
ar
X

iv
:2

10
2.

07
22

1v
1

 [
cs

.D
C

]
 1

4
Fe

b
20

21

Near-Optimal Scheduling in the Congested Clique

Keren Censor-Hillel Yannic Maus Volodymyr Polosukhin

Technion ∗

Abstract

This paper provides three nearly-optimal algorithms for scheduling t jobs in the CLIQUE

model. First, we present a deterministic scheduling algorithm that runs in O(GlobalCongestion+
dilation) rounds for jobs that are sufficiently efficient in terms of their memory. The dilation is
the maximum round complexity of any of the given jobs, and the GlobalCongestion is the total
number of messages in all jobs divided by the per-round bandwidth of n2 of the CLIQUE model.
Both are inherent lower bounds for any scheduling algorithm.

Then, we present a randomized scheduling algorithmwhich runs t jobs inO(GlobalCongestion+
dilation · logn + t) rounds and only requires that inputs and outputs do not exceed O(n log n)
bits per node, which is met by, e.g., almost all graph problems. Lastly, we adjust the random-
delay-based scheduling algorithm [Ghaffari, PODC’15] from the CONGEST model and obtain an
algorithm that schedules any t jobs in O(t/n+ LocalCongestion+ dilation · logn) rounds, where
the LocalCongestion relates to the congestion at a single node of the CLIQUE. We compare this
algorithm to the previous approaches and show their benefit.

We schedule the set of jobs on-the-fly, without a priori knowledge of its parameters or the
communication patterns of the jobs. In light of the inherent lower bounds, all of our algorithms
are nearly-optimal.

We exemplify the power of our algorithms by analyzing the message complexity of the state-
of-the-art MIS protocol [Ghaffari, Gouleakis, Konrad, Mitrovic and Rubinfeld, PODC’18], and
we show that we can solve t instances of MIS in O(t + log log∆ logn) rounds, that is, in O(1)
amortized time, for t ≥ log log∆ logn.

1 Introduction

Motivated by the ever-growing number of frameworks for parallel computations, we address the
complexity of executing multiple jobs in such settings. Such frameworks, e.g., MapReduce [KSV10],
typically need to execute a long queue of jobs. A fundamental goal of such systems is to schedule
many jobs in parallel, for utilizing as much of the computational power of the system as possible.
Ideally, this is done by the system in a black-box manner, without the need to modify the jobs and,
more importantly, without the need to know their properties and specifically their communication
patterns beforehand.

In their seminal work, Leighton, Maggs, and Rao [LMR94] studied the special case where each
of the to-be-scheduled jobs is a routing protocol that routes a packet through a network along a
given path. The goal in their work is to schedule t jobs such that the length of the schedule, i.e., the
overall runtime until all t packets have reached their destination, is minimized. They showed that

∗{ckeren, yannic.maus, po}@cs.technion.ac.il

1

http://arxiv.org/abs/2102.07221v1

there exists an optimal packet-routing schedule of length O(congestion+ dilation), where congestion
is the maximum number of packets that need to be routed over a single edge of the network and
dilation is the maximum length of a path that a packet needs to travel. Clearly, both parameters
are lower bounds on the length of any schedule, implying that the above schedule is asymptotically
optimal. Further, Leighton, Maggs, and Rao [LMR94] showed that assigning a random delay to
each packet gives a schedule of length O(congestion + dilation · log (t · dilation)).

In his beautiful work, Ghaffari [Gha15] raised the question of running multiple jobs in the
distributed CONGEST model on n nodes. Applying the random delays method [LMR94], he showed
a randomized algorithm which after O(dilation· log2 n) rounds of pre-computation, runs a given a set
of jobs in O(congestion+dilation·log n) rounds. Here, in a similar spirit to [LMR94], congestion is the
maximum number of messages that need to be sent over a single edge and dilation is the maximum
round complexity of all jobs. Further, Ghaffari [Gha15] showed that this is nearly optimal, by
constructing an instance which requires Ω(congestion + dilation · log n/ log log n) rounds to schedule.

In this paper, we address the t-scheduling problem in the (CONGESTED) CLIQUEmodel [LPPP05],
in which each of n machines can send O(log n)-bit messages to any other machine in each round.
Our goal is thus to devise scheduling algorithms that run t jobs in a black-box manner, such that
they complete in a number of rounds that beats the trivial solution of simply running the jobs
sequentially one after the other, and, ideally, reaches inherent lower bounds that we discuss later.
We emphasize that we schedule all jobs’ actions on-the-fly during their execution. Throughout the
paper, we use the terminology that a job is a protocol that n nodes, v0, . . . , vn−1, need to run on
some input, and we use the notion of an algorithm for the scheduling procedure that the n machines,
p0, . . . , pn−1, execute. Each machine pi is given the inputs of the nodes vji for all jobs j, and the
machines run an algorithm which simulates the protocols of their assigned nodes.

Our contributions are three algorithms for scheduling t jobs in the CLIQUE model, which exhibit
trade-offs based on the parameters of dilation, LocalCongestion, and GlobalCongestion of the set of
jobs, which we formally define below. Our scheduling algorithms complete within round complexities
that are nearly optimal w.r.t. the appropriate parameters.

1.1 Our Contributions

No scheduling algorithm can beat the dilation of the set of jobs, which is the maximum runtime of
a job in the set, had this job been executed standalone. Similarly, another natural lower bound is
given by the GlobalCongestion, which is the total number of messages that all nodes in all jobs send
over all rounds, normalized by the n2 per-round-bandwidth of the CLIQUE model (for simplicity,
this considers the possibility that a machine sends a message to itself). The main goal is thus to
get as close as possible to these parameters.

As a toy example, consider a set of jobs in which each completes within a single round. Intu-
itively, if the total number of messages that need to be sent by all nodes in all jobs is at most n2,
then one could hope to squeeze all of these jobs into a single round of the CLIQUE model, as n2 is
the available bandwidth per round. The main hurdle in a straightforward argument as above, lies
in the fact that a machine cannot send more than n messages in a round. Thus, although we are
promised that in total there no more than n2 messages, it might be that a machine is required to
send/receive ω(n) messages because the heaviest-loaded nodes of multiple jobs might be located on
the same machine.

This implies that a näıve scheduling, in which each machine simulates the nodes that are located
at it, is more expensive than our single-round goal scheduling, as some messages must wait for later

2

rounds. In the general case, these issues become more severe, as the jobs may originally require
more than a single round, and it could be that each round displays an imbalance in a different set
of nodes and machines.

The key ingredient in the first two scheduling algorithms that we present is hence to rebalance
the nodes among the machines, for the sake of a more efficient simulation that deals with the
possible imbalance, which also may vary from round to round. The third scheduling algorithm we
present is inspired by the random-delay approach of [LMR94,Gha15]. In what follows, we present
the guarantees that are obtained by our three scheduling algorithms, and discuss the trade-offs that
they exhibit.

Deterministic scheduling. A crucial factor in the complexity of rebalancing the nodes among
the machines is the amount of information that needs to be passed from one machine to another
in order for the latter to take over the simulation of a node. To this end, we define an M -memory
efficient job as a job where for each node, its state can be encoded in M log n bits, and that the
number of messages it needs to receive in this round can be inferred from its state. In Section 3,
we obtain the following deterministic algorithm for scheduling t jobs that are M -memory efficient.

Theorem 3.1. There is a deterministic algorithm that schedules t = polyn jobs that are M -memory
efficient in O(GlobalCongestion+ ⌈M · t/n⌉ · dilation) rounds.

At a very high level, in the algorithm for Theorem 3.1, the machines rebalance nodes in each
round by sending the states of nodes. The main technical effort is that the reassignment needs to
be computed by the machines on-the-fly, and we show how to do so in a fast way.

Notice that for the case that M · t = O(n), the round complexity we get from Theorem 3.1 is
O(GlobalCongestion + dilation), which is optimal. Another crucial point is that our algorithm does
not require the knowledge of either the GlobalCongestion or the dilation of the set of jobs.

Randomized scheduling. If we are given a set of jobs that are not memory efficient for a
reasonable value of M , it may be too expensive to rebalance the nodes among the machines in
every simulated round. However, if the input of each node is not too large, we can randomly shuffle
the nodes at the beginning of the simulation, and if the output is also not too large then we can
efficiently unshuffle, and reach the original assignment.

To capture this, we say that a job is I/O efficient if its input and output can be encoded within
O(n log n) bits. Notice that most graph-related problems are I/O efficient, e.g., MST [LPPP05,
HPP+15,GP16,Kor16,JN18,Now19], MIS [Gha17,GGK+18,CPS20], Mininum Cut [GN18,GNT20],
as well as many algebraic problems [CKK+19,Gal16]. An example of a graph problem that is not
I/O efficient is k-clique listing, in which all nodes together have to explicitly output all k-cliques
in the input graph [DLP12, IG17, PRS18, CGL20, CPZ19] which can be as many as Ω(nk), thus
necessitating large outputs. While the k-clique listing problem is not output efficient, it is input
efficient, and as it does not require a specific node to output a specific clique, one could also run
several instances of the problem by omitting the output unshuffling step of our scheduling algorithm.

We obtain the following randomized algorithm for scheduling t jobs that are I/O efficient.

Theorem 4.1. There is a randomized algorithm in the CLIQUE model that schedules t = polyn
jobs that are I/O efficient in O(t+ GlobalCongestion+ dilation · log n) rounds, w.h.p.1

1An event occurs w.h.p. (with high probability) if for an arbitrary constant c ≥ 1, the probability that the event
occurs is at least 1 − n

−c, where n is the number of machines. All our results can be adapted to any constant c at
the cost of increasing the runtime by a constant factor.

3

As the deterministic scheduling algorithm (Theorem 3.1), the scheduling algorithm of Theo-
rem 4.1 requires neither the knowledge of GlobalCongestion nor the knowledge of dilation.

Both of our scheduling algorithms for Theorem 3.1 and Theorem 4.1 have the machines possibly
simulate the execution of nodes that are not originally assigned to them. We stress that any
black-box scheduling algorithm in which each machine only simulates the nodes that are originally
assigned to it must inherently suffer from another type of congestion as a lower bound on its round
complexity, namely, the maximum number of messages that all nodes assigned to a single machine
have to send or receive, normalized by the bandwidth n that each machine has per round. We call
this the LocalCongestion of a set of jobs. We obtain the following random-delay-based algorithm for
scheduling any t jobs, without reassigning nodes.

Theorem 4.4 (Simplified). There is a randomized algorithm in the CLIQUE model that schedules
t = polyn jobs in O(t/n+ LocalCongestion + dilation · log n) rounds w.h.p.

The stated complexity in the above simplified version of Theorem 4.4 requires the knowledge of
the LocalCongestion, but this can be eliminated using a standard doubling approach, at the cost of
a logarithmic multiplicative factor (see precise statement in Section 4).

The random-delay algorithm which gives Theorem 4.4 is suboptimal for a set of jobs which have
a single machine with heavily-loaded nodes assigned to it, since in this case it does not exploit
the entire bandwidth of the CLIQUE model. For example, for a problem with inputs of at most
O(n log n) bits per node, a protocol in which a fixed leader learns the entire input takes O(n)
rounds, where on each round each node sends one message to the leader, who receives n messages.
For n such jobs, the GlobalCongestion is n, while the LocalCongestion is n2. In such a setting,
our random-shuffling algorithm from Theorem 4.1 outperforms the random-delay algorithm from
Theorem 4.4. One may suggest to replace the fixed leader by a randomly or more carefully chosen
leader. However, this trick might be more complicated in the general case: suppose now that n0.9

nodes need to learn n1.1 messages each. For such a set of jobs, it holds that LocalCongestion = n0.1,
while GlobalCongestion = 1. Thus, it is more efficient to run Theorem 4.1 in this case. Another
crucial example in which random-shuffling outperforms random-delays is the maximal independent
set protocol that we describe below. Note that our algorithms address these cases in a black-box
manner without assuming knowledge of the communication pattern.

Applications. In Section 5, we present two applications in order to exemplify our scheduling
algorithms. We summarize these applications below and defer a more detailed discussion to Section 5
and Section 6.

A maximal independent set (MIS) of a graph G = (V,E) is a set M ⊆ V such that no two nodes
in M are adjacent and no node of V can be added to M without violating this condition. The
state-of-the-art randomized CLIQUE protocol for solving the MIS problem completes in O(log log∆)
rounds, w.h.p., where ∆ is the maximum degree of the graph [GGK+18]. We analyze the message
complexity of this protocol, and show that it does not utilize the entire bandwidth. Thus, we
can schedule multiple MIS jobs efficiently using our random shuffling scheduling algorithm from
Theorem 4.1, and we obtain the following theorem.

Theorem 5.1 (Multiple MIS instances). There is a randomized algorithm in the CLIQUE model
which solves t = polyn instances of MIS in O(t+ log log∆ log n) rounds, w.h.p.

Another application that exemplifies our scheduling algorithms is a variant of the pointer jumping
problem, which is a widespread algorithmic technique [Hir76]. In the P -pointer jumping problem,

4

each node has a permutation on P elements. A fixed node has a value pointer p and should learn
the result of applying these permutations one after another on p. Pointer jumping can be solved by
an O(log n)-round protocol in the CLIQUE model by learning the composition of all permutations
(see Section 5.2). We observe that this protocol does not utilize the entire bandwidth and leverage
this for obtaining an algorithm that executes multiple instances of this protocol efficiently.

Theorem 5.5 (Pointer Jumping). For P ≤ n, there are algorithms in the CLIQUE model that solve
t = polyn instances of the P -pointer jumping problem deterministically in O(⌈P · t/n⌉ · log n), and
randomized in O(t+ log2 n) rounds, w.h.p.

We obtain the deterministic result using our scheduling algorithm in Theorem 3.1 and the
randomized result using our random-shuffling scheduling algorithm in Theorem 4.1. The proposed
simple O(log n) round pointer jumping protocol also serves as an example where scheduling jobs via
the random-shuffling approach of Theorem 4.1 is significantly better than the random-delay based
approach of Theorem 4.4. For more details we refer to Section 5.2.

In Section 6 we discuss the amortized versions of these results, and present a small example of a
set of jobs that can be scheduled with o(1)-amortized complexity. In light of the growing number of
O(1)-round CLIQUE-protocols, e.g., [CDP20,Now19,GNT20], we propose the amortized complexity
of solving many instances of a problem in parallel, as a valuable measure for the efficiency in future
research.

1.2 Related Work

Many graph problems are studied in the CLIQUE model. There are fast protocols for the CLIQUE

model for distance computations [CKK+19,Gal16], minimum spanning tree (MST) [LPPP05,GP16,
Kor16,Now19], MIS [Gha17,GGK+18,CPS20], and more.

To the best of our knowledge, there are no previous works that study the scheduling of jobs in
the CLIQUE model. In the past, it has been shown that running multiple instances of the same
protocol on different inputs can result in fast algorithms for some complex problems. We survey
some of these. Hegeman et al. [HPP+15] reduce the MST problem to multiple smaller instances
of graph connectivity, breaking below the long-standing upper bound of O(log log n) by Lotker et
al. [LPPP05]. Further variants and improvements on the MST problem [Kor16,GP16,JN18,Now19]
all exploit invoking multiple instances of sparser problems. This line of work culminated in the
deterministic O(1)-round algorithm of Nowicki [Now19].

In [GN18], Ghaffari and Nowicki show a randomized algorithm which solves O(n1−ǫ) many
instances of the MST problem in O(ǫ−1) rounds. This is used for finding the minimum cut of a
graph. The state-of-the-art O(1)-round algorithm for the minimum cut problem, by Ghaffari et
al. [GNT20], runs Θ(log n) instances of connected components as a subroutine. The complexity of
computing multiple matrix multiplications in parallel was explored by Le Gall [Gal16] and was used
in the same paper to solve the all-pairs-shortest-path problem.

The notion of LocalCongestion is somewhat similar to the notion of Communication Degree Complexity

[KNPR15]. The difference lies in the fact that the Communication Degree Complexity is an upper
bound on the number of messages sent or received by any node on any round, while LocalCongestion
is an upper bound on the total number of messages sent or received by any node over all rounds.

5

2 Preliminaries

The CLIQUE Model. In the (CONGESTED) CLIQUE model, n machines p0, . . . , pn−1 communi-
cate with each other in synchronous rounds in an all-to-all fashion. In each round, any pair of
machines can exchange O(log n) bits. There is usually no constraint neither on the size of the local
memory nor on the time complexity of the local computations. Besides the local memory, each
machine has a read-only input buffer and a write-only output buffer, as well as read/write incoming-
and outgoing- message buffers.

Routing in the CLIQUE Model. Lenzen’s routing scheme [Len13] says that a set of messages
can be routed in the CLIQUE model within O(1) rounds, given that each machine sends and receives
at most O(n) messages. We formally state it here in its generalized version, which addresses the
case of more than a linear number of messages. In the generalized version, each machine pi holds a
set of messages Mi =

⋃

i′∈[n]M
i′
i , where M

i′
i is a set of messages with the destination pi′ . The claim

follows by having each node chop its set of messages Mi into chunks of n messages, each of which
containing |M i′

i |n/X messages for each i′ ∈ [n], and applying the original routing scheme X/n times.
The routing scheme could be adapted to preserve the message complexity in the following way.2

Let Y =
∑

i∈[n]|Mi| ≤ n2 be the total number of messages. First, compute a global numbering

of messages and the total number of messages Y . Then, send O(⌈
√
Y ⌉) messages to each one of

the first O(⌈
√
Y ⌉) machines via intermediate nodes based on the numbering. Sort messages by the

destination in the using Lenzen’s sorting algorithm [Len13] over O(⌈
√
Y ⌉)-clique. Finally, deliver

the messages to their destinations via intermediate nodes based on the indices of messages in the
sorted sequence. The round complexity of the algorithm is O(1) and the message complexity of the
algorithm in O(Y + ⌈

√
Y ⌉ · ⌈

√
Y ⌉) = O(Y)

Claim 2.1 (Lenzen’s Routing Scheme). Let X be a globally known value and let P be the property
that |Mi| ≤ X for all i ∈ [n] and

∑

i∈[n] |M i′
i | ≤ X for all i′ ∈ [n]. There is an algorithm in the

CLIQUE model which completes in O(⌈X/n⌉) rounds and O(
∑

i∈[n]Mi) messages, and delivers all
messages if P holds, or indicates that it does not hold.

Protocols and Jobs. A protocol is run on an input, that is provided in a distributed manner in the
read-only input buffer of each machine. The complexity of a protocol is the number of synchronous
rounds until each machine has finished writing its output to its write-only output buffer.

A job is an instance of a protocol together with a given input and a job is finished when each
machine has written its output. We generally assume that each job finishes in O(poly n) rounds.

For our purposes of fast scheduling, we need to specify the internals of each synchronous round.
We follow the standard description, which is usually omitted and simply referred to as a ’round’.
We require that for each machine, the input and output buffers are only accessed in the first and
last rounds of the protocol on that machine, respectively. In particular, this means that any further
access to the input requires storing it in the local memory. Accessing the incoming- and outgoing-
message buffers is not restricted to certain rounds. Each synchronous round of a protocol consists
of 3 steps, in the following order.

• Receiving Step: Read from incoming-message buffer (or from input buffer if this is the first
round), possibly modifying the local memory.

• Computation Step: Possibly modify local memory.

2We thank an anonymous reviewer for pointing this out.

6

• Sending Step: Write to outgoing-message buffer, (or to output buffer if this is the last
round), possibly modifying the local memory.

After these 3 phases, all messages written in outgoing-message buffers are delivered into the incoming-
message buffers of their targets.

The Scheduling Problem. In the t-scheduling problem (or simply a scheduling problem, if t is
clear from the context) the objective is to execute t jobs. Since our goal is to do this in an efficient
manner, we wish to allow a machine to simulate a computation that originally should take place
in a different machine, in a näıve execution of the t jobs. To this end, we distinguish between the
physical machine and the nodes, which are the virtual machines that need to execute each job. That
is, for each job j we denote by {vi,j |i ∈ [n]} the set of nodes that need to execute job j.

Formally, in the t-scheduling problem, the input for machine pi is composed of the inputs of all
the nodes with identifiers of the form vi,j for each job j ∈ [t]. We also assume that each machine
knows the protocol for each of the t jobs. An algorithm solves the scheduling problem or schedules
the jobs when each job has finished writing its output. That is, for deterministic jobs, we require
each machine pi to write the output of nodes vi,j for all j ∈ [t]. For randomized jobs, the machines’
output distribution for each job has to be equal to the distribution of outputs in a näıve execution
of the job. In the rest of the paper, we refer to the scheduling solution as an algorithm, while we
use the term protocol only for the content of a job.

Notations. Following the widespread conventions, we denote by log the logarithm base 2, and by
ln the natural logarithm. Also, we denote [n] = { 0, 1, . . . , n− 1 }. We denote by sri,j and tri,j the
number of messages sent and received by vi,j in round r, respectively. If job j terminates before round
r, we indicate sri,j = tri,j = 0. We sometimes drop the superscript r, when it is clear from the context.
We denote by ℓj the round complexity of job j and by mj =

∑

i∈[n],r∈[ℓj]
sri,j =

∑

i∈[n],r∈[ℓj]
tri,j the

total number of messages sent or received during the execution of job j, i.e., the message complexity
of job j. Another notation we extensively use is mr =

∑

i∈[n],j∈[t] s
r
i,j =

∑

i∈[n],j∈[t] t
r
i,j , which is the

number of messages all nodes in all jobs sent or received during round r.

Congestion parameters. We define the normalized GlobalCongestion as the total number of
messages sent by all the jobs divided by n2, and normalized LocalCongestion as the maximum
number of messages send to or received by some node in the entire course of the execution of all
jobs divided by n. Formally, dilation = maxj∈[t] ℓj,

GlobalCongestion =
∑

j∈[t]

mj =
∑

i∈[n]

∑

j∈[t]

∑

r∈[ℓj]

sri,j/n
2 =

∑

r∈[dilation]

mr/n2,

LocalCongestion = max

max
i∈[n]

∑

j∈[t]

∑

r∈[ℓj]

sri,j/n,max
i∈[n]

∑

j∈[t]

∑

r∈[ℓj]

tri,j/n

.

Hoeffding bound. Some of our proofs use the following Hoeffding bound.

Claim 2.2 (Hoeffding Bound [Hoe63]). Let {Xi }ni=1 be independent random variables with values
in the interval Xi ∈ [0, 1] and expectation of their sum bounded by E [

∑n
i=1Xi] ≤ µ. Then for all

ǫ > 0

Pr

[

n
∑

i=1

Xi ≥ (1 + ǫ)µ

]

≤
(

eǫ

(1 + ǫ)1+ǫ

)µ

≤ e−
ǫ2

2+ǫ
µ .

7

3 Deterministic Scheduling

The objective of this section is to prove the following theorem.

Theorem 3.1. There is a deterministic algorithm that schedules t = polyn jobs that are M -memory
efficient in O(GlobalCongestion+ ⌈M · t/n⌉ · dilation) rounds.

The formal definition of an M -memory efficient job as used in Theorem 3.1 is as follows.

Definition 3.2 (M-memory efficient job). For a given value M , an M -memory efficient job
is a job in which for each node v in each round r, the state (local memory) of v at the end of the
Computation Step can be encoded in M log n bits. In addition, there is a function that, given the
state of node v after the Computation Step of round r, infers the number of messages it sends and
receives on this round.

Theorem 3.1 requires that jobs use at mostM bits of local memory per machine. Thus, the power
of the result is when M = o(n), as otherwise the näıve execution of jobs one after another schedules
them in dilation ·t rounds. In the case that M ·t = O(n), the runtime becomes O(GlobalCongestion+
dilation), which is optimal up to a constant factor as, clearly, any schedule for any collection of jobs
requires at least Ω(GlobalCongestion + dilation) rounds.

To schedule the jobs for Theorem 3.1, we work in epochs. Each machine pi first simulates round
0 up to the end of the Computation Step for the nodes vi,j , for each j ∈ [t]. This does not require
any communication. Then, the epochs are such that for each round r, at the start of epoch r, all
nodes in all jobs are at the end of the Computation Step of round r. Clearly, for each simulated
node that finishes in round r, the machine does not need to do anything for the part that executes
the beginning of round r+1. The reason why we execute the protocol in these shifted epochs, from
Sending Step of round r (including) to Sending Step of round r+1 (excluding), lies in the fact that
the bottleneck is the possible imbalance in communication.

Recall that mr denotes the number of messages all nodes from all jobs send in round r. Since
in each round of the CLIQUE model, at most n2 messages can be exchanged, routing mr messages
cannot be done faster than ⌈mr/n2⌉ rounds. We aim to execute an epoch in this optimal number
of O(⌈mr/n2⌉) rounds. We start with the simple case and then use it to solve the general case.

The first case is when mr ≤ 2n2. In Lemma 3.4, we show that in this case, we can route all
mr messages in O(⌈M · t/n⌉) rounds. The challenge we encounter is that although mr ≤ 2n2, we
are not promised that the messages are balanced across the machines in the following sense. It is
possible that some machine pi, which simulates the nodes vi,j, for all jobs 0 ≤ j < t, is required
to send significantly more than n messages when summing over all messages that need to be sent
by these nodes vi,j. We overcome this issue by assigning the simulation of some of these nodes to
some other machine pi′ , which originally has a smaller load of messages to send. The crux that
underlies our ability to defer a simulation of a node vi,j to a machine pi′ is that the state of the node
does not consume too many bits. We show how to compute a well-balanced assignment of nodes to
machines in Claim 3.3. This assignment allows us to execute the epoch in the claimed number of
O(⌈M · t/n⌉) rounds.

In the general case, we can have mr > 2n2. We show how to carefully split up the messages that
need to be sent into chunks that allow us to use multiple invocations of Lemma 3.4. This allows us
to execute the epoch in the O(⌈mr/n2 +M · t/n⌉) rounds. As the core of our algorithm is handling
the case mr ≤ 2n2, now, we focus on the case mr ≤ 2n2.

8

We start with the following notation. An assignment of nodes to machines corresponds to a
function ϕ : [n]× [t] 7→ [n], where ϕ(i, j) = k says that the i-th node in job j, i.e., vi,j, is assigned
to the k-th machine pk. We sometimes abuse notation and write that ϕ(vi,j) = pk for ϕ(i, j) = k.
We call an assignment balanced, if the number of nodes assigned to each machine is O(t), i.e., if for
each k, it holds that |ϕ−1(pk)| = O(t). The (balanced) assignment ϕ(i, j) = i is called the trivial
assignment.

We denote by Si,j,r the state of node vi,j after its Computation Step in round r.

Claim 3.3 (Distributing the states). Given are t jobs that are M -memory efficient, and globally
known initial and final balanced assignments, ϕs and ϕf , respectively. Assume that for each i ∈ [n]
and j ∈ [t], machine ϕs(i, j) holds the state Si,j,r of node vi,j after its Computation Step in round r.
Then, there exists a deterministic CLIQUE algorithm which completes in O(⌈M · t/n⌉) rounds and
moves the states according to ϕf , that is, at the end of the algorithm, for each i ∈ [n] and j ∈ [t],
machine ϕf (i, j) holds the state Si,j,r of node vi,j.

Proof of Claim 3.3. For each node vi,j, denote i′ = ϕf (i, j). For each node vi,j such that
i′′ = ϕs(i, j), machine pi′′ sends Si,j,r to machine pi′ . Overall, each machine pi sends and re-
ceives |ϕ−1

s (pi)| ·M = O(t ·M), |ϕ−1
f (pi)| ·M = O(t ·M) messages. Thus, by Claim 2.1, it completes

in O(⌈M · t/n⌉) rounds.

Lemma 3.4 (Scheduling of a round with mr ≤ 2n2 messages). Given are t jobs that are M -memory
efficient, and given is a round number, r, for which mr ≤ 2n2. Assume that for each i ∈ [n], pi
holds Si,j,r for all j ∈ [t]. Then there exists a deterministic CLIQUE algorithm which completes in
O(⌈M · t/n⌉) rounds, at the end of which, for each i ∈ [n], pi holds Si,j,r+1 for all j ∈ [t].

The outline of the algorithm is as follows. Each machine partitions its simulated nodes into
buckets of contiguous ranges of indices, such that nodes in each bucket send and receive O(n)
messages altogether. Thus, the messages of all nodes in the bucket can be sent or received by a single
machine. We show that the number of buckets over all machines is O(n). The machines collectively
assign the buckets such that each machine gets O(1) buckets, and they make the assignment globally
known. Then, the states Si,j,r are distributed according to the assignment using Claim 3.3, and
each machine executes the Sending Step of round r for each of its newly assigned nodes and all
messages get delivered. Then, each machine executes the remainder of the protocol of its newly
assigned nodes until after the Computation Step of round r+1. Finally, the states Si,j,r+1 for round
r + 1 are distributed back according to the trivial assignment.

Proof of Lemma 3.4. We begin with describing the algorithm (see Algorithm 1). Afterwards, we
prove the correctness and analyze the round complexity.

Algorithm 1 Simulating a round with mr ≤ n2.

1: Compute the balanced assignment ϕ : [n]× [t] 7→ [n].
2: Distribute the states according to the assignment ϕ.
3: Execute the protocol for round r accounting for ϕ.
4: Distribute the states back according to the trivial assignment.

The Algorithm. We first show how to split nodes into buckets. Then we show how to compute
a globally known assignment ϕ, distribute the nodes according to ϕ, execute the jobs until after the
next Computation Step, and assign nodes back to their initial machines.

9

Forming buckets (locally): Each machine pi for each j ∈ [t] uses Si,j,r to locally compute si,j and
ti,j, the number of messages each node vi,j sends and receives in round r, respectively. This is pos-
sible by the definition of an M -memory efficient job. Let Si =

∑t−1
j=0 si,j and Ti =

∑t−1
j=0 ti,j. Then,

each machine pi (locally and independently) applies [CDKL19, Lemma 7] (restated in Claim 3.5 for
better readability) with k = ki = ⌈max {Si/n, Ti/n }⌉ to the sequences (si,j)

t−1
j=0 and (ti,j)

t−1
j=0, to

split its nodes into ki buckets Bi,0, . . . , Bi,ki−1 of continuous ranges of jobs’ indices.

Claim 3.5 (Lemma 7 from [CDKL19]). Let s0, . . . , sn−1 ∈ N and t0, . . . , tn−1 ∈ N be sequences of
natural numbers where each number is upper bounded by s and t, respectively. Let S =

∑

j∈[n] sj
and T =

∑

j∈[n] tj. Then for any k ∈ N, there is a partition of [n] into k sets B0, . . . , Bk−1, such
that for each i, the set Bi consists of consecutive elements, and

∑

j∈Bi

sj ≤ 2

(

S

k
+ s

)

and
∑

j∈Bi

tj ≤ 2

(

T

k
+ t

)

.

Invoking Claim 3.5 with s = n ≥ si,j, t = n ≥ ti,j, S = Si, and T = Ti, implies that for each
i ∈ [n] and i′ ∈ [ki], the nodes inside each bucket Bi,i′ want to send/receive at most 4n messages,
i.e.,

∑

j∈Bi,i′

si,j ≤ 2

(

S

k
+ s

)

≤ 2

(

Si

(Si/s)
+ s

)

= 4s = 4n, and

∑

j∈Bi,i′

ti,j ≤ 2

(

T

k
+ t

)

≤ 2

(

Ti

(Ti/t)
+ t

)

= 4t = 4n.

Computing the assignment ϕ: We first define the assignment ϕ and then show how it becomes
globally known. Recall that the buckets of machine pi are numbered from 0 to ki− 1 and define the
following value for i ∈ [n] and i′ ∈ [ki]:

f(i, i′) =

⌊(

i′ +
∑

i′′<i

ki′′

)

/5

⌋

.

Then, we define the assignment ϕ to assign all nodes in bucket Bi,i′ to machine pf(i,i′). Notice that
this is a valid assignment because with

∑

i Si ≤ 2n2 and
∑

i Ti ≤ 2n2 (due to mr ≤ 2n2) we obtain

f(i, i′) <
∑

0≤i<n

ki
5

=
1

5

∑

i

⌈max { Si

n
,
Ti

n
}⌉ ≤ 1

5

∑

i

(

Si

n
+

Ti

n
+ 1

)

≤ 1

5
· 5n = n.

Here, the first inequality follows from i′ < ki′ . Also, notice that each machine receives at most 5
different buckets because at most five pairs (i, i′) are mapped to the same index by f .

Now, we want to make the assignment ϕ globally known to all machines. To this end, each
machine pi broadcasts the number of its buckets, ki. Thus, machine pi can compute f(i, i′) for each
of its buckets Bi,i′ . Then, for all i′ ∈ [ki], machine pi informs machine pf(i,i′) about the smallest
and the largest job number of a node in bucket Bi,i′ . As the buckets Bi,1, . . . , Bi,ki are ordered
(increasingly) by the jobs’ indices for all i ∈ [n], this information is sufficient for each machine to
deduce which nodes are assigned to it in ϕ. In the last step, each machine broadcasts the messages

10

that it has received, i.e., machine pf(i,i′) broadcasts the smallest and largest job index of bucket
Bi,i′ together with the index i, and each machine can deduce the full assignment ϕ.

Executing round r + 1: We now use Claim 3.3 to distribute the states Si,j,r from the trivial
initial assignment ϕs(i, j) = i to the globally known final assignment ϕf = ϕ. Then, each machine
executes the Sending Step of round r for each of its newly assigned nodes, where a message from vi,j
to vi′,j is sent from pϕ(i,j) to pϕ(i′,j). This is possible since ϕ is globally known. Then, each machine
executes the remainder of the protocol of its newly assigned nodes until after the Computation Step
of round r + 1. Finally, the obtained states Si,j,r+1 for round r + 1 are re-distributed according to
the trivial assignment by using Claim 3.3 once more, with ϕs = ϕ and ϕf (i, j) = i.

Correctness. For each i ∈ [n] and j ∈ [t] the machine pf(i,j) receives the state Si,j,r and
executes the Sending Step of round r, the Receiving Step of round r+1, and the Computation Step
of round r+1 for node vi,j . Thus, afterwards it holds the state Si,j,r+1. Since this state is then sent
back to pi, the correctness follows.

Round Complexity. The partitioning of each machine’s nodes into buckets is done locally
without communication. Broadcasting the number of buckets (the value of ki) can be done in a
single round. We next reason about the time complexity that is required to make the assignment
ϕ globally known. The computation of f(i, i′) is done locally. Informing machine pf(i,i′) about the
smallest and largest job in the bucket Bi,i′ requires for each machine pi to send at most t messages
and to receive at most 5 messages. Thus, by ⌈t/n⌉ invocations of Claim 2.1, this step completes in
O(⌈t/n⌉) rounds. Since each machine pi is assigned at most 5 buckets, and for each bucket Bi′,j it
broadcasts a constant number of elements (smallest and largest job index in it together with the
identifier i′), this step completes in O(1) rounds.

The runtime is hence dominated by distributing the states via Claim 3.3, which takes O(⌈M ·
t/n⌉) rounds. All nodes in a bucket send/receive at most 4n messages in total and each machine
executes the sending/receiving phase for at most 5 buckets, and thus these steps are done in O(1)
rounds by Claim 2.1.

The next lemma deals with the general case, where total number of messages mr might be larger
than 2n2.

Lemma 3.6 (Scheduling of a round r.). Given are t jobs that are M -memory efficient, and given
is a round number r. Assume that for each i ∈ [n], pi holds Si,j,r for all j ∈ [t]. Then there exists
a deterministic CLIQUE algorithm which completes in O(⌈mr/n2 +M · t/n⌉) rounds, at the end of
which, for each i ∈ [n], pi holds Si,j,r+1 for all j ∈ [t].

The proof of Lemma 3.6 uses the next claim to split all jobs into chunks that send smaller
numbers of messages in order to apply Lemma 3.4.

Claim 3.7. Let S be a non-empty (globally known) set of consecutive indices of size at most nc for
some constant c > 0 and let x > 0. Each machine pi has a sequence of numbers (si,j)j∈S that are
all upper bounded by n. There is a deterministic algorithm in the CLIQUE model, which in O(1)
rounds finds the minimum index j0 ∈ S (if it exists) that satisfies

x ≤
∑

j∈S,
j≤j0

n−1
∑

i=0

si,j ≤ x+ n2. (1)

We solve this problem in c recurrent levels. On recursion level c′, which goes from c down to 1,
we start with the search space Sc′ of size nc′ and finish with the search space Sc′−1 of size nc′−1.

11

After each iteration, we maintain the invariant that if there exists the required j0 then j0−1 ∈ Sc′−1

and that Sc′−1 is contiguous. We always maintain a search space of consecutive indices.
Next, we explain the c′-th recursion level, and for that purpose assume that the current search

space Sc′ is of size nc′ for 0 ≤ c′ ≤ c. If this is not the case, we append dummy indices to make Sc′ of
the size exactly nc′ . To narrow down the search space, we compute n prefix sums Sℓ1 , . . . , Sℓn where
Sℓi′

sums up all values with index j < ℓi′ of all machines. The indices ℓ0 = minS, . . . , ℓn = ℓ0 + nc′

are equidistantly placed in Sc′ . Let i′ be the largest index such that Sℓi′
< x. The new search space

is formed by the indices Sc′−1 = [ℓi′ , ℓi′+1).
After the last recursion level we obtain singleton search space S0. We return j0 as that value

plus one if it is less than nc. Otherwise, respond that the required j0 does not exist.

Proof of Claim 3.7. Algorithm: Initially we may assume that the search space S is of size
exactly nc. If this is not the case, we append dummy indices to the end of S, in other words we
add the indices {maxS + 1,maxS + 2, . . . ,maxS + nc − |S| } to S, obtaining the range of indices
[minS, . . . ,minS + nc − 1]. We proceed in c recursion levels, in each of which we decrease the size
of the search space by a factor of n, while always maintaining a search space of consecutive indices.

Consider iteration c′ with the search space Sc′ . Let ℓ0 be the smallest index in Sc′ and for
1 ≤ i′ ≤ n let ℓi′ = ℓ0 + i′ · nc′−1. Now, each machine pi builds prefix sums Si

ℓ1
, . . . , Si

ℓn
of its own

numbers, that is

Si
ℓi′

=
∑

j∈0≤j<ℓi′

si,j.

Then, all machines send their computed prefix sum corresponding to ℓi′+1 to machine pi′ which
sums up all received prefixes, that is, afterwards machine pi′ holds Sℓi′+1

=
∑

i∈[n] S
i
ℓi′+1

. In a

second round of communication Sℓ1 , . . . , Sℓn are broadcasted and every node can determine the new
search space Sc′−1 = [ℓi′ , ℓi′+1) where i

′ is the largest number such that the prefix sums Sℓi′ add up
to less than x. After c levels of recursion the search space consists of a single index ℓ. We return
j0 = ℓ+ 1. Correctness: By induction, before level c′ the search space size is |Sc′ | = nc′ and the
largest index ℓ such that Sℓ < x belongs to Sc′ . Thus, after c levels, the search space is a singleton
ℓ. This means that x ≤ Sj0 in case j0 < nc. In case we return that j0 does not exist, it holds that
ℓ = nc − 1, and so the sum of all si,j is indeed below x.

As each si,j is upper bounded by n, we obtain
∑

i∈[n] si,j0 ≤ n2, and as Sj0−1 =
∑

j<j0

∑

i∈[n] si,j ≤
x, we obtain the claimed upper bound in Eq(1).

Round complexity: As all si,j are upper bounded by n and t is polynomial in n, all numbers
can be send in O(log n)-bit messages. Each recursion level can be implemented in O(1) rounds,
thus we need O(c) = O(1) rounds in total.

We continue with the proof of Lemma 3.6.

Proof of Lemma 3.6. Algorithm. A short pseudocode is given in Algorithm 2.

Algorithm 2 Scheduling of a round.

1: Split jobs into chunks J1, J2, . . . , Jk.
2: for each chunk Jk′ do
3: Apply Algorithm 1 on Jk′ .

12

We use Claim 3.7 to split the jobs into k = O(⌈mr/n2⌉) chunks J1, . . . , Jk, such that the jobs
in each chunk send at most 2n2 messages in round r over all of their nodes. Then, we iteratively
apply Lemma 3.4 on each chunk to progress each job to the next round.

Forming chunks: First, each machine pi, for each job j, uses Si,j,r to locally compute the number
of messages si,j that node vi,j sends in round r. Assume that chunks J1, . . . , Jk′−1 have been formed
and let S = [t]\ (J1 ∪· · · ∪Jk′−1). We apply Claim 3.7 with the index set S, where machine pi holds
the sequence (si,j)j∈S , and with x = n2. If we find j0, by the guarantee of Claim 3.7, we obtain that
all jobs in a chunk Jk′ , for k

′ 6= k, send at least n2 messages and at most 2 ·n2 messages in round r.
The jobs in chunk k send at most 2n2 messages. Otherwise, if we do not find j0, the nodes of the
jobs in S send less than 2n2 messages in round r, so we obtain the last chunk and set Jk = Jk′ = S.
We thus have k ≤ ⌈mr/n2⌉.

Executing round r+1: Since, by construction, the jobs in each chunk send at most 2n2 messages,
we can iteratively apply Lemma 3.4 on the chunks.

Round complexity. We split the jobs into at most k = O(⌈mr/n⌉) chunks, where forming
each chunk can be done in O(1) rounds by Claim 3.7. The invocation of Lemma 3.4 on chunk Jk′

takes O(⌈M |Jk′ |/n⌉) rounds per chunk. Thus, the round complexity of the algorithm is

O(1) +
k
∑

k′=1

O(⌈M · |Jk′ |/n⌉) = O

(

k +M ·
k
∑

k′=1

|Jk′ |/n
)

= O
(

⌈mr/n2 +M · t/n⌉
)

.

Finally, we use Lemmas 3.4 and 3.6 to obtain the near-optimal scheduling of Theorem 3.1.

Theorem 3.1. There is a deterministic algorithm that schedules t = polyn jobs that are M -memory
efficient in O(GlobalCongestion+ ⌈M · t/n⌉ · dilation) rounds.

Proof of Theorem 3.1. We repeatedly apply Lemma 3.6 until all jobs terminate. First, each
machine pi reads the input for each node vi,j for each j ∈ [t], and executes the Computation Step
of round r = 0, as a result of which it holds the state Si,j,0 for each of its nodes. Then, we split
the execution into epochs, where in epoch r all jobs move from the Computation Step of round
r to the Computation Step of round r + 1. A single epoch is implemented via Lemma 3.6 in
O(⌈mr/n2 +M · t/n⌉) rounds. After the epoch r = dilation− 1, all machines compute the outputs
given the respective terminating state Si,j,dilation−1 of each of its nodes.

Round complexity. The pre-processing in round r = 0 and the post-processing in the last
round r = dilation − 1 is done locally and does not require communication. Due to Lemma 3.6,
the round complexity of executing round r for all jobs is O(⌈mr/n2 + M · t/n⌉), where mr is the
number of messages sent in round r. Since

∑dilation−1
r=0 mr/n2 = GlobalCongestion, we obtain the

overall round complexity by

∑

r∈[dilation]

O(⌈mr/n2 +M · t/n⌉) = O (GlobalCongestion+ dilation · ⌈M · t/n⌉) .

4 Randomized Scheduling

In this section we show and compare the two approaches for randomized scheduling: random shuf-
fling (Section 4.1) and random delaying (Section 4.2). In contrast to Theorem 3.1, the results in
this section do not require the jobs to be memory efficient.

13

4.1 Scheduling through Random Shuffling

In this subsection we use random shuffling to schedule I/O efficient jobs and we obtain the following
theorem.

Theorem 4.1. There is a randomized algorithm in the CLIQUE model that schedules t = polyn
jobs that are I/O efficient in O(t+ GlobalCongestion+ dilation · log n) rounds, w.h.p.

The definition of an I/O efficient job as used in Theorem 4.1 is as follows.

Definition 4.2 (I/O efficient job). An I/O efficient job is a job where each node receives and
produces at most O(n log n) bits of input and output.

Algorithm. The high level overview of the algorithm for Theorem 4.1 (see Algorithm 3) consists
of three steps: Input Shuffling, Execution, and Output Unshuffling.

Algorithm 3 Scheduling of I/O efficient job.

1: Input Shuffling

2: Execution: Run dilation many phases, where in phase r each machine pi runs the protocol for
its nodes {vπ−1

j (i),j | j ∈ [t]}, and messages are routed via Claim 2.1.

3: Output Unshuffling

Input Shuffling: We iterate sequentially through the jobs. For each job, a leader machine,
say, p0, generates a random uniform permutation πj : [n] 7→ [n]. The permutation becomes globally
known within two rounds by having p0 send πj(i) to each pi and then each pi broadcasts πj(i) to all
machines. In the last round of this subroutine, each machine pi sends the input of vi,j to machine
pπj(i). A single round is sufficient because the job is I/O efficient. Thus, at the end, machine pi
holds the state of the nodes vπ−1

j
(i),j for all j ∈ [t]. We call this subroutine Input Shuffling.

Execution: In dilation many phases we progress each job by one round. That is, each machine
pi performs all actions of the nodes that it holds, which are vπ−1

j (i),j for all j ∈ [t]. In order to use

Claim 2.1 efficiently for each phase r, the machines need to compute a bound on the number of
messages that any of them sends or receives in phase r. To this end, the machines jointly compute
the value of mr =

∑

j∈[t]

∑

i∈[n] s
r
i,j, where sri,j is the number of messages that node vi,j sends in

round r. They do this by having each machine pi send
∑

j∈[t] s
r
π−1
j (i),j

to a leader machine, say, p0,

which then sums these values and broadcasts their sum mr. That is, mr is the total number of
messages sent by all nodes in all jobs in round r, and we show that for each i ∈ [n], O(mr/n+n log n)
is a bound on

∑

j∈[t] s
r
π−1
j (i),j

(
∑

j∈[t] t
r
π−1
j (i),j

), which is the number of messages that machine pi has

to send (receive) in phase r, to be used when invoking Claim 2.1.
Output Unshuffling: At the end, after each machine executes the protocols until they finish,

we use a single round of communication for each job to unshuffle the outputs according to π−1
j . At

the end of this Output Unshuffling subroutine, machine pi holds the output vi,j for all j ∈ [t].
This finishes the description of the algorithm.

In the following lemma, we bound the number of messages that each machine has to send/receive
in one phase by X = O(mr/n+ n · log n).

14

Lemma 4.3. Consider t jobs and a set of permutations {πj}j∈[t] generated uniformly at random
and let S = maxi∈[n]

∑

j∈[t] s
r
π−1
j (i),j

and R = maxi∈[n]
∑

j∈[t] t
r
π−1
j (i),j

. Then, w.h.p., it holds that

X = max{S,R} = O(mr/n+ n log n), where mr =
∑

i∈[n]

∑

j∈[t] s
r
i,j.

Proof of Lemma 4.3. Let c ≥ 1 be arbitrary large constant. Denote by Sr
i,j =

∑

i′∈[n] s
r
i′,j·1πj(i′)=i

the random variable whose value is the number of messages sent by machine pi for job j (note that
there is a single i′ = π−1

j (i) for which i = πj(i
′), but this i′ is also a random variable). These

variables are bounded by n and are independent for different j. Denote by Sr
i =

∑

j∈[t] S
r
i,j/n the

random variable whose value is the total number of messages machine pi sends normalized by n.
Denote c′ = c+ 2. We show that the normalized number of messages machine pi sends is bounded
as Sr

i ≤ 3mr/n2 + 2c′ lnn, with probability at least 1− nc′.
First, we note that the expected normalized number of messages machine pi sends is:

E

∑

j∈[t]

Sr
i,j/n

 =
∑

j∈[t]

∑

i′∈[n]

sri′,j · E
[

1πj(i′)=i/n
]

=
∑

j∈[t]

∑

i′∈[n]

sri′,j/n
2 = mr/n2,

where the first equality holds due to the linearity of expectation, the second one holds since πj is
sampled uniformly and the last one is due to the definition of mr.

Since for different j, the variables Sr
i,j/n are independent, we use Claim 2.2 (Hoeffding Bound)

with a relative error ǫ > 0, which we later optimize, to bound the probability that a machine has
too many messages to send.

Pr

[

Sr
i > (1 + ǫ)

mr

n2

]

= Pr

∑

j∈[t]

Sr
i,j

n
> (1 + ǫ)

mr

n2

 < e
− ǫ2mr

(2+ǫ)n2 .

If mr ≥ c′ ·n2 lnn, then for ǫ = 2 we have that e−ǫ2mr/((2+ǫ)n2) ≤ e−c′ lnn = n−c′. In other words,
w.h.p. 3mr/n2 = O(mr/n2) rounds are sufficient for machine pi for sending all required messages on
round r. Otherwise, we have mr < c′ ·n2 lnn. In this case, for ǫ = 2c′ · n2 ln(n)/mr ≥ 2 we get that
e−ǫ2mr/((2+ǫ)n2) = e−2·c′ ln (n)/(2/ǫ+1) ≤ n−c′. In other words, w.h.p. (1 + 2c′ ln (n) · n2/mr)mr/n2 =
mr/n2 + 2c′ · lnn = O(mr/n2 + log n) rounds are sufficient for machine pi for sending all of its
required on round r. We conclude that Pr

[

Sr
i > 3mr/n2 + 2c′ lnn

]

< n−c′ .
Denote by T r

i the random variable whose value is the number of messages received by machine
pi normalized by n. By the same approach, we show that

Pr

[

T r
i > 3

mr

n2
+ 2c′ lnn

]

< n−c′.

By a union bound over Sr
i , T r

j for all i ∈ [n], we obtain that for some i one of the event

Sr
i > 3(mr/n2 + 2(c + 2) ln n), T r

i > 3(mr/n2 + 2(c + 2) lnn) happens with probability at most
2n−c′+1 ≤ n−c for n ≥ 2. Notice, that S = maxi∈[n] Si · n and R = maxi∈[n] Ti · n, thus X =
max {S,R } = O(mr/n + n log n) w.h.p.

With an upper bound at hand, on the number of messages that each machine sends or receives
in phase r, we can prove that Algorithm 3 satisfies the statement of Theorem 4.1.

15

Proof of Theorem 4.1. We prove the correctness and bound the runtime of the presented algo-
rithm (see Algorithm 3).

Correctness: After the Input Shuffling subroutine (Line 1), the input for node vi,j is stored
on machine pπj(i). For each phase r ∈ [dilation], we invoke Claim 2.1 with the computed value X,
which is w.h.p. a bound the number of messages that each machine sends or receives. Thus, w.h.p.
this invocation succeeds. Since dilation = O(n), a union bound over all phases gives that at the
end of the Execution subroutine, each machine pi holds the outputs of all nodes vπ−1(i),j for each
j ∈ [t]. After Output Unshuffling, machine pi holds the output for node vi,j for each job j ∈ [t].

Round Complexity: The initial Input Shuffling (Line 1) and the Output Unshuffling at
the end of the algorithm (Line 3) complete with t rounds each. For each phase r in the Execution
part of the algorithm, computing mr is done in 2 rounds. By Lemma 4.3, X = O(mr/n + n log n)
is a bound on

∑

j∈[t] s
r
π−1(i),j and

∑

j∈[t] t
r
π−1(i),j , which are the number of messages that machine

pi sends and receives in phase r, respectively, for all i ∈ [n]. Thus, invoking Claim 2.1 completes in
O(mr/n2 + log n) rounds, w.h.p. Thus, the overall round complexity of the algorithm is

O(t+
∑

r∈[dilation]

(mr/n2 + log n)) = O(t+
∑

j∈[t]

mj/n
2 + dilation · log n)

= O(t+ GlobalCongestion+ dilation · log n).

4.2 Scheduling through Random Delays

In this subsection we show how to use random delays approach introduced in [LMR94] to schedule
round efficient jobs.

Theorem 4.4. There is a randomized algorithm in the CLIQUE model, which schedules t jobs

O(LocalCongestion+ dilation · log n+ t/n)

rounds, w.h.p., given an upper bound on the value of LocalCongestion, and in

O
(

LocalCongestion+ log LocalCongestion · (dilation · log n+ t/n)
)

rounds, w.h.p., if such a bound is not known.

In the algorithm, job j ∈ [t] is executed with a delay Dj that is chosen uniformly at random
from [D], where D = ⌊LocalCongestion/ lnn⌋. In the crucial step of the proof, we use a Hoeffding
Bound to show that this random delay implies that each node has to send and receive at most
X = O(LocalCongestion · n/D) messages per round in all jobs combined. The claim then follows by
routing all messages of a single round with Lenzen’s routing scheme (Claim 2.1). This approach uses
that all nodes know a bound on LocalCongestion, which can be removed at the cost of a logarithmic
factor with a standard doubling-technique.

Algorithm: We describe the algorithm for the case where LocalCongestion is known. The
algorithm consists of initializing part Sample Delays, followed by the actual Execution part. Let
D = ⌊LocalCongestion/ ln n⌋.

Sample Delays: We start by generating a random delay Dj for each job j and broadcasting it.
For this, a leader node, say, p0, samples a delay Dj uniformly at random from [D] independently
for each job j. Notice, that in the special case D ≤ 1 (which happens when LocalCongestion <
2 lnn), the delays are actually degenerated to the deterministic Dj = 0. Execution (O(D +

16

dilation) phases): In phase r we progress each job j (for which r ≥ Dj holds) from round r −Dj

to round r − Dj + 1. Each machine pi executes the protocol of round r − Dj for job j. To
deliver the messages efficiently, we use the algorithm from Claim 2.1, which requires the bound

X on maxi∈[n] {
∑

j∈[n] s
r−Dj

i,j ,
∑

j∈[n] t
r−Dj

i,j }, the number of messages machine sends or receives. If
LocalCongestion < 2 lnn, the number of messages to send or receive is clearly bounded by O(n log n).
In the general case, we show that this bound is O(LocalCongestion · n/D) w.h.p.

Doubling: To remove the requirement on the knowledge of LocalCongestion, we use a standard
doubling technique. We try to run the algorithm until success while doubling the estimation of
LocalCongestion in each attempt, starting from a guess of LocalCongestion = 1. The algorithm
detects failure when the algorithm from Claim 2.1 fails.

Algorithm 4 Scheduling of jobs.

1: Sample delays: Independently UAR pick Dj ∈ [D] and broadcast the values
2: Execution : Run O(D + dilation) phases, where in phase r progress each job j that satisfies

r ≥ Dj by one round where the messages of all jobs are routed with Claim 2.1.

In the proof of the following lemma, we bound the number of messages that each machine has
to send/receive in one phase by X = O(LocalCongestion · n/D).

Lemma 4.5. Given t jobs and a set of delays {Dj}j∈[t] sampled uniformly at random from [D] for

D = ⌊LocalCongestion/ ln n⌋ ≥ 1, let S = maxi∈[n]
∑

j∈[t] : r≥Dj
s
r−Dj

i,j , R = maxi∈[n]
∑

j∈[t] : r≥Dj
t
r−Dj

i,j ,

and X = max {S,R }.
Then, w.h.p., it holds that X = O(LocalCongestion · n/D), where mr =

∑

i∈[n]

∑

j∈[t] s
r
i,j.

Proof. Let c ≥ 1 be arbitrary large constant. Denote by Si,j =
∑

r′∈[dilation] s
r′
i,j · 1Dj+r′=r the

random variable whose value is the number of messages sent by machine pi for job j on round r.
These variables are independent for different values of j, as the delays Dj are independent. They
are also bounded by n, which means that the variables Si,j/n are also independent and belong to
[0, 1]. Denote by Si =

∑

j∈[t] Si,j/n the random variable whose value is the number of messages

sent by machine pi, normalized by n. Denote c′ = c + 2. We show that the normalized number of
messages machine pi sends is bounded as Sr

i ≤ (1 + 2 · c′)LocalCongestion/D with probability at
least 1− nc′.

First, we note that the expected normalized number of messages machine pi sends is:

E[Si] = E

∑

j∈[t]

Si,j/n

 =

∑

j∈[t]

∑

r′∈[dilation] s
r′
i,j · E[1Dj+r′=r]

n

≤
∑

j∈[n]

∑

r′∈[dilation] s
r′
i,j

D · n =
LocalCongestion

D
,

where the second transition is due to the linearity of expectation, the third follows from delays
being uniformly selected and the last one is due to the definition of LocalCongestion.

Since Dj are independent, we use Claim 2.2 (Hoeffding Bound) with ǫ = 2 · c′, we bound the

17

probability of Si being larger than the expected value by

Pr[Si ≥ (1 + 2 · c′)(LocalCongestion/D)] = Pr[
∑

j∈[t]

(Si,j/n) ≥ (1 + 2 · c′)(LocalCongestion/D)]

≤ e
−

(2·c′)2

2+2·c′
LocalCongestion

D = e
− 4c′2

2+2c′
lnn ≤ n−c′ ,

where the second transition is due to Claim 2.2 and the third is due to the selection of D ≤
LocalCongestion

lnn .
Denote by Ti the random variable whose value is the number of messages received by machine

pi on round r normalized by n. Using a similar approach, it holds that

Pr
[

Ti ≥ (1 + 2 · c′)LocalCongestion/D
]

≤ n−c′.

By a union bound over all Si and Ti, we obtain that for some i, the probability that Si or Ti are
more than LocalCongestion/X is bounded by n−c. Since S = maxi∈[n] S

r
i , R = maxi∈[n] T

r
i , and

X = max {S,R } it w.h.p. holds that X = O(LocalCongestion · n/D).

The following simple routing primitives are used in the random-delay based algorithm of Theo-
rem 4.4.

Definition 4.6. (Multiple broadcast problem.) Each machine pi ∈ V is given a set Mi of mi

messages of size O(log n) bits each. The goal is to deliver each message to all the machines.

Lemma 4.7. There is an algorithm in the CLIQUE model, which solves the multiple broadcast
problem in O

(

⌈∑i∈[n]mi/n⌉
)

rounds.

Proof. The pseudocode is given in Algorithm 5. First, on Line 1, each machine pi broadcasts mi,
the number of messages it has. Given the information it receives, the machine pi locally computes
yi =

∑i−1
i′=0mi′ , the number of messages the machines with preceding identifiers i′ < i have. This

allows each machine to compute indices of its messages in the global numbering. We split the
execution into ⌈∑i∈[n]mi/n⌉ = ⌈yn/n⌉ phases. On phase k, a batch of messages with indices

[k · n,min { (k + 1) · n,∑i∈[n]mi }) are broadcasted in two rounds. In the first round, the i′-th

message of the current batch (e.g. the message number k ·n+ i′) is sent to machine pi′ (Line 4). In
the second round, each machine broadcasts the message it received in the previous round (Line 5).

Algorithm 5 Multiple broadcasts.

1: Each machine pi broadcasts mi.
2: Each machine pi locally computes its yi =

∑i−1
i′=0mi′ .

3: for k ← 0 to ⌊yn/n⌋ do
4: For each i′ ∈ [n] message number k · n+ i′ in global numbering is sent to the machine pi′ .
5: Each pi′ broadcasts the message it receives.

In the first round of each phase, at most one message is received by each machine, in particular
only 1 message between any pair of machines. In the second round of each phase, each machine sends
at most 1 message to each other machine. Hence, the entire execution completes in O(⌈∑n−1

i=0 mi/n⌉)
rounds.

18

Proof of Theorem 4.4. We prove the correctness and bound the runtime for the aforementioned
algorithm (Algorithm 4).

First, in the special case LocalCongestion < 2 lnn, the number of messages each machine has
to send over the entire execution for all jobs combined and in particular in each round is bounded
by 2 · n lnn. Thus, a straightforward execution of one round of all jobs with Claim 2.1 completes
in 2 ln n rounds, and the entire execution takes O(dilation · log n) rounds. From now on we assume
D ≥ 2.

Correctness. In each phase r ∈ [D + dilation], we invoke Claim 2.1 with a bound of X =
O(LocalCongestion/D), which due to Lemma 4.5 bounds w.h.p. the number of messages each node
sends or receives. Thus, due to the union bound over n rounds, all of them succeed w.h.p.

Round complexity. Broadcasting t values during Sample Delay (Line 1) takes O(⌈t/n⌉)
rounds by Lemma 4.7. For each phase r ∈ [D + dilation], by Lemma 4.5 X = O(LocalCongestion ·
n/D) is a bound on the number of messages that machine pi sends and receives in phase r for each i ∈
[n] w.h.p. and by applying union bound over theD+dilation = O(poly (n)) rounds, this holds on each
round w.h.p. Thus, invoking the algorithm from Claim 2.1 completes in O(⌈LocalCongestion/D⌉) =
O(LocalCongestion/D). Thus, overall, for D = ⌊LocalCongestion/ lnn⌋ the algorithm terminates in
O(⌈t/n⌉)+ (dilation+D) ·O(LocalCongestion/D) = O(t/n+ dilation log n+LocalCongestion) rounds
w.h.p.

Doubling. Since the algorithm succeeds w.h.p. when our estimate is at least equal to the
value of LocalCongestion, we finish within O(log LocalCongestion) attempts. Thus, w.h.p., the round

complexity of this approach is
∑O(log LocalCongestion)

κ=0 O(t/n+2κ+dilation·log n) = O(LocalCongestion+
log LocalCongestion · (t/n+ dilation · log n)).

5 Applications: MIS & Pointer Jumping

In this section we apply the scheduling algorithms developed in Sections 3 and 4 on protocols which
solve MIS (Section 5.1) and Pointer Jumping (Section 5.2). We analyze the round complexity of
the developed algorithms.

5.1 Maximal Independent Set

A maximal independent set (MIS) of a graph G = (V,E) is a subset of nodes M ⊆ V such that no
two nodes in M are connected by an edge and adding any node to M would break this property. In
this subsection, we show that we can efficiently solve multiple MIS instances using our scheduling
algorithm from Theorem 4.1.

Theorem 5.1 (Multiple MIS instances). There is a randomized algorithm in the CLIQUE model
which solves t = polyn instances of MIS in O(t+ log log∆ log n) rounds, w.h.p.

To prove our result, we prove that the MIS protocol for the CLIQUE model given in [GGK+18],
which completes in O(log log∆) rounds, uses O(n2) messages in all rounds combined, which we
state as follows.

Theorem 5.2 (Analysis of the MIS protocol of [GGK+18, Theorem 1.1]). There is a randomized
MIS protocol in the CLIQUE + Lenzen′s Routing model which completes in O(log log∆) rounds and
sends O(n2) messages, w.h.p.

Given Theorem 5.2, we prove Theorem 5.1 as follows.

19

Proof of Theorem 5.1. By Theorem 5.2, a set of t jobs of the MIS protocol of [GGK+18] have

dilation = O(log log∆) and GlobalCongestion = t·n2

n2 = t, w.h.p. By Theorem 4.1, w.h.p., we can
schedule the t jobs in a number of rounds bounded by O(t + GlobalCongestion + dilation · log n) =
O(t+ log log∆ log n).

Remark. Theorem 5.1 also shows that the random-shuffling approach may be more efficient than
random-delays. In the MIS protocol of [GGK+18] which we use here, a leader node is used for
collecting some of the edges of the graph. Potentially, since the leader node may receive O(n)
messages during the O(log log∆) rounds of the protocol, applying the random-delay scheduling of
Theorem 4.4 on t such MIS jobs results in a complexity of O(t log log∆ + log log∆ log n) rounds.
This run-time is asymptotically worse than the one obtained by the algorithm from Theorem 5.1
for t = Ω(log n). Moreover, it is no better then the näıve execution of the protocol multiple times
one after another.

It remains to prove Theorem 5.2.

Proof of Theorem 5.2. The correctness and the round complexity follow from [GGK+18]. We
analyze the message complexity of the protocol. For this we must describe the protocol, which
returns a set M ⊆ V , initially empty.

The Protocol (See Algorithm 6).
Random ranking: First, a leader node v∗ generates a uniform random permutation π : [n] 7→

[n] and makes it globally known within 2 rounds by sending each node vi the value of π(i) which
vi then broadcasts to everyone. The value π(i) is called the rank of vi and does not change during
the algorithm.

Degree reduction by simulating greedy steps: The second part of the protocol is a loop,
which, as shown in [GGK+18, Theorem 1.1], uses O(log log∆) iterations w.h.p., to reduce the
maximum degree of active nodes to ∆′ = min {∆,poly log n }.

20

Algorithm 6 The MIS algorithm of [GGK+18].

1: The leader v∗ generates a uniform random permutation π : [n] 7→ [n] and sends π(i) to vi.
2: Each node vi broadcasts π(i).
3: k ← 0
4: while The maximum active degree of active nodes is at least ∆′ = min {∆,poly log n } do
5: M0 ← ∅, Mk ←Mk−1 if k ≥ 1
6: N0 ← ∅, Nk ← Nk−1 if k ≥ 1
7: Every edge {vi, vi′} with both endpoints active and π(i) ≤ π(i′) ≤ n

∆αk is sent to v∗ by vi.

8: while There exists a node vi 6∈Mk ∪Nk with π(i) ≤ n

∆αk do

9: Add vi with the smallest rank π(i) among the undecided nodes to Mk.
10: All the neighbors of vi that are known to v∗ are added to Nk.

11: The leader v∗ informs the nodes in Mk \Mk−1 that they are such.
12: The nodes in Mk \Mk−1 are added to M , and they inform their neighbors that they are

such and become inactive.
13: The nodes in NG(Mk\Mk−1) inform their neighbors that they are such and become inactive.
14: k ← k + 1.

15: for k from 0 to O(log log∆′) do

16: Each active node vi sends all adjacent edges from H2k to each of its neighbors in H2k .

17: Each active node vi simulates O(log∆′) rounds of the MIS protocol of [Gha16] locally. The
chosen nodes are added to M and they become inactive along with their neighbors.

18: The leader v∗ learns all remaining edges, locally computes an MIS over them and informs the
nodes, which are then added to M .

In each iteration k ≥ 0, we produce a set Mk ⊆ V , which is initially empty for k = 0 and is
initially Mk−1 for k ≥ 1. The nodes in Mk are afterwards added to the resulting MIS, M . We also
use a set Nk which is initially empty for k = 0 and is initially Nk−1 for k ≥ 1, of nodes that will not
be in M . Initially, all nodes are active. A node that is in Mk ∪Nk is decided and becomes inactive,
and otherwise it remains active. A constant α = 3/4 is set.

In each iteration k, all edges {vi, vi′} where both endpoints are active and have ranks π(i) ≤
π(i′) ≤ n/∆(αk) are sent to the leader v∗ by vi. The leader v∗ now applies greedy MIS steps, as

follows. As long as there is an active node vi with π(i) ≤ n/∆(αk), the node with the smallest rank
is added to Mk and all of its neighbors that are known to v∗ are added to Nk. After these greedy
steps, the leader v∗ informs the nodes in Mk that they are such. These nodes are added to M and
become inactive, and they inform their neighbors, which join Nk and become inactive as well.

The loop terminates when the maximum degree of active nodes is at most ∆′ = min {∆,poly log n }.
To check that this condition is met, each node sends its degree to the leader and the leader broad-
casts the decision. This requires 1 round. We denote by H = (V ′, E′) the graph of maximum degree
bounded by ∆′ that is induced by the remaining active nodes.

Small degrees (the graph H): First, each active node generates O(log2 ∆′) random bits.
These random bits are from now sent along with the node’s identifier whenever the latter is sent
in a message. Then, each node of H learns its O(log∆′)-hop neighborhood in H. To this end,
we proceed in O(log log∆′) iterations, where after iteration k, each node in H knows its 2k-hop

neighborhood in H. In iteration k, each node sends its edges in H2k to its neighbors in H2k . Notice
that by induction over k, at the beginning of iteration k, each node knows its neighbors in H2k ,
and at the end of the iteration, it knows its neighbors in H2k+1

.

21

After learning its O(log∆′)-hop neighborhood, each active node locally simulates O(log∆′)
rounds of the randomized MIS protocol of [Gha16]. Each iteration of this protocol requires O(log∆′)
random bits by each node, which are the ones generated by the node at the beginning of this step.
Each node chosen to the MIS is added to M and becomes inactive along with its neighbors. Notice
that all nodes compute the same MIS locally, because each node knows a sufficiently large neigh-
borhood, including O(log2∆′) globally consistent random bits for each node in the neighborhood.

Wrapping-up part: Finally, the leader v∗ learns the remaining graph induced by active nodes,
and locally computes an MIS and informs the nodes, who are then added to M . This finishes the
description of the algorithm.

Message Complexity.
Random ranking: Since this part takes 2 rounds, it clearly sends at most O(n2) messages.
Degree reduction (simulation greedy steps): Let G0 be the subgraph induced by nodes

with ranks π(vi) ≤ n
∆ . Since the maximum degree in G is ∆, the number of edges in G0 is bounded

by n
∆ ·∆ = n. This implies that at most O(n) messages are sent to the leader v∗ in the first iteration.

For k ≥ 1, let rk = n/∆(αk), and let Gk = (Vk, Ek) be the subgraph that is induced by nodes
with ranks in the range [rk−1, rk] that are still active after iteration k − 1. In [GGK+18, Theorem
1.1], it is shown that Gk has at most O(n) edges, w.h.p., which implies that at most O(n) messages
are sent to the leader v∗ in iteration k. Informing the nodes in Mk \Mk−1 that they should join Mk

requires at most O(n) messages. Notice, that the leader does not inform nodes in Nk \Nk−1, as they
informed by their neighbors in Mk \Mk−1. Checking the loop condition required O(n) messages.
Since [GGK+18, Lemma 3.1] implies that after O(log log∆) iterations of the loop, the degree in the

graph induced by active nodes is at most n log n/(n/∆αO(log log∆)
) = poly log n = ∆′ and the loop

terminates, this gives a total of O(n log log∆) of such messages, w.h.p. Over the entire execution
of the protocol, each node vi is informed at most degG (vi) times by one of its neighbors that such
a neighbor enters the MIS or becomes inactive. Thus, over the entire course of the algorithm this
requires O(n2) messages.

Small degrees: For k = O(log log∆′) the maximum degree in H2k = Hpoly log∆′

is bounded by

∆′poly log∆′

. To send one identifier together withO(log2 ∆′) random bits we need 1+O(log2∆′/ log n)
O(log n)-bit messages. Thus, for each k, each active node sends at most

O
(

(1 + log2 ∆′/ log n)
)

∆′poly log∆′

= 2poly log∆′

messages. For the entire O(log log∆′) rounds, each active node sends O(log log∆)′ · 2poly log∆′

=
2poly log∆′

messages. As ∆′ = poly log n holds, the number of messages sent by each active node to
learn its O(log∆′)-hop neighborhood is 2poly log logn = O(n). This implies O(n2) messages in total.
The simulation of [Gha16] to decide whether to join M is then done locally, without communication.

Wrapping-up part: In [Gha17, Lemma 2.11], it is shown that the graph induced by active
nodes after learning O(log∆′)-hop neighborhoods in H and simulating O(log∆′) iterations of the
MIS algorithm from [Gha16] has at most O(n) edges. Thus, learning the remaining edges by the
leader and informing nodes about the leader’s decision requires O(n) messages. Notice that in the
CLIQUEmodel this would require some routing scheme. However, in the CLIQUE + Lenzen′s Routing

model this is part of the model definition.
Thus, overall the algorithm sends O(n2) messages.

22

5.2 Pointer Jumping

In this subsection we address the pointer jumping problem, widely used in parallel and distributed
data structures [Hir76].

Definition 5.3 (P -pointer jumping). In a P -pointer jumping problem, each node vi is given a
permutation πi : [P] 7→ [P]. A fixed node vi′ is given a number x ∈ [P], The aim of the algorithm is
for vi′ to learn the composition of the permutations applied on p, i.e., (πn−1 ◦ πn−2 ◦ · · · ◦ π0)(p) =
πn−1(πn−2(. . . π0(p) . . .))

In the following claim we show a simple deterministic O(log n)-round CLIQUE protocol for solving
P -pointer jumping with a complexity of O(P · n) messages.

Claim 5.4 (Pointer jumping). For P = O(n), there is a deterministic O(P)-memory efficient
protocol in the CLIQUE + Lenzen′s Routing model which solves the pointer jumping problem in
O(log n) rounds and O(P · n) messages.

Algorithm 7 Pointer jumping.

for k = 0 to ⌈log n⌉ do
for i ∈ [n] in parallel do

if i has at least k > 0 trailing zeros in binary representation then
vi computes πi ◦ πi+1 ◦ · · · ◦ πmin{ i+2k,n }−1.

if i has exactly k < ⌈log n⌉ trailing zeros in binary representation then
vi sends πi ◦ πi+1 ◦ · · · ◦ πmin{ i+2k,n }−1 to vi−2k .

vi′ sends p to v0.
v0 replies vi′ with (πn−1 ◦ πn−2 ◦ · · · ◦ π0)(p).

Proof of Claim 5.4.
Algorithm and correctness. The pseudo-code for the simple well known protocol for the

pointer jumping problem is presented in Algorithm 7. At a high level, first v0 learns the composition
of the permutations, then vi′ sends the entry p to v0 and it responds with the final output. To learn
the composition of the permutations we proceed in ⌈log n⌉+ 1 iterations. On each iteration except
the first, each node vi which receives a permutation from vi+2k−1 , computes the composition of
the permutation it possesses and the received permutation, that is, it composes the permutation
πi ◦ πi+1 ◦ · · · ◦ πi+2k−1−1 with the permutation πi+2k−1 ◦ · · · ◦ πi+2k−1. Each node vi which has
exactly k trailing zeros in the identifier and currently knows the composition of 2k permutations
πi ◦πi+1 ◦ · · · ◦πmin{ i+2k,n }−1 sends it to the node vi−2k . Each node sends and receives at most P =
O(n) messages. Clearly, after ⌈log n⌉ iterations, node v0 possesses the composition π0◦π1◦· · ·◦πn−1.

Memory-efficiency. To compose the received permutation with the current permutation,
we store both permutations and the output permutation in the local memory. Thus we require
O(P log n) bits of the local memory3 . Given only the index of the round, it is possible for each
node to deduce the number of messages each node sends to it.

3In the CLIQUEmodel this algorithm requires some routing scheme, but Claim 2.1 is not known to run inO(P log n)
bits of memory. However, our results apply in the potentially more powerful model of CLIQUE + Lenzen′s Routing

[KS20], in which each node is allowed to send and receive n messages in each round. Therefore, no additional memory
overhead of routing algorithm is required.

23

Round complexity. The algorithm finishes within O(log n) iterations. In each iteration, each
node sends and receives P = O(n) messages, thus each iteration completes in O(1) rounds.

Message complexity. In k-th iteration of the algorithm, O(n/2k) nodes send P messages

each. Thus, the protocol uses
∑⌈logn⌉−1

k=0 O(n/2k) ·O(P) = O(P · n) messages.

Applying our deterministic scheduling algorithm and our random shuffling algorithm, we ob-
tain the following theorem on the complexity of solving multiple instances of the pointer jumping
problem.

Theorem 5.5 (Pointer Jumping). For P ≤ n, there are algorithms in the CLIQUE model that solve
t = polyn instances of the P -pointer jumping problem deterministically in O(⌈P · t/n⌉ · log n), and
randomized in O(t+ log2 n) rounds, w.h.p.

Proof of Theorem 5.5. The first part of the theorem follows immediately from Claim 5.4 and The-
orem 3.1. By Theorem 3.1, running t instances of the protocol from Claim 5.4 completes in
O(t · P · n/n2 + ⌈P · t/n⌉ · log n) = O(⌈P · t/n⌉ · log n) rounds. This gives the first claim.

Since each node of the job consumes only P log n ≤ n log n bits of input and produces log n bits
of output, it is P I/O efficient. Thus, by Theorem 4.1, running t instances of the protocol from
Claim 5.4 completes in O(t+ t · P · n/n2 + log n · log n) = O(t+ log2 n) rounds, w.h.p., which gives
the second claim.

The proposed simple O(log n) round pointer jumping protocol also serves as an example where
scheduling jobs via the random-shuffling approach of Theorem 4.1 is significantly better than the
random-delay based approach of Theorem 4.4. Since multiple nodes receive Ω(n log n) messages in
the execution of the protocol, if we apply the random-delay scheduling algorithm from Theorem 4.4
we solve t instances of the problem in O(t · n · log n + log2 n) rounds, which is no better than
sequentially running one instance after another.

6 Discussion

Our results suggest that the amortized complexity, i.e., the runtime of solving many instances of a
problem divided by the number of instances, is a valuable measure for the efficiency of protocols
in the CLIQUE model. Our interest in obtaining protocols with fast amortized complexities stems
from the growing number of problems which admit O(1)-round CLIQUE-protocols, e.g., [CDP20,
Now19,GNT20], whose amortized complexity could potentially be shown to go below constant, as
well as from problems that are still not known to have a constant worst-case complexity. We now
elaborate on this viewpoint.

We give MIS as an example of a problem which can be solved with a good amortized complexity.
The best known protocol [GGK+18] requires O(log log∆) rounds. Theorem 5.1 shows that running
t = polyn instances of MIS completes in O(t + log log∆ log n) rounds. For t = Ω(log log∆ log n),
the second part of the complexity “amortizes out” and we obtain that we run t instances of the MIS
problem in O(t) rounds. Basically, we show that the amortized complexity of the MIS problem is
O(1) rounds.

Note that the amortized complexity should not be optimized isolated from other measures. For
example, consider the trivial O(n)-round protocol for pointer jumping, in which in the i-th round,
the i-th node applies its permutation to the current pointer and sends the result to the next node.
It requires only O(n) messages. Thus, it is trivial to run t ≤ n2 instances of this pointer jumping

24

protocol in only O(n) rounds, leading to an amortized complexity of O(1/n) = o(1). However,
the latency of this algorithm is an unacceptable O(n) rounds. Instead, Theorem 5.5 shows that
the pointer jumping problem has an acceptable amortized complexity of O(1) rounds and a small
latency of O(log2 n) rounds.

For certain protocols, Theorem 3.1 might even yield o(1) amortized complexity. For example,
consider a job in which it is required to compute the

√
n-bin histogram of some given data. In the

trivial 2-round protocol, each node locally builds a histogram of its input and sends the number of
elements in its i-th bin to vi. For all i ∈ [

√
n], node vi sums the received values and broadcasts

the result. Clearly, such an algorithm is O(
√
n)-memory efficient and uses O(n

√
n) messages. Our

algorithm from Theorem 3.1 executes t instances of this protocol in O(⌈t/√n⌉) rounds. Whenever
t = o(

√
n), this gives an o(1) amortized round complexity with constant latency.

The reader may notice that for some sets of jobs, it may be that some ad-hoc routing could be
developed for efficient scheduling. We emphasize that, in contrast, the power of our algorithms is
that they do not require tailoring the protocols for the sake of scheduling them within a given set
of jobs. This is pivotal for obtaining a general framework, because knowing in advance the setting
in which a protocol would be executed is an unreasonable assumption that we do not wish to make.

Acknowledgements: This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no. 755839-ERC-BANDWIDTH.

References

[CDKL19] Keren Censor-Hillel, Michal Dory, Janne H. Korhonen, and Dean Leitersdorf. Fast
approximate shortest paths in the congested clique. In PODC, pages 74–83. ACM,
2019.

[CDP20] Artur Czumaj, Peter Davies, and Merav Parter. Simple, deterministic, constant-round
coloring in the congested clique. In PODC, pages 309–318. ACM, 2020.

[CGL20] Keren Censor-Hillel, François Le Gall, and Dean Leitersdorf. On distributed listing of
cliques. In PODC, pages 474–482. ACM, 2020.

[CKK+19] Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami Paz,
and Jukka Suomela. Algebraic methods in the congested clique. Distributed Comput.,
32(6):461–478, 2019.

[CPS20] Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing local
distributed algorithms under bandwidth restrictions. Distributed Comput., 33(3-4):349–
366, 2020.

[CPZ19] Yi-Jun Chang, Seth Pettie, and Hengjie Zhang. Distributed triangle detection via ex-
pander decomposition. In SODA, pages 821–840. SIAM, 2019.

[DLP12] Danny Dolev, Christoph Lenzen, and Shir Peled. ”tri, tri again”: Finding triangles and
small subgraphs in a distributed setting - (extended abstract). In DISC, pages 195–209,
2012.

[Gal16] François Le Gall. Further algebraic algorithms in the congested clique model and appli-
cations to graph-theoretic problems. In DISC, pages 57–70, 2016.

25

[GGK+18] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and Ronitt
Rubinfeld. Improved massively parallel computation algorithms for MIS, matching, and
vertex cover. In PODC, pages 129–138. ACM, 2018.

[Gha15] Mohsen Ghaffari. Near-optimal scheduling of distributed algorithms. In PODC, pages
3–12. ACM, 2015.

[Gha16] Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
SODA, pages 270–277. SIAM, 2016.

[Gha17] Mohsen Ghaffari. Distributed MIS via all-to-all communication. In PODC, pages 141–
149. ACM, 2017.

[GN18] Mohsen Ghaffari and Krzysztof Nowicki. Congested clique algorithms for the minimum
cut problem. In PODC, pages 357–366. ACM, 2018.

[GNT20] Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge
connectivity via random 2-out contractions. In SODA, pages 1260–1279. SIAM, 2020.

[GP16] Mohsen Ghaffari and Merav Parter. MST in log-star rounds of congested clique. In
PODC, pages 19–28. ACM, 2016.

[Hir76] Daniel S. Hirschberg. Parallel algorithms for the transitive closure and the connected
component problems. In STOC, pages 55–57. ACM, 1976.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc., 58(301):13–30, 1963.

[HPP+15] James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardesh-
mukh, and Michele Scquizzato. Toward optimal bounds in the congested clique: Graph
connectivity and MST. In PODC, pages 91–100. ACM, 2015.

[IG17] Taisuke Izumi and François Le Gall. Triangle finding and listing in CONGEST networks.
In PODC, pages 381–389. ACM, 2017.

[JN18] Tomasz Jurdzinski and Krzysztof Nowicki. MST in O(1) rounds of congested clique. In
SODA, pages 2620–2632. SIAM, 2018.

[KNPR15] Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson. Dis-
tributed computation of large-scale graph problems. In SODA, pages 391–410. SIAM,
2015.

[Kor16] Janne H. Korhonen. Deterministic MST sparsification in the congested clique. CoRR,
abs/1605.02022, 2016.

[KS20] Fabian Kuhn and Philipp Schneider. Computing shortest paths and diameter in the
hybrid network model. In PODC, pages 109–118. ACM, 2020.

[KSV10] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
mapreduce. In SODA, pages 938–948. SIAM, 2010.

26

[Len13] Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique.
In PODC, pages 42–50. ACM, 2013.

[LMR94] Frank Thomson Leighton, Bruce M. Maggs, and Satish Rao. Packet routing and job-
shop scheduling in O(congestion + dilation) steps. Comb., 14(2):167–186, 1994.

[LPPP05] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight spanning
tree construction in O(log log n) communication rounds. SIAM J. Comput., 35(1):120–
131, 2005.

[Now19] Krzysztof Nowicki. A deterministic algorithm for the MST problem in constant rounds
of congested clique. CoRR, abs/1912.04239, 2019.

[PRS18] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. On the distributed com-
plexity of large-scale graph computations. In SPAA, pages 405–414. ACM, 2018.

27

	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 Deterministic Scheduling
	4 Randomized Scheduling
	4.1 Scheduling through Random Shuffling
	4.2 Scheduling through Random Delays

	5 Applications: MIS & Pointer Jumping
	5.1 Maximal Independent Set
	5.2 Pointer Jumping

	6 Discussion

