our first
contribution is the extended algorithm AAFI described in Sec. 4.

Our first result enables us to prove that algorithm AAF is also correct for multi-source broadcasting, i.e., several nodes
broadcast the same messagem in different rounds, provided a broadcast ofm is invoked beforem reaches the invoking
node from another broadcast. In Sec. 5 we prove that in this case AAF delivers m after at most Diam(G) rounds and
forwards m at most 2|E| times. If the communication channel is unavailable f times then AAFI delivers m after at
most Diam(G) + 2f rounds, m is still forwarded at most 2|E| times.

While algorithmAAFI is of interest on its own, it can also be used to solve the general task of multi-message broadcast
in systems with bounded channel capacities. Multi-message broadcast means that multiple nodes initiate broadcasts
of different messages, even when broadcasts from previous initiations have not yet terminated. If channel capacities
are bounded, nodes can forward only a limited number of messages per round. Bounded channel capacities occur in
communication systems utilizing TDMA, where communication is performed in fixed length slots and therefore only
b messages can be sent in one round. If more than b messages are in the sending queue, then the forwarding of some
messages has to be postponed for at least one round. In Sec. 6 we present two algorithms AAFIS and AAFIF for this
task. The advantage of these algorithms is that compared to classic flooding besides the unavoidable message buffer
no state information has to be maintained. Thm. 1 summarizes our third contribution.

Theorem 1. Let S be a sequence of message broadcasts (identical or different messages) by the nodes of a graph
G(V,E) in arbitrary rounds under the restriction that a broadcast of message m is invoked before m reaches the
invoking node from a broadcast of another node. If in each round each node can send at most b messages to each
neighbor algorithm AAFIF eventually terminates and delivers each message of S. Nodes don’t need to memorize the
reception of a message. If G is bipartite each message is forwarded |E| times, otherwise 2|E| times.

2 State of the Art

Broadcasting as a service in distributed systems can be realized in two ways: Either by using a pre-constructed structure
such as a spanning tree or by performing the broadcast each time from scratch. In the first case a broadcast can be
performed with n−1 messages. In the second case a broadcast can be realized by 2(n−1) messages by traversing the
graph in a DFS style and carrying the identifiers of the visited nodes along with the messages. This requires messages
that store up to n node identifiers. If the message size is restricted to o(n) and only a fixed number of messages can
be sent per round per link then each deterministic broadcast algorithm has message complexity Ω(|E|), Thm. 23.3.6
[3]. For a detailed analysis of broadcast algorithms we refer to Sec. 23 of [3].

In this work we focus on broadcast algorithms that do not rely on a pre-constructed structure and use limited com-
munication channels. The most basic algorithm of this category is flooding as described above. Flooding uses 2|E|
messages and terminates after at most εG(v0) + 1 rounds, these bounds hold in the synchronous and asynchronous
model [3]. It requires each node to maintain for each message a record that the message has been forwarded. These
records have to be kept for an unknown time. This requires storage per node proportional to the number of dissemi-
nated messages. Amnesiac flooding AAF overcomes this limitation in synchronous systems and is thus stateless [2].
AAF delivers a broadcasted message twice to each node. Thus, we have to distinguish between delivery and termina-
tion time. AAF delivers a message (resp. terminates) for an initiator v0 on any finite graph in at most εG(v0) (resp.
εG(v0) + Diam(G) + 1) rounds, where Diam(G) is the diameter of G. The termination time compared to standard
flooding increases almost by a factor of 2. Amnesiac flooding was also analyzed for sets of initiators [4]. A stateless
broadcasting algorithm with the same time complexity as classic flooding has recently been proposed in [5].

A problem related to broadcast is rumor spreading. It describes the dissemination of information in networks through
pairwise interactions. A simple model for rumor spreading is that in each round, each node that knows the rumor,
forwards it to a randomly chosen neighbor. For many topologies, this strategy is a very efficient way to spread a
rumor. With high probability the rumor is received by all vertices in time Θ(log n), if the graph is a complete graph or
a hypercube [6, 7]. New results about rumor spreading can be found in [8].

Intermittent channel availability is no issue for classic flooding and thus has not been considered. Broadcasting in
distributed systems with bounded channel capacities has received little attention. Hussak et al. consider a model where
each node can send a single message per edge per round [9]. They propose variants of amnesiac flooding to handle
the case of many nodes invoking broadcasts of different messages in different rounds. They show that their algorithms
terminate, but message delivery to all nodes is only guaranteed in the special case that a single node broadcasts different
messages. Our work is more general and uses a different approach.

Raynal et al. present a broadcast algorithm suited for dynamic systems where links can appear and disappear [10].
Some algorithms of [9] also maintain their properties in case edges or nodes disappear over time. Casteigts et al.
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analyze broadcasting with termination detection in time-varying graphs [11]. They prove that the solvability and
complexity of this problem varies with the metric considered, as well as with the type of a priori knowledge available
to nodes.

3 Notation and Model

In this work G(V,E) denotes a finite, connected, undirected graph with n = |V |. Let v, u ∈ V , dG(v, u) denotes
the distance between v and u in G, N(v) the set of neighbors and εG(v) the eccentricity of v in G, i.e., the greatest
distance between v and any other node in G. Diam(G) denotes the maximum eccentricity of any node of G. An edge
(u,w) ∈ E is called a cross edge with respect to a node v0 if dG(v0, u) = dG(v0, w). ∆ denotes the maximal node
degree in G. Each node has a unique id and is aware of the ids of its neighbors but does not have any knowledge about
graph parameters such as the number of nodes or diameter.

The goal of a broadcasting algorithm is to disseminate a message created by a node to all nodes of the network.
Messages are assumed to be distinguishable, each having unique id. No message is lost in transit. A broadcast is said
to terminate when all network events (message sends/receives) that were caused by that broadcast have ceased. A
broadcast message is said to have been delivered, if it has been received by all the nodes in the network.

In this paper we consider synchronous distributed systems, i.e., algorithms are executed in rounds of fixed length and
all messages sent by all nodes in a particular round are received and processed in the next round. In Sec. 6 we assume
that in each round each node can only send a constant number b of messages to a subset of its neighbors. This can
be realized by a network-level broadcast, where each message contains the identifiers of the receivers. This requires
O(∆ log n) bits in each messages. Besides this, each message has just enough space to contain the information to be
disseminated. In particular two messages cannot be aggregated into one.

4 Handling Intermittent Channels

In this section we extend AAF so that it operates correctly with intermittent channel availabilities. Alg. 1 recaps the
details of amnesiac floodingAAF as described in [2]. A node that wants to flood a messagem sendsm to all neighbors.
Every time a node receives m, it forwards it to those neighbors from which it didn’t receive m in the current round.
The code in Alg. 1 shows the handling of a single message m. If several messages are broadcasted concurrently, each
requires its own set M .

Algorithm 1: Algorithm AAF distributes a message m in the graph G
input: A graph G = (V,E), a subset S of V , and a message m.

In round 1 each node v ∈ S sends message m to each neighbor in G;
Each node v executes in every round i > 1

M := N(v);
foreach receive(w,m) do

M := M \ {w};
if M 6= N(v) then

forall u ∈M do send(u,m);

An attempt to handle channel unavailabilities is to postpone the sending of some messages to the next round when
the channel is again available. Messages received in the mean time are treated as before, the senders are inserted into
M . Unfortunately, this modification of AAF may not terminate. Fig. 1 presents an illustrative example. In the graph
depicted in the top left node v0 broadcasts a message m in round 0. Suppose that node v2 (resp. v3) cannot send
messages in rounds 2, 3 and 4 (resp. in round 2). We show that forwarding messages in the first available round may
prevent termination. In the first round v0 sends m to v1, v2 and v3. In round 2 nodes v2 and v3 cannot forward m and
postpone the sending. Node v3 postpones this to round 3. In this round v2 also receives a message from v1. In rounds
3 and 4 node v2 in addition receives a message from node v5. These three events cannot be handled immediately
and are also postponed. In round 5 the channel becomes available for node v2, but in the meantime v2 has received a
message from all its neighbors and thusAAF will not send m to any of v2’s neighbors. From this round on the channel
is continuously available and thusAAF can be executed in its original form. In round 9 the algorithm reaches the same
configuration as in round 5. Thus, the algorithm does not terminate.
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Figure 1: A naive extension of algorithm AAF does not terminate in case of intermittent channel availability. The
configuration of round 5 repeats itself in round 9.

There is no striking reason for the failure of this naive attempt to fixAAF. To analyze the failure we reconsider the proof
of termination of the original algorithmAAF in [4]. This paper introduces for a given graphG and a broadcasting node
v0 the bipartite auxiliary graph G(v0) and shows that executions of AAF on G and G(v0) are tightly coupled. G(v0) is
a double cover of G that consists of two copies ofG, where the cross edges with respect to v0 are removed. Each cross
edges is replaced by two edges leading from one copy of G to the other. Fig. 2 depicts G(v0) for the graph shown in
Fig. 1 (see Def. 3 in [4] for details).
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Figure 2: The dashed lines on the left show the cross edges of G (v0 is the broadcasting node). The graph G(v0) is
shown on the right, dashed edges are the replacement edges.

An important observation is that G(v0) is bipartite and that in every round ofAAF all nodes that send messages belong
to one of the two partitions of nodes. Fig. 3 shows the partitioning of the nodes of G(v0) for the graph in Fig. 2. An
analysis of the execution of Fig. 1 shows that in some rounds, nodes from both partitions forward the message (e.g.,
in round 3).
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Figure 3: Concurrently forwarding nodes in AAF either all belong the top or bottom row.

4.1 Algorithm AAFI

The last observation leads to the following extension of AAF for intermittent availabilities. If a message cannot be
forwarded in the current round, it will be postponed until the next available round with the same parity, i.e., if the
blocked round is odd (resp. even), the message will be forwarded in the next available odd (resp. even) round. This
approach guarantees that as in AAF all nodes that concurrently send messages belong to same of the two node sets.
Alg. 2 shows a realization AAFI of this idea. Compared to AAF the new algorithm maintains two sets for the senders
of the message in the variable M , one for messages that arrive in odd rounds and one for even rounds. The parity
is maintained by the Boolean variable parity. The initialization of parity does not need be the same for all nodes.
The symbol ⊥ is used to indicate that no message has arrived in rounds with the specified parity. This is needed to
distinguish this situation from the case that a node wants to broadcast a message, in this caseM(parity) is assigned the
empty set. If we insert a node w into M(parity) when M(parity) = ⊥ then M(parity) = {w} afterwards. Messages
sent in round i are received in round i+ 1. Hence, in round 1 no message is received.

Algorithm 2: Algorithm AAFI distributes a message m in the graph G
Initialization

parity:= true;
M(true) := M(false) := ⊥;

Upon receiving message m from w:
M(parity).add(w);

if channel is available and M(parity) 6= ⊥ then
forall u ∈ N(v) \M(parity) do send(u,m);
M(parity) := ⊥;

At the end of each round
parity := ¬parity;

function broadcast(m)
M(parity) := ∅;

Fig. 4 shows an execution of algorithmAAFI for the graph of Fig. 1, given that node v2 (resp. v3) cannot send in rounds
2 to 4 (resp. 2). The execution terminates after round 5, with no indeterminacy the algorithm would terminate in 4
rounds (see App. A).

Clearly this extension ofAAF is no longer stateless, but because of message buffering no stateless algorithm can handle
channel unavailabilities.

4.2 Correctness and Complexity of Algorithm AAFI

To formally describe a node’s channel availability for message forwarding the concept of an availability scheme is
introduced. Let A : V × N −→ {true, false} be a function. Node v can send a message in round cv only if
A(v, cv) = true. A is called an availability scheme for G and v0 if the number of pairs (v, i) ∈ V ×N with A(v, i) =
false is bounded by a constant c. Note that this concept is only used in the formal proof. Nodes do not need to have
a common round counter. The availability scheme for Fig. 1 is A(v2, 2) = A(v2, 3) = A(v2, 4) = A(v3, 2) = false
and true otherwise. WLOG we always assume that A(v0, 1) = true.
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Figure 4: Execution of AAFI for the graph of Fig. 1. Round 1 is the same as in Fig. 1. In round 6 node v2 does not
need to forward the message because, it received messages from all neighbors in odd rounds (1, 3, 5). Whereas v2 has
to send a message to v0 in round 5 because it only received the message from v1 and v5 in even rounds 2 and 4.

For a given availability scheme A we construct a directed bipartite graph BA(v0) such that the execution of AAFI on
G with respect to A is equivalent to the execution of amnesiac flooding AAF on BA(v0). The starting point for the
construction of BA(v0) is the double cover G(v0) of G as defined in the last section. To keep the notation simple we
will omit the reference to the originating node v0 and refer to the two graphs as BA and G.

First we extend the definition of the availability scheme A to all nodes of G, i.e., A : V ∪ V ′ × N −→ {true, false}.
For each node v′ ∈ V ′ letA(v′, i) = A(v, i) for all i ∈ N. The nodes of BA are of two different types: copies of nodes
of G and so called dummy nodes. We define BA inductively, layer by layer. There can be copies of the same node v of
G on several layers of BA, but the nodes of a single layer of BA are copies of different nodes of G. Therefore, we do
not cause ambiguity when we denote the copies of the nodes by their original names. The construction of BA is based
on a function originator, that assigns to each node v of BA a set of neighbors of v in G. This function is also defined
recursively.

Layer 0 of BA consists of copy of v0 with originator(v0) = ∅. Layer 1 consists of copies of the neighbors of v0 in
G, these are also the neighbors of v0 in G. All layer 1 nodes are successors of v0 and the originator of these nodes is
{v0}. Next assume that layers 0 to i with i ≥ 0 are already defined including the function originator. We first define
the nodes of layer i+ 1 and afterwards the function originator. For each node of layer i we also define the successors.
We do this first for nodes which are copies of nodes of G and afterwards for dummy nodes.

Let v be a node of layer i that is a copy of a node of G. If originator(v) = NG(v) then v has no successor in layer
i + 1. Assume originator(v) 6= NG(v). First consider the case A(v, i + 1) = true. Let U = NG(v) \ originator(v).
For each u ∈ U we do the following: If layer i + 1 already contains a copy of u then we make it a successor of v.
Otherwise, we insert a new copy of u into layer i + 1 and make it a successor of v. If A(v, i + 1) = false then we
create a new dummy node, insert it into layer i + 1, and make it the single successor of v. Finally, let v be a dummy
node of layer i and w its single predecessor in layer i− 1. If layer i+ 1 already contains a copy of w then we make it
a successor of v. Otherwise, we create a new copy of w, insert it into layer i+ 1, and make it the successor of v.

To define originator for each node v of layer i + 1 let pred(v) be the set of predecessors of a node v in B. With
predd(v) we denote the dummy nodes in pred(v). Since dummy nodes only have a single predecessor we denote the
predecessor in this case also by pred(v). If v is not a dummy node then we define

originator(v) =
⋃

w∈predd(v)

originator(w) ∪ pred(v)\predd(v)

otherwise originator(v) = originator(pred(v)). Note that BA is bipartite, since nodes of the same layer are not
connected. Fig. 5 shows the graph BA for the graph of Fig. 1 and availability scheme A. The dummy nodes are
labeled a to d. We have originator(a) = originator(b) = {v0}, originator(c) = {v1}, and originator(d) = {v0, v5}.
Also, originator(v2) = {v0, v5, v1′} in layer 5.

We orient the edges of G by executing a breadth-first search starting in v0. The union of the successors and predecessors
of a node in G are precisely the neighbors of the node in G. The next lemma follows from Lemma 5 of [4].

Lemma 2. Let v be a node of layer i ≥ 0 of G. The predecessors of v in G are copies of the nodes in G that send in
round i of an execution of AAF a message to v and the successors of v in G receive a message from v in round i+ 1.

Proof. Suppose that a node w sends in round i a message to a node v. By Lemma 5 of [4] w is a node of layer i − 1
and either v or v′ is a successor of w in B or w′ is a node of layer i − 1 and v′ is a successor of w. Note that in B a
node of G and its copy cannot be in the same layer. The second statement also follows from this lemma.
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Figure 5: The graph BA for the availability scheme A has four dummy nodes.

Let A be any availability scheme for G and v0. Lemma 3 is easy to prove.

Lemma 3. Let v be a node of G. For each copy u of v in BA we have NG(v0)(v) = originator(u) ∪ succ(u). If none
of the predecessors of v in B is a dummy node then NG(v0)(v) = pred(u) ∪ succ(u).

To illustrate the last lemma we consider the execution from Fig. 4 and the corresponding graph BA in Fig. 5. Let i = 4
and consider node v2. The copy of v2 on layer 4 is called v2′ . Fig. 5 shows that originator(v2) = {v5, v1}. From
Fig. 4 we see that node v2 receives a message from node v1, i.e., v1 ∈ v2.M(parity). Since A(v2, 3) = false node v2
could not send a message in round 3. Hence the sender v1 of the message received in round 3 is still in v2.M(parity).
This yields v2.M(parity) = {v5, v1}, since A(v2, 1) = true .

For an availability scheme A and k ≥ 0 we define a new availability scheme Ak as follows. We consider the nodes of
BA in any arbitrary but fixed order and define a total order on the set of pairs (v, i) ∈ V × N with A(v, i) = false as
follows: (v, i) < (w, j) if and only if i < j or i = j and v < w. Then we define Ak(v, i) = false for all but the first
k pairs (v, i), i.e., Ak has value false for exactly k pairs (v, i). Note that there exists c > 0 such that A = Ac.

Lemma 4. There is a one-to-one mapping between the edges of G and those edges of BA that are not incident to a
dummy node.

Proof. It suffices to prove that the lemma holds for each Ak with k ≥ 0. The proof is by induction on k. If k = 0
then the result is trivially true since BA0

= G. Assume the theorem is true for k ≥ 1. Consider the graph BAk−1
.

Let (v, i) be the kth pair with A(v, i) = false . If layer i − 1 of BAk−1
contains no copy of v then BAk−1

= BAk

and we are done. Suppose there exists a copy of v on layer i − 1 of BAk−1
. We inductively define two sequences of

sets Xj , Xj (j ≥ 1) of nodes of BAk−1
(see Fig. 6). Nodes of Xj , Xj are in layer i − 1 + j of BAk−1

. X1 is the
set of nodes of layer i that have v as the single predecessor in layer i − 1 and X1 = succ(v) \ X1, where succ(v)
denotes the successors in BAk−1

. Thus, each node in X1 has besides v another predecessor in layer i− 1. Suppose we
already defined Xj−1, Xj−1. Then Xj is the set of nodes of layer i− 1 + j that have only predecessors in Xj−1, i.e.,
pred(Xj) ⊆ Xj−1. Xj consists of those nodes of layer i − 1 + j that have predecessors in Xj−1 and in Xj−1, i.e.,
for each w ∈ Xj we have pred(w) ∩Xj−1 6= ∅ and pred(w) ∩Xj−1 6= ∅. Hence, succ(Xj−1) = Xj ∪̇Xj . Note
that none of the nodes of Xj , Xj are dummy nodes, therefore NG(u) = pred(u) ∪ succ(u) for each u ∈ Xj ∪Xj by
Lemma 3. Since the theorem is true for Ak−1, there exist t such that Xt = ∅. Note that Xj 6= ∅ for j = 1, . . . t − 1

while Xj can be empty for any j.

Next, we show how BAk
can be derived from BAk−1

. The two graphs coincide completely in the first i − 1 layers.
In subsequent layers nodes that are not reachable from v in layer i − 1 also are identical. The single successor of v
in layer i is the dummy node. This node itself has as successor a copy of v on layer i + 1. Clearly this copy of v is
also the successor of all nodes in X1 in layer i. The successors of the copy of v on layer i+ 1 are copies of the nodes
of set X1. Nodes in X2 on layer i + 1 are the predecessors of nodes in X1. All these statements are an immediate
consequence of Lemma 3. Similarly it follows that each layer i− 1 + j for j ≥ 3 contains copies of the nodes of set
Xj−2. Their predecessors are copies of the nodes in Xj−3 and Xj−1.

7
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Figure 6: The top row illustrates the definition of Xj and Xj for BAk−1
. The lower row displays the changes in BAk

compared with BAk−1
. The last row indicates the number of the layer. The symbol indicates that there can be

several edges.

Thus, in BAk
some edges from BAk−1

are reversed: The orientation of edges from Xj to Xj+1 and from v to X1 is
reversed. This analysis also shows that BAk

only has two additional edges, those adjacent to the new dummy node. In
the worst case, BAk

consists of two more layers compared to BAk−1
.

To ease the formulation of the next lemma we introduce another definition. Let u be a node of G. For a copy of u in
layer i of BA we denote the originators in BA of this copy of v by originatori(v). Furthermore, the set M(parity) of
node u immediately before checking channel availability in round i during an execution of AAFI on G is denoted by
v.M i(parity).

Lemma 5. Let u be a non-dummy node of layer i of BA. Then u.M i(parity) = originatori(u).

Proof. We use the notation introduced in the proof of Lemma 4. As before we prove by induction on k that the lemma
holds for Ak. If k = 0 then the result holds by Lemma 2 since BA0 = G. Assume the lemma is true for k ≥ 1. We
consider the graph BAk−1

. Let (v, i) be the kth pair with A(v, i) = false . If in layer i − 1 of BAk−1
there exists no

copy of v then BAk−1
= BAk

and we are done. Suppose there exists a copy of v on layer i− 1 of BAk−1
. From Fig. 6

we see that we only have to consider the cases u = v, u ∈ Xj , and u ∈ Xj . Remember that there are no dummy
nodes in Xj , Xj .

First consider the case that u is the copy of v in layer i+1 in BAk
(see Fig. 6). In round i+1 in BAk

the nodes inX1 do
not receive the message from v becauseA(v, i) = false . Since each node inX1 still receives the message from another
node, each of them must forward the message in round i to v. Hence, v.M i+1(parity) = v.M i−1(parity) ∪X1. On
the other hand originatori+1(v) = originatori−1(v) ∪X1. By induction originatori−1(v) = v.M i−1(parity).

Next consider the case u ∈ X1. Then u is on layer i + 2 of Bk. Since in BAk−1
each node in X1 receives in round i

only the message from v, node v sends the message to each node in X1 in round i+ 1. Furthermore, since for BAk−1

each node in X2 received in round i+ 1 a message from a node in X1, each node of X2 sends BAk
the message to at

least one node of X1. In particular node u receives in round i + 2 the message from its predecessors in X2 for BAk
.

Clearly, u does not receive the message from any other node. Thus, u.M i+2(parity) = originatori+2(u). The cases
u ∈ Xj with j > 1 and u ∈ Xj with j ≥ 1 can be proved similarly.

Lemma 6. During round i of an executing of AAFI on G a node v sends the message to a neighbor w if and only if
the copy of v in layer i− 1 of BA is the predecessor of a copy of w in layer i of BA.

Proof. If during the execution of AAFI node v sends messages in round i to w then A(v, i) = true and N(v) 6=
v.M(parity). By the Lemma 5 we have w ∈ N(v) \ originator(v). Thus, by construction w is a successor of v in BA.
Conversely, if w is successor of v in BA then A(v, i) = true and v ∈ N(v) \ originator(v). Again Lemma 5 gives the
desired result.
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The last lemma implies that executing AAFI on G is equivalent to executing AAF on BA. The reason is that BA is
bipartite and executing AAF on a bipartite graph starting at the root is equivalent to synchronous flooding the bipartite
graph. This is formulated in the following theorem.

Theorem 7. Let G be a graph G and A an availability scheme for G. Let f = |{(v, i) | A(v, i) = false}|. Algorithm
AAFI delivers a broadcasted message (resp. terminates) after at most Diam(G) + 2f (resp. 2Diam(G) + 2f + 1)
rounds. If G is bipartite each message is forwarded |E| times, otherwise 2|E| times.

Proof. Lemma 6 implies that AAFI terminates after d rounds where d is the height of BA. The proof of Lemma 4
shows that each pair (v, i) with A(v, i) = false increases the depth by at most 2. By Thm. 1 of [4] the depth of G is at
most 2Diam(G) + 1. By Lemma 4 and Lemma 5 AAFI sends 2|E| messages.

5 Multi-Source Broadcasts

A variant of broadcasting is multi-source broadcasting, where several nodes invoke a broadcast of the same message,
i.e., with the same message id, possibly in different rounds. This problem is motivated by disaster monitoring: A
distributed system monitors a geographical region. When multiple nodes detect an event, each of them broadcasts
this information unless it has already received this information. Multi-source broadcasting for the case that all nodes
invoke the broadcast in the same round was already analyzed in [4]. This variant can be reduced to the case of single
node invoking the broadcast by introducing a virtual source v∗ connected by edges to all broadcasting nodes.

In this section we consider the general case where nodes can invoke the broadcasts in arbitrary rounds. First we
show that broadcasting one message with algorithm AAF also terminates in this case and that overlapping broadcasts
complement each other in the sense that the message is still forwarded only 2|E| resp. |E| times. Later we extend this
to the case of intermittent channels.

Theorem 8. Let v1, . . . , vk be nodes ofG that broadcast the same messagem in rounds r1, . . . , rk. Each broadcast is
invoked before m reaches the invoking node. Algorithm AAF delivers m after Diam(G) rounds and terminates after
at most 2Diam(G) + 1 rounds and m is forwarded at most 2|E| times.

Proof. WLOG we assume r1 = 0. For each i with ri > 0 we attach to node vi a path Pi = ui1, . . . , u
i
ri with ri nodes,

i.e., uir1 is connected to vi by an edge. The extended graph is called G◦. Let S = {ui1 | ri > 0} ∪ {vi | ri = 0}. If in
G◦ all nodes in S broadcast in round 0 message m then in round ri + 1 each node vi sends m to all its neighbors in
G. Thus, the forwarding of m along the edges of G is identical in G and G◦. By Thm. 1 of [4] algorithmAAF delivers
m after dG◦(S, V ◦) rounds and terminates after at most dG◦(S, V ◦) + 1 +Diam(G◦) rounds, V ◦ is the set of nodes
of G◦. Also, in G◦ message m is forwarded at most twice via each edge. Thus, in G message m is forwarded at most
2|E| times.

To prove the upper bounds for the delivery and termination time we reconsider the proof of Thm. 1 of [4]. This proof
constructs from G◦ a new graph G∗ by introducing a new node v∗ and connecting it to all nodes in S. It is then shown
that the termination time of invoking the broadcast in G◦ by all nodes of S in round 0 is bounded by d − 1, where
d is the depth of the bipartite graph G(v∗) corresponding to G∗. Note that we are only interested in the termination
time of the nodes of G in G◦. Thus, we only have to bound the depth of the copies of the nodes of G in G(v∗). Since
broadcasts are invoked before m is received for the first time we have ri ≤ eccG(v1). Thus, the depth of the first
copy of each node has depth at most eccG(v1) + 1 ≤ Diam(G) + 1 in G(v∗). Hence, delivery in G takes place after
Diam(G) rounds. The second copy of each node ofG is at most in distance 1+Diam(G) from one of the first copies
of the nodes of G in G(v∗). Thus, termination in G is after at most 2Diam(G) + 1 rounds.

The stated upper bounds are the worst case. Depending on the locations of the nodes vi and the values of ri the actual
times can be much smaller. Next we extent Thm. 8 to tolerate intermittent channel availabilities.

Theorem 9. Let A be an availability scheme for a graph G. Let v1, . . . , vk be nodes of G that broadcast the same
message m in rounds r1, . . . , rk. Each broadcast is invoked before m reaches the invoking node. Algorithm AAFI

delivers m (resp. terminates) in at most Diam(G) + 2f (resp. 2Diam(G) + 2f + 1) rounds after the first broadcast
with f = |{(v, i) | A(v, i) = false}|. Message m is forwarded at most 2|E| times.

Proof. In the proof of Thm. 8 it is shown that broadcasting the same message m in different rounds by different nodes
is equivalent to the single broadcast of m by a single node v∗ in the graph G∗. Applying Thm. 7 to G∗ and v∗ shows
that AAF delivers m to all nodes of G∗ for any availability scheme. Hence, Thm. 8 also holds for any availability
scheme.

9



Synchronous Concurrent Broadcasts for Intermittent Channels with Bounded Capacities A PREPRINT

6 Multi-Message Broadcasts

While algorithmAAFI is of interest on its own, it can be used as a building block for more general broadcasting tasks. In
this section we consider multi-message broadcasts, i.e., multiple nodes initiate broadcasts, each with its own message,
even when broadcasts from previous initiations have not completed. We consider this task under the restriction that in
each round each node can forward at most b messages to each of its neighbors. Without this restriction we can execute
one instance of AAF for each broadcasted message. Then each messages is delivered (resp. the broadcast terminates)
in ecc(v0) (resp. ecc(v0) + 1 + Diam(G)) rounds [4]. The restriction enforces that only b instances of AAF can be
active in each round, additional instances have to be suspended. First consider the case b = 1.

Multi-message broadcast can be solved with an extension of algorithm AAFI. We use an associative array messTbl
to store the senders of suspended messages according to their parity. Message identifiers are the keys, the values
correspond to variable M of Alg. 2. Any time a node v receives a message m with identifier id from a neighbor w
it is checked whether v.messTbl already contains an entry with key id for the current parity. If not, a new entry is
created. Then w is inserted according to the actual value of parity into v.messTbl[id]. When all messages of a round
are received all values in v.messTbl with the current parity are checked, if a value equals N(v) then it is set to ⊥.
In this case v received message id from all neighbors and no action is required. After this cleaning step, an entry of
messTbl is selected for which the value with the current parity is not ⊥. Selection is performed according to a given
criterion. The message belonging to this entry is sent to all neighbors but those listed in the entry. Finally the entry is
set to⊥. The details of this algorithm can be found in App. B. The delivery order of messages depends on the selection
criterion. The variant of this algorithm which always selects the method with the smallest id is called AAFIS .

Theorem 10. Algorithm AAFIS eventually delivers each message of any sequence of broadcasts of messages with
different identifiers. If G is bipartite, each message is forwarded |E| times, otherwise 2|E| times.

Proof. The message with the smallest identifier id1 is always forwarded first byAAFIS . Thus, this message is forwarded
as in amnesiac flooding. Hence, it is delivered after at most 2Diam(G) + 1 rounds after it is broadcasted [4]. Next we
define an availability scheme A1: A1(v, i) = false if during round i of algorithm AAFIS node v forwards message id1,
otherwise let A1(v, i) = true. Then the message with the second smallest identifier id2 is forwarded as with algorithm
AAFI for availability schemeA1. Thus, by Thm. 7 this message is eventually delivered. Next define availability scheme
A2 similarly to A1 with respect to the messages with ids id1 and id2 and apply again Thm. 7, etc.

Forwarding the message with the smallest id is only one option. Other selection criteria are also possible, but without
care starvation can occur. The variant, where the selection of the forwarded message is fair, is called AAFIF . Fairness
in this context means, that each message is selected after at most a fixed number of selections. This fairness criteria
limits the number of concurrent broadcasts. If message selection is unfair for one of the nodes, then continuously
inserting new messages results in starvation of a message. We have the following result.

Theorem 11. If in each round each node can forward only one message to each of its neighbors algorithm Algorithm
AAFIF eventually terminates and delivers each message of any sequence of broadcasts of messages with different
identifiers. If G is bipartite, each message is forwarded |E| times, otherwise 2|E| times.

Proof. Whenever the associative array messTbl of a node is non-empty, the node will forward a message in the next
round with the adequate parity. The fairness assumption implies that wheneverm is inserted into w.messTbl for a node
w then after a bounded number of rounds it will be forwarded and removed from w.messTbl. Thus, the forwarding of
m makes progress.

Let m be a fixed message that is broadcasted in some round im. Denote by fj the number of forwards of message
m up to round j. For each j we define an availability scheme Aj as follows: Aj(v, i) = true for all i > j and all
v ∈ V . Furthermore, Aj(v, i) = true for i ≤ j and v ∈ V if during round i node v forwards message m. For all
other pairs let Aj(v, i) = false . Hence, there are only finitely many pairs (v, i) such that Aj(v, i) = false . Clearly for
all j, message m is forwarded during the first j rounds as with algorithm AAFI with respect to Aj . Thus, by Thm. 7
fj ≤ 2m. Hence, there exist jm ≥ im such that in round jm each node has received the message and after this round
the message is no longer in the system. Hence, the result follows from Thm. 7.

The case b > 1 is proved similarly. We only have to make a single change to AAFIF . After the cleaning step we select
up to b entries of messTbl and send the corresponding messages. The proof of Thm. 12 is similar to that of Thm. 11.

Theorem 12. If in each round each node can forward at most b ≥ 1 messages to each of its neighbors algorithmAAFIF

eventually terminates and delivers each message of any sequence of broadcasts of messages with different identifiers.
If G is bipartite, each message is forwarded |E| times, otherwise 2|E| times.
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Finally, Thm. 1 follows directly from Thm. 9 and Thm. 12.

7 Discussion and Conclusion

In this paper we proposed extensions to the synchronous broadcast algorithm amnesiac flooding. The main extension
allows to execute the algorithm for systems with intermittent channels. While this is of interest on its own, it is the
basis to solve the general task of multi-message broadcast in systems with bounded channel capacities. The extended
algorithm delivers messages broadcasted by multiple nodes in different rounds, even when broadcasts from previous
invocations have not completed, while each of the messages is forwarded at most 2|E| times. The main advantage of
amnesiac flooding remains, nodes don’t need to memorize the reception of a message to guarantee termination.

We conclude by discussing two shortcomings of amnesiac flooding. AAF delivers a broadcasted message twice to each
node. To avoid duplicate delivery, nodes have to use a buffer. Upon receiving a message m a node checks whether the
id of m is contained in its buffer. If not then m is delivered to the application and m’s id is inserted into the buffer.
Otherwise, m’s id is removed from the buffer and not delivered. This also holds for algorithm AAFIF .

Amnesiac flooding satisfies the FIFO order, i.e., if a node v0 broadcasts a message m before it broadcasts a message
m′ then no node delivers m′ unless it has previously delivered m. This property is no longer satisfied for AAFI as the
following example shows. Suppose that v0 broadcasts m resp. m′ in rounds i resp. i + 1. Let w be a neighbor of v0
with A(w, i + 2) = false and A(v, j) = true for all other pairs. Then node w forwards m′ in round i + 3 while it
forwards m in round i+ 4. Thus, a neighbor u of w receives m′ before m.
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A Execution of Algorithm AAF
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Figure 7: The original amnesiac flooding algorithm AAF terminates after 4 rounds for the graph of Fig. 1.

B Algorithm for Multi-Message Broadcast

In this section we describe the extension of algorithm AAFI to realize multi-message broadcasts. As with AAFI each
node v has two variables. First, a Boolean flag parity that is toggled at the end of every round. The values of parity
must not be synchronized among nodes. The second variable corresponds to variable M of AAF, it is used to store the
senders of the messages according to the parity of the round in which they were received. In multi-message broadcasts
a node can receive different messages in a round and therefore must be prepared to separately store the senders of
these messages. An associative array messTbl is used for this purpose. Message identifiers are the keys, the values
correspond to variable M of AAFI. Values consist of two parts list[true] and list[false], corresponding to the round’s
parity. The symbol ⊥ indicates that no message has arrived in rounds with the specified parity. This is needed to
distinguish this from the case when a node invokes a broadcast, in this case the value is the empty set ∅. If we insert a
node w when the value is ⊥ then it is {w} afterwards. Tab. 1 shows an example of messTbl.

Message Id Message list[true] list[false]

17 . . . v1, v3 v1, v4

123 . . . v15 ⊥
3 . . . ∅ ∅

Table 1: Example of a node’s associative array messTbl.

Fig. 8 shows the pseudo code of the proposed extension ofAAFI. In every round the following three steps are executed:
First, received messages are used to update the message table. In the second step a message is selected from the
message table and sent to those neighbors not listed in the appropriate column of the corresponding row. As a last step
the flag parity is toggled.

Next we describe the first two steps at full length. The details of the first step are as follows. Any time a node v
receives a message m with identifier id from a neighbor w it is checked whether v’s message table already contains
a row for id. If not, a new row is created and the first two columns are filled with id and m. The last two columns
contain the symbol ⊥. In any case the node w is appended to the list in the third or forth column according to the
current parity into v.messTbl[id].list. In case the corresponding entry is ⊥ a new list with the single element w is
created.

When all messages of a round are received then the following cleaning action is performed as the closing-off of the
first step. All values in v.messTbl with the current parity are checked. If a value equals N(v) then it is set to⊥. In this
case v received message id from all neighbors and no action is required. After this cleaning step, an entry of messTbl
is selected for which the value with the current parity is not ⊥. Selection is performed according to a given criterion.
The message belonging to this entry is sent to all neighbors but those listed in the entry. Finally the entry is set to ⊥.

Initially for each node v the associative array messTbl is empty and flag parity has an arbitrary value. A node v that
wants to disseminate a new message m with the identifier id creates a new row in the message table and inserts the
value id and m into the first two columns. The last two columns contain the empty list ∅. The third row of Tab. 1 is an
example for this situation.

If the node v with the message table shown in Tab. 1 receives in a round with parity = false a message with id = 17
from neighbors v1, v5, and v8 the last column of the corresponding row would be updated to v1, v4, v5, v8. If the id
of the received message is 123 then the last column would be updated to v1, v5, v8. Next we give an example for the
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init:
parity := true;
messTbl := Create new HashMap with entries (id, m, list[])

In every round do:
1. foreach received message BC〈idm, m〉 from neighbor w do

if id 6∈ messTbl
Create new entry with (idm, m, list[true] := ⊥, list[false] := ⊥)

in messTbl
if w 6∈ messTbl[idm].list[parity]

if messTbl[idm].list[parity] = ⊥
messTbl[idm].list[parity] :=

{}
Add w to messTbl[idm].list[parity]

foreach i∈ messTbl do
if messTbl[i].list[parity] = N(v)

messTbl[i].list[parity] := ⊥
if messTbl[i].list[parity] = ⊥ and messTbl[i].list[parity] = ⊥

Delete entry i from messTbl

2. Select an entry i in messTbl with messTbl[i].list[parity] 6= ⊥
foreach w∈ N(v) do

if w 6∈ messTbl[i].list[parity]
send(w, BC〈messTbl[i].id, messTbl[i].m〉)

messTbl[i].list[parity] = ⊥
if (messTbl[i].list[parity] = ⊥ or messTbl[i].list[parity] = ∅)

Delete entry i from messTbl

3. parity := parity

function broadcast(m) :
id := Create unique message id for message m
Create new entry with (id, m, list[true] := ∅, list[false] := ∅)

in messTbl

Figure 8: Algorithm

execution of the second part of the algorithm for Tab. 1. If parity = false and the first row is selected, the message
with id = 17 is sent to all neighbors of v except v1 and v4. If the last row is selected, the message with id = 3 is sent
to all neighbors. In the first case the last column is set to ⊥ and the row remains in the table. In the second case the
row is deleted. If on the other hand parity = true and the second row is selected the message with id = 123 is sent to
all neighbors of the node except node v15 and the row is deleted from the table.
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