
Wait-free approximate agreement on graphs

Dan Alistarh · dan.alistarh@ist.ac.at · IST Austria

Faith Ellen · faith@cs.toronto.edu · University of Toronto

Joel Rybicki · joel.rybicki@ist.ac.at · IST Austria

Abstract. Approximate agreement is one of the few variants of consensus that can be solved
in a wait-free manner in asynchronous systems where processes communicate by reading and
writing to shared memory. In this work, we consider a natural generalisation of approximate
agreement on arbitrary undirected connected graphs. Each process is given a vertex of the graph
as input and, if non-faulty, must output a vertex such that

– all the outputs are within distance 1 of one another, and
– each output value lies on a shortest path between two input values.

From prior work, it is known that there is no wait-free algorithm among n ≥ 3 processes for
this problem on any cycle of length c ≥ 4, by reduction from 2-set agreement (Castañeda et al.,
2018).

In this work, we investigate the solvability and complexity of this task on general graphs.
We give a new, direct proof of the impossibility of approximate agreement on cycles of length
c ≥ 4, via a generalisation of Sperner’s Lemma to convex polygons. We also extend the reduction
from 2-set agreement to a larger class of graphs, showing that approximate agreement on on
these graphs is unsolvable. Furthermore, we show that combinatorial arguments, used by both
existing proofs, are necessary, by showing that the impossibility of a wait-free algorithm in the
nonuniform iterated snapshot model cannot be proved via an extension-based proof. On the
positive side, we present a wait-free algorithm for a class of graphs that properly contains the
class of chordal graphs.

ar
X

iv
:2

10
3.

08
94

9v
1 

 [
cs

.D
C

] 
 1

6 
M

ar
 2

02
1



1 Introduction

Understanding the solvability and complexity of coordination tasks is one of the key questions in
distributed computing. The difficulty of coordination often arises from uncertainty : processes
have limited knowledge about each other’s inputs, the relative speed of computation and
communication between processes can vary, and processes may fail during computation.

Tasks which require perfect agreement, such as consensus [36], are typically hard to solve:
Fischer, Lynch, and Paterson [24] proved that consensus cannot be reached in asynchronous
message-passing systems if even one process may crash. Later, this was extended to shared
memory systems where processes communicate using shared registers [13, 32].

While perfect agreement is not needed for many applications, it is known that agreeing on
at most k > 1 different values is still hard: There exists no algorithm for k-set agreement that
tolerates k crash faults in the asynchronous setting for n > k processes [8, 29, 37]. In contrast,
approximate agreement – agreeing on values that are sufficiently close to one another – can be
considerably easier [7, 18, 22, 23, 33, 38].

1.1 Graphical approximate agreement

In this work, we study solvability and complexity of approximate agreement when the set of
input and output values reside on a graph. Consider a distributed system with n processes
and let G = (V,E) be a connected graph. The graph G is not assumed to be related to the
communication topology of the distributed system, but it is assumed to be known by all processes.
In approximate agreement on G, each process pi is given a node xi ∈ V as input and has to
output a node yi ∈ V subject to the following constraints:

– agreement: every two output values are adjacent in G, and
– (shortest path) validity: each output value lies on a shortest path between two input values.

Note that the output values form a clique. Figure 1(a) gives an example of graphical approximate
on a tree. Prior work has mostly focused on the cases when G is a path [7, 18, 22, 23, 38], a
graph whose clique graph is a tree [3], or a chordal graph [35], i.e., a graph that contains no
induced cycle of length greater than three.

Approximate agreement on a path. The special case when G is a path is well-understood.
This case is typically studied in the continuous setting, where the values reside on the real
line and the goal is to output values within distance ε > 0 of each other. A discrete version
of the problem can be obtained by considering integer-valued inputs and outputs and taking
ε = 1. In the shared-memory setting, Attiya, Lynch, and Shavit [7] showed that the step
complexity of wait-free solutions using single-writer registers is Θ(log n). Using multi-writer
registers, Schenk [38] established that the step complexity of obtaining agreement is O(logD),
where D is the maximum distance between two input values.

In asynchronous message-passing systems, Dolev, Lynch, Pinter, Stark and Weihl [18] showed
that approximate agreement can be solved with f < n/5 Byzantine faults. This was improved
by Abraham, Amit, and Dolev [1] to allow f < n/3 Byzantine faults, matching a lower bound
by Fischer, Lynch, and Merritt [25]. Efficient algorithms tolerating more benign faults in the
synchronous and asynchronous message-passing settings were given by Fekete [22, 23].

Approximate agreement under minimal path validity. Rybicki and Nowak [35] studied
approximate agreement on chordal graphs under a slightly different validity condition, where
output values have to lie on a minimal path between any two input values. A path in G is
minimal if no two non-consecutive nodes in the path are connected by an edge, i.e. if v0, . . . , vk
is a minimal path and 0 ≤ i < j − 1 ≤ k− 1, then {vi, vj} 6∈ E. This validity condition is weaker,
since every shortest path between two nodes is a minimal path, but the converse is not true.

1



2

1

05

4

3

2

1

05

4

3

2

1

05

4

3

2

1

05

4

3

(d) (e)(c)(a) (b)

Figure 1: Examples of approximate agreement with n = 2 processes. In the top row, blue nodes
are input values for a particular instance. Solid blue edges denote edges on shortest paths, and
blue double lines denote the additional edges that are also on some minimal path connecting
input nodes. Solid and non-solid orange nodes denote outputs that satisfy the shortest path and
minimal path validity constraints, respectively. (a) Agreement on a tree. All minimal paths are
also shortest paths. (b) Agreement on a chordal graph. (c) Agreement on a non-chordal bridged
graph. (d)–(e) Instances of 6-cycle agreement.

Figures 1(b)–(c) illustrate the difference between minimal and shortest paths. If G is chordal,
then there exists an algorithm tolerating f Byzantine faults in the asynchronous message-passing
model for n > (ω(G) + 1)f processes, where ω(G) is the size of the largest clique in G [35].

Approximate gathering on graphs. Alcántara, Castañeda, Flores-Peñaloza, and Rajs-
baum [3] investigated approximate agreement with the following weaker clique gathering validity
condition: if all inputs values are adjacent, then each output value has to be one of the input
values. Their validity condition arises from considering an approximate gathering problem for
robots on a graph. This condition is weaker than shortest path and minimal path validity: for
example, in the instances given in Figures 1(b)–(e), any set of outputs that lie on a clique would
satisfy clique gathering validity.

They showed that this problem is solvable in a wait-free manner on graphs whose clique
graphs are trees and on graphs of radius one (i.e., graphs with a dominating set of size one). A
clique graph K(G) of G is the graph where vertices of K(G) are the maximal cliques of G and
two vertices of K(G) are adjacent if they correspond to cliques with a common vertex. Note
that there are chordal graphs whose clique graphs are not trees; for example, see Figure 1(b).

Approximate agreement on cycles. When G is a cycle of length c ≥ 4, approximate
agreement under minimal path validity and clique gathering validity are the same problem. We
refer to this special case as c-cycle agreement. When c = 3, the problem is trivial, since each
process can output its input.

Castañeda, Rajsbaum, and Roy [11] showed that 2-set agreement reduces to c-cycle agreement,
for c ≥ 4. This implies that there is no algorithm for approximate agreement on c-cycles (under
both minimal and shortest path validity) for c ≥ 4 that tolerates 2 crash faults in in asynchronous
shared memory systems consisting of registers. Hence, approximate agreement on cycles of length
at least 4 is harder than on paths and chordal graphs.

1.2 Contributions

In this work, we establish additional positive and negative results on the solvability and complexity
of graphical approximate agreement.

2



Graph class Validity condition Fault model Reference

Clique graph is a tree Clique gathering Wait-free [3]
Radius one Wait-free [3]

Chordal Minimal paths Byzantine, n > (ω + 1)f [35]

Paths Shortest paths Wait-free [7, 38]
Paths Byzantine, n > 3f [1]
Nicely bridged or radius one Wait-free this work
Any 1-resilient this work

Table 1: Algorithms for asynchronous approximate agreement on graphs.

Positive results. We present a wait-free asynchronous algorithm for n ≥ 2 processes that
solves approximate agreement on a large subclass of bridged graphs, and on any radius one graph.
A bridged graph is a graph in which each of its cycles of length at least 4 contains 2 vertices
that are connected by a shorter path than either path in the cycle connecting them [20, 21].
All chordal graphs are bridged, but the converse is not necessarily true; for an example, see
Figure 1(c).

Our algorithm solves the graphical approximate agreement problem on all chordal graphs
and a large class of non-chordal graphs of arbitrary large radius. This includes graphs of
radius one and graphs whose clique graphs are trees. Thus, our algorithm handles all graphs
handled by previous algorithms, while guaranteeing a stronger validity condition. See Table 1 for
a comparison.

In addition, we give a 1-resilient asynchronous algorithm for graphical approximate agreement
using only registers on any connected graph for n ≥ 2 processes. Note that, when n = 2, this
algorithm is wait-free. For the fully-connected synchronous message-passing model, we also
present an f -resilient synchronous algorithm for the fully-connected message-passing model with
n > f processes. The algorithm solves approximate agreement on any connected graph G in
bf/2c+ dlog2 diam(G)e+ 1 rounds, where diam(G) is the diameter of G.

Negative results. We provide a new, direct proof of the impossibility of approximate agreement
on cycles of length c ≥ 4. It uses a generalisation of Sperner’s Lemma to convex polygons.
It follows from known simulation techniques [10, 27] that there is no 2-resilient asynchronous
algorithm using registers and any f -resilient synchronous algorithm requires at least bf/2c+ 1
rounds for n > f processes. Furthermore, we present a simplified version of the existing reduction
from k-set agreement to cycle agreement and use it to extend the impossibility of graphical
approximate agreement to a larger class of graphs.

Extension-based proofs. Finally, in Section 6, we show that extension-based proofs [4], such
as valency arguments, are not powerful enough to show the impossibility of 4-cycle agreement in
the non-uniform iterated snapshot model. Note that this result does not follow from the fact that
there are no extension-based proofs of the impossibility of 2-set agreement in the non-uniform
iterated snapshot model [5], even though there is a reduction from 2-set agreement to c-cycle
agreement for c ≥ 4.

2 Related work

Multidimensional approximate agreement. Mendes, Herlihy, Vaidya and Garg [34] gen-
eralised approximate agreement to the multidimensional setting, where the input values are
points in m-dimensional Euclidean space Rm, for m > 0. In the multidimensional approximate

3



agreement problem, the output values should be within distance ε > 0 of one another and be
contained in the convex hull of the input values of the non-faulty processes. When m = 1, this is
approximate agreement on a line. Multidimensional approximate agreement on Rm is solvable
with f Byzantine faults in the asynchronous completely-connected message-passing setting if
and only if n > (m+ 2)f [34]. In the synchronous setting, the problem is solvable if and only
if n > max{3f, (m + 1)f}. Recently, Függer and Nowak [26] established asymptotically tight
convergence rates for multidimensional approximate agreement by removing the dependence on
the dimension m of the space.

Unlike approximate agreement on the real line, it is not straightforward to obtain a discrete
version of multidimensional approximate agreement when m ≥ 2. For example, in the two-
dimensional integer lattice Z2 ⊆ R2, one can find a pair of points arbitrarily far apart such
that they are the only integral points in their convex hull. In this case, solving approximate
agreement is the same as solving consensus. More generally, Herlihy and Shavit [28] showed that
approximate agreement in a multidimensional setting with Euclidean convex hulls cannot be
solved in a wait-free manner when processes communicate using registers if the space of values
has holes of size ε. Since the Euclidean convex hull of two antipodal points around the hole
consists of only the two points, outputting values within distance ε of one another in this convex
hull would amount to solving consensus.

Barycentric agreement [30] is a multidimensional problem that can be solved wait-free manner:
processes are given inputs that lie on a simplex σ of a simplicial complex and must output
values that are on a simplex of the barycentric subdivision of σ. This problem can be solved, for
example, using m-dimensional approximate agreement [33].

Approximate robot gathering in graphs. Robot gathering problems have been studied in
the continuous setting [2, 15], but we focus on the discrete setting, where n robots reside on
nodes in a graph G. The inputs represent the initial positions of the robots, the outputs represent
the final positions of the robots, and the goal is that the outputs are close to one another.

Exact gathering of asynchronous robots, where the goal is to get all robots to the same vertex,
has been studied extensively in various models. See a recent survey of Cicerone, Di Stefano, and
Navarra [14]. Castañeda, Rajsbaum, and Roy [11] and Alcántara, Castañeda, Flores-Peñaloza,
and Rajsbaum [3] studied several variants of approximate gathering of asynchronous robots
moving on a graph that communicate via snapshots. In edge gathering [3, Definition 4], agreement
is satisfied if all outputs belong to the same edge. Validity requires that (i) if all inputs values
are the same, then the output values are the same as the input values, and (ii) if all inputs
belong to the same edge, then the output values also belong to this edge. The 1-gathering task [3,
Definition 5] is a relaxation of edge gathering, where agreement is satisfied if the output values
form a clique, and validity requires that the output values must be a subset of the input values if
the input values form a clique.

Note that neither edge gathering or 1-gathering solve graphical approximate agreement, as
the validity constraint of graphical approximate agreement is stronger: each output value has
to lie on some shortest path between two input values. The difference is best illustrated by the
simple case of a path, where approximate agreement requires that the outputs always lie between
the minimal and maximal input values, while edge gathering and 1-gathering do not have this
requirement.

Edge gathering is solvable if and only if G is a tree [3]. On cliques, edge gathering is the
same as the 2-set agreement task, whereas 1-gathering and graphical approximate agreement are
trivial. For 1-gathering, Alcántara et al. [3] gave an algorithm for trees, which can also be used
to solve 1-gathering on any graph whose clique graph is a tree.

When the graph G is a cycle of length c ≥ 4, edge gathering and 1-gathering are the same as
c-cycle agreement. Castañeda et al. [11] and Alcántara et al. [3] gave a clever reduction showing
that this problem is as hard as 2-set agreement for n = 3 processes. In Section 4, we give a

4



direct proof of this result. Moreover, in Section 5, we simplify and adapt the reduction from
2-set agreement to prove that wait-free graphical approximate agreement is impossible on a much
larger class of graphs.

3 Models

We consider distributed systems with n processes, where some processes may fail by crashing. In
particular, we focus on the setting where processes communicate using atomic snapshot objects,
which can be implemented from registers. We also consider the synchronous message-passing
model under fully-connected communication topologies.

3.1 Asynchronous shared memory models

In the f-resilient non-uniform iterated snapshot (f -NIS) model, n processes, p0, . . . , pn−1, com-
municate using an infinite sequence, S1, S2, . . . , of shared single-writer atomic snapshot objects.
A single-writer atomic snapshot object has n components, each of which has initial value −. It
supports two atomic operations, update and scan. An update(x) by process pi changes the value
of component i to x 6= −. A scan returns the value of each component.

Each process performs an update on a snapshot object, starting with S1, and then repeatedly
performs scans of this object until at most f components have value −. (Note that, if f = n− 1,
then one scan of the snapshot object suffices, since the process has already performed an update
on its own component.) Next, it updates its state and applies a function, ∆, to its new state
to determine whether it should output a value. If the value of ∆ is not ⊥, then pi outputs this
value and terminates. If the value of ∆ is ⊥, then, at its next step, it updates the next snapshot
object in the sequence with a value determined by its new state.

Note that it suffices to consider schedules where all accesses to each snapshot object occur
before any accesses to the next snapshot object in the sequence. This is because if process pj
performs its update of a particular snapshot object after process pi performs its scans to this
object, then it is indistinguishable to both processes how much later this occurs.

A configuration consists of the contents of each shared object and the state of each process.
From any configuration C, a scheduler decides the order in which the processes take steps. The
sequence of processes selected by the scheduler is called a schedule from C. Given a finite schedule
α from C, we use Cα to denote the resulting configuration. An algorithm is wait-free if there is
no infinite schedule from any initial configuration.

The non-uniform iterated immediate snapshot (NIIS) model, introduced by Hoest and
Shavit [31], is like a full-information (n− 1)-NIS model, except that the scheduler is restricted
in how it can schedule processes: It repeatedly selects a set of processes that are all poised to
perform updates on the same snapshot object. Each of the processes in the set performs its
update. Then, each of these processes performs one scan of this snapshot object. Note that, since
each process performs an update to a snapshot object before performing a scan, the scan will
return a vector containing at most n− 1 components with value −. Initially, the state of process
pi consists of its identifier, i, and its input. When it performs an update, the value it uses is its
current state. After performing a scan, its new state consists of i and the result of the scan.

Each initial configuration in the NIIS model or f -NIS model corresponds to a simplex (or an
n-vertex clique) containing one vertex for each process, which specifies its input. The collection of
all such simplexes is called the input complex (or input graph). Likewise, for any algorithm, each
reachable terminal configuration corresponds to a simplex (or n-vertex clique) containing one
vertex for each process, which specifies its state, including the value it outputs. The collection of
all such simplexes (or n-vertex cliques) is called the protocol complex (or protocol graph). We
may assume that the sets of possible states of different processes are disjoint. There is an edge
between two vertices if they represent the states of different processes and there is a reachable

5



v�

23

4

2

23

4
1

4

0

0
0

1 1

0

0 1

67

2 3

5 4

0 1

6

2 3

5 4

(a) (b) (c)

(d)

23

4

0

1

v0

v1

Figure 2: (a) A triangulation T of a pentagon. (b) A Sperner labelling of T with the edges of
the graph G′ superimposed in orange. (c) The subcomplex H for c = 7. (d) The subcomplex
H for c = 8.

configuration containing both these states.
A nice feature of the NIIS model is that the protocol complex of any wait-free algorithm can

be obtained from the input complex by performing a finite number of non-uniform chromatic
subdivisions of simplexes. In the special case when there are n = 3 processes, each simplex is a
triangle and the non-uniform chromatic subdivision of a simplex is a triangulation of the simplex.
Likewise, in the (n− 1)-NIS model, Alistarh, Aspnes, Ellen, Gelashvili, and Zhu [5] have shown
that the protocol graph of any wait-free, full-information algorithm can be obtained from the
input graph by performing a finite number of subdivisions of n-vertex cliques. For deterministic,
wait-free computation, both the NIIS model and the (n− 1)-NIS model are equivalent to the
asynchronous shared memory model in which processes communicate using shared registers
(which support only read and write) [9].

3.2 The synchronous message-passing model

In the synchronous message-passing model, there is no uncertainty regarding the relative speeds
of processes. A computation is divided into synchronous rounds. In each round, each process
sends its entire state to every other process. Any message sent by a non-faulty process in round r
is guaranteed to arrive at its destination before the end of round r. A synchronous algorithm is
an f -resilient solution to a task using T rounds if all non-crashed processes decide on an output
value by the end of round T in any execution with at most f crashes.

4 Impossibility of asynchronous wait-free cycle agreement

In this section, we give a proof of the following result.

Theorem 1. For c ≥ 4, there is no wait-free algorithm for the c-cycle agreement problem among
n ≥ 3 processes in the NIIS model.

Our proof relies on a slight generalisation of Sperner’s lemma to convex polygons, originally
shown by Atanassov [6] and generalised to convex polytopes of any dimension by de Loera,
Peterson, and Su [16]. However, for us, a special case in the two-dimensional setting suffices.

Let H be a polygon with c vertices and let T be a triangulation of H. A Sperner labelling of
T is a function from the vertices of T to the set {0, . . . , c− 1} such that each vertex of H gets a
different label and each vertex on the boundary of T between two vertices of H gets the same
label as one of those two vertices. Please see Figures 2(a) and 2(b).

Lemma 2. Let H be a convex polygon with c vertices. Any Sperner labelling of a triangulation
of H has a triangle whose vertices have three different labels.

6



Proof. Let T be a triangulation of H and consider any Sperner labelling of T . Without loss
of generality, suppose there are two adjacent vertices v0 and v1 of H labelled with 0 and 1,
respectively. Consider the graph G′ = (V ′ ∪ {v∗}, E′), where V ′ is the set of triangles of T .
There is an edge in E′ between triangles τ and τ ′ if and only if they have exactly two vertices in
common, one of which is labelled 0 and the other of which is labelled 1. There is an edge in E′

between v∗ and triangle τ if and only if two of the vertices of τ lie on the boundary of T between
v0 and v1 and they have different labels. This is illustrated in Figure 2(b).

Each of the nodes of T on the boundary between v0 and v1 is labelled by 0 or 1. The labels
of the nodes on this path change an odd number of times, since v0 and v1 have different labels.
Thus, there are an odd number of edges on the boundary whose endpoints are labelled 0 and 1,
so v∗ has odd degree. If a triangle has two nodes labelled 0 and one node labelled 1 or vice versa,
it has degree 2 in G′. If a triangle has one node labelled 0, one node labelled 1, and one node
with some other label, it has degree 1 in G′. Otherwise, it has degree 0 in G′.

The handshaking lemma [19] says that any finite graph contains an even number of nodes
with odd degree. Since v∗ has odd degree, there exists a triangle τ ∈ V with odd degree. The
vertices of this triangle have three different labels.

Proof of Theorem 1. Let H denote the part of the input complex for c-cycle agreement among 3
processes p0, p1, and p2, consisting of the simplexes corresponding to the following c− 2 input
configurations:

– p0 has input 3a, p1 has input 3a+ 1, and p2 has input c− 3a− 1, for 0 ≤ a ≤ b(c− 3)/6c.

– p1 has input 3a+1, p2 has input c−3a−1, and p0 has input c−3a−2, for 0 ≤ a ≤ b(c−4)/6c.

– p1 has input 3a+1, p2 has input 3a+2, and p0 has input c−3a−2, for 0 ≤ a ≤ b(c−5)/6c.

– p2 has input 3a+2, p0 has input c−3a−2, and p1 has input c−3a−3, for 0 ≤ a ≤ b(c−6)/6c.

– p2 has input 3a+2, p0 has input 3a+3, and p1 has input c−3a−3, for 0 ≤ a ≤ b(c−7)/6c.

– p0 has input 3a+3, p1 has input c−3a−3, and p2 has input c−3a−4, for 0 ≤ a ≤ b(c−8)/6c.

Note that H contains c vertices, one for each possible input value. The cases c = 7 and c = 8 are
illustrated in Figures 2(c) and 2(d). The processes p0, p1, and p2 are denoted by the colours red,
white, and blue, respectively. The border of H is a polygon H with c vertices.

Consider any wait-free algorithm for 3 processes in the NIIS model. Let S denote its protocol
complex. It is finite, since the algorithm is wait-free. Let T denote the subcomplex of S consisting
of all terminal configurations reachable from configurations in H, where each vertex is labelled
with the output value it contains. The vertices and edges of T form a triangulation T of H. For
each input value x ∈ {0, . . . , c− 1}, there is a vertex vx on the boundary of T that corresponds
to the solo execution by some process pi with input x. If it is not labelled by the value x, then
the algorithm does not solve c-cycle agreement. The edges on the border of T between vx and
vx′ , where x′ = (x+ 1) mod c, correspond to executions by only two processes, one with input
x and the other with input x′. If the endpoints of all such edges are not labelled by x or x′,
the algorithm does not solve c-cycle agreement. Label each vertex of T with the label of the
corresponding vertex in T. If the algorithm is correct, then this is a Sperner labelling. By
Lemma 2, the triangulation T contains a triangle whose vertices have three different labels. The
corresponding configuration is the result of an execution in which the three processes output
different values, so the algorithm cannot be solving c-cycle agreement among three processes.

Since all but three processes can crash before taking any steps, any algorithm that solves
c-cycle agreement among n ≥ 3 processes is also an algorithm that solves c-cycle agreement
among 3 processes. Therefore no such algorithm exists.

7



5 Impossibility results via reductions

In this section, we show that the impossibility of wait-free cycle agreement implies the impossibility
of 2-resilient cycle agreement in the asynchronous shared memory model (where processes
communicate by reading from and writing to registers) and a lower bound on the round complexity
of cycle agreement in the synchronous message model. Finally, we show that approximate
agreement is impossible on graphs that admit a certain labelling of the vertices.

5.1 There exists no 2-resilient asynchronous algorithm

A task is colourless if the input of any process may be the input of any other process, the output
of any process may be the output of any other process, and the specifications of valid outputs
only depend on the set of inputs of the processes. Cycle agreement is an example of a colourless
task. The BG simulation technique [10] shows that the impossibility of wait-free algorithms for a
colourless task for n ≥ 3 processes implies the impossibility of 2-resilient algorithms for that task.

Theorem 3. [10] If there exists a k-resilient asynchronous algorithm for n > k processes that
solves a colourless task, then there is a wait-free asynchronous algorithm for (k + 1) processes
that solves the task.

Together with Theorem 1, the BG simulation immediately implies that there is no 2-resilient
asynchronous algorithm for the cycle agreement problem.

Corollary 4. For any n ≥ 3 and c ≥ 4, there is no 2-resilient asynchronous algorithm that
solves c-cycle agreement.

5.2 Time lower bounds for synchronous algorithms

We can now lift the impossibility results to time lower bounds for the synchronous model using
the round-by-round simulation by Gafni [27], who showed the following.

Theorem 5. [27] Let 0 < k < f < n such that n− k− f > 0. Fix T ≤ f/k. Suppose there exists
a synchronous f -resilient algorithm for n nodes that solves a colourless task in T rounds. Then
there exists a k-resilient asynchronous algorithm that solves the task.

Applying Corollary 4 and Theorem 5, we obtain a time lower bound for synchronous algorithms.

Corollary 6. For any n > f ≥ 0, any f-resilient synchronous message-passing algorithm for
c-cycle agreement requires at least bf/2c+ 1 rounds.

5.3 Graphs on which approximate agreement is impossible

We now show that approximate agreement is hard on graphs that admit a certain labelling of its
vertices. We do so by a reduction from 2-set agreement among n ≥ 3 processes. In this problem,
each process has an input value in {0, 1, 2} and, if it does not crash, it must output one of the
inputs such that at most two different values are output.

A labelling ` : V → {0, 1, 2} of the vertices of a graph G = (V,E) is a lower bound labelling if
the following conditions hold:

(1) G contains no triangle with three different labels and

(2) G contains a cycle C in which exactly one vertex has label 1 and its two neighbours in C
have labels 0 and 2.

8



It is easy to check that any cycle graph of length c ≥ 4 admits a lower bound labelling: pick
three consecutive vertices, label them with 0,1,2, and label all other vertices with 2. A wheel
graph, which consists of a cycle and one central vertex that is a neighbour of all vertices in the
cycle, does not admit a lower bound labelling. On the other hand, if one edge adjacent to the
central vertex is removed, the resulting graph does admit a lower bound labelling: label the
other endpoint of the removed edge with 1, label one of its neighbours with 0, and label all other
vertices with 2.

Theorem 7. Suppose G is a graph that admits a lower bound labelling. Then there is no wait-free
algorithm among n ≥ 3 processes that solves graphical approximate agreement on G.

Proof. Consider a lower bound labelling ` of G. Let C be a cycle in G that contains exactly one
vertex, v1, with label 1, a neighbour v0 of v1 with label 0, and a neighbour v2 of v1 with label 2.
Let A be a wait-free approximate agreement algorithm on the path C \ {v1}.

To obtain a contradiction, suppose there is a wait-free algorithm B for graphical approximate
agreement on G. The following wait-free algorithm solves 2-set agreement:

– Processes with input value x ∈ {0, 2} run the approximate agreement algorithm A on the
path C \ {v1} using vx as input. The vertex each of these processes outputs in A is used as
its input for algorithm B.

– Processes with input value 1 use v1 as their input for algorithm B.

– Each process pi outputs the label `(yi) of the vertex yi it outputs in B.

By the agreement property of graphical approximate agreement, the values output in B lie on a
clique. The first property of a lower bound labelling implies that the nodes in this clique have at
most two distinct labels. Thus, at most two different values are output by the processes.

If there are three distinct input values, then validity is immediately satisfied. If all input
values are the same, then all output values are this input value, since this is true for algorithms
A and B. It remains to consider instances of set agreement with exactly two input values. First,
suppose the inputs for set agreement are in {0, 1}. All processes with input 0 output v0 in
algorithm A, since v0 is the only value input to A. Thus, each process uses either v0 or v1 as its
input to algorithm B. As v0 and v1 are adjacent in G, each process outputs one of these two
values in B, by validity of graphical approximate agreement. Hence, each process outputs a value
in {`(v0), `(v1)} = {0, 1} for set agreement, satisfying validity. The case {1, 2} is symmetric.

Now, suppose that the inputs for set agreement are in {0, 2}. Then each process uses either
v0 or v1 as its input to algorithm A. Their outputs in A and, hence their inputs to algorithm B,
all lie on some edge {u, v} on the path C \ {v1}. By validity of graphical approximate agreement,
each process outputs either u or v in B. From the second property of a lower bound labelling,
all values in C \ {v1} are labelled with either 0 or 2. Thus, each process outputs 0 or 2 for set
agreement, satisfying validity.

6 Impossibility of extension-based proofs

Extension-based proofs were introduced by Alistarh, Aspnes, Ellen, Gelashvili and Zhu [4] to
model inductive impossibility arguments, such as the valency-based impossibility of consensus in
asynchronous message-passing systems by Fisher, Lynch and Paterson [24]. These are in contrast
to the combinatorial arguments used to show the impossibility of set agreement [8, 29, 37]. It
is known that extension-based proofs cannot be used to prove the impossibility of (n− 1)-set
agreement among n > 2 processes in the NIIS model [4] or in the (n− 1)-NIS model [5].

We show that extension-based proofs cannot be used to prove Theorem 1 in the (n− 1)-NIS
model. This is the first application of the extension-based proof framework to a task other than
set agreement. We emphasise that this result does not follow directly via reduction from the

9



result for k-set agreement. The main source of novelty in our argument is in carefully extending
their adversarial protocol to the c-cycle agreement task. Specifically, our main result is the
following.

Theorem 8. There is no extension-based proof of the impossibility of a wait-free algorithm
solving 4-cycle agreement for n ≥ 3 processes in the (n− 1)-NIS model.

6.1 Extension-based proofs

We follow the terminology and notation given in [4], and the outline of our argument is similar.
However, care is needed to apply the argument to the c-cycle agreement problem, because of the
differences in its specification.

An extension-based proof is an interaction between a prover and any full-information protocol.
The prover starts with no knowledge about the protocol (except its initial configurations) and
makes the protocol reveal information about the states of processes in various configurations by
asking queries. The interaction proceeds in phases.

In each phase ϕ ≥ 1, the prover starts with a finite schedule, α(ϕ), and a set, A(ϕ), of
configurations that are reached by performing α(ϕ) from initial configurations. These initial
configurations only differ from one another in the input values of processes that do not appear
in the schedule α(ϕ). If every configuration in A(ϕ) is terminal and the outputs satisfy the
specification of the task, then the prover loses.

The prover also maintains a set, A′(ϕ), containing the configurations it reaches by non-empty
schedules from configurations in A(ϕ) during phase ϕ. This set is empty at the start of phase ϕ.
At the start of the first phase, indexed by 1, α(1) is the empty schedule and A(1) is the set of all
initial configurations of the protocol.

The prover queries the protocol by specifying a configuration C ∈ A(ϕ)∪A′(ϕ) and a process
q that is active (i.e. has not terminated) in C. Let C ′ be the configuration resulting from
scheduling one step of q from C. The protocol replies to this query with the state s of p in C ′.
(For a full-information protocol specified by the function ∆, it suffices for the protocol to reply
with ∆(s).) Then the prover adds C ′ to A′(ϕ) and we say that the prover has reached C ′. If
the prover reaches a configuration C ′ in which the outputs of the processes do not satisfy the
specifications of the task, it has demonstrated that the protocol is incorrect. In this case, the
prover wins. A chain of queries is a (finite or infinite) sequence of queries such that, for all
consecutive queries (Ci, qi) and (Ci+1, qi+1) in the chain, Ci+1 is the configuration resulting from
scheduling one step of qi from Ci.

An output query in phase ϕ is specified by a configuration C ∈ A(ϕ) ∪A′(ϕ), a set of active
processes Q in C, and a possible output value y. If there is a schedule from C involving only
processes in Q (i.e. a Q-only schedule) that results in a configuration in which some process in Q
outputs y, then the protocol returns some such schedule. Otherwise, the protocol returns none.
In this case, if the prover later reaches a configuration by a Q-only schedule starting from C in
which some process in Q outputs y, the protocol has responded inconsistently and the prover
wins.

After constructing finitely many output queries and chains of queries in phase ϕ without
winning, the prover must end the phase by committing to a non-empty extension α′ of the
schedule α(ϕ) such that Cα′ ∈ A′(ϕ) for some C ∈ A(ϕ). Since there is an initial configuration
C0 such that C is reached by performing α(ϕ) starting from C0, configuration Cα′ is reached by
performing α(ϕ+ 1) = α(ϕ)α′ starting from I. The prover defines A(ϕ+ 1) to be the set of all
configurations that are reached by performing α(ϕ+ 1) from the initial configurations that only
differ from C0 by the states of processes that do not appear in this schedule. Then the prover
begins phase ϕ+ 1.

If the interaction between the prover and the protocol is infinite, either because the prover
constructs an infinite chain of queries or the number of phases is infinite, the prover wins. In

10



this case, the prover has demonstrated that the protocol is not wait-free. To prove that a task is
impossible using an extension-based proof, one must show there exists a prover that wins against
every protocol.

Our main result in this section is the following.

Theorem 9. There is no extension-based proof of the impossibility of a wait-free algorithm
solving 4-cycle agreement for n ≥ 3 processes in the (n− 1)-NIS model.

6.2 Preliminaries and invariants

Let G0 denote the input graph, which is the union of all n-vertex cliques representing input
configurations of a protocol. For each t ≥ 1, let Gt denote the graph consisting of the union of all
n-vertex cliques representing configurations of the protocol reachable from initial configurations
by schedules in which each process performed a scan on St during its last step or terminated
before accessing St. Given ∆(v) for each vertex v of an n-vertex clique σ of Gt−1, the subdivision,
χ(σ,∆) is the union of all n-vertex cliques representing configurations of the protocol reachable
from the configuration represented by σ via schedules in which each active process takes exactly
two steps. The subdivision of any union of n-vertex cliques is the union of the subdivisions of
those cliques. In particular, Gt = χ(Gt−1,∆). A vertex is terminated if it represents the state
of a process that has terminated. Otherwise, the vertex is active. If T is a set of terminated
vertices in Gt−1, then χ(T,∆) = T is a set of terminated vertices in Gt.

We will use the following result, from [5], which relates the distance between two sets of
vertices in Gt−1 to the distance between their subdivisions in Gt.

Lemma 10 (The Distance Lemma). Suppose A and B are non-empty and each is either the
union of n-vertex cliques in Gt−1 or a set of terminated vertices in Gt−1. Then the distance
between χ(A,∆) and χ(B,∆) in Gt is at least as large as the distance between A and B in Gt−1.
Moreover, if every path between A and B in Gt−1 contains at least one edge between active
vertices, then the distance between χ(A,∆) and χ(B,∆) in Gt is larger than the distance between
A and B in Gt−1.

We define an adversary that is able to win against every extension-based prover, which is
attempting to prove the impossibility of 4-cycle agreement for n ≥ 3 processes. The adversary
maintains a partial specification of ∆ (the protocol it is adaptively constructing) and an integer
t ≥ 0. The integer t represents the number of subdivisions of the input graph, G0, that it has
performed. Once the adversary has defined ∆ for each vertex in Gt−1, it may subdivide Gt−1
and construct Gt = χ(Gt−1,∆).

Let 0 ≤ r ≤ t and let a ∈ {0, 1, 2, 3} be an input value. Throughout this section, addition
and subtraction on input values are always taken modulo 4. We say that a vertex has seen a
value a if it represents the state of a process which has seen a in some scan (i.e. the process has
a as its input or has seen the update of a process that had previously seen a). The following
definitions are the key to the proof. In particular, Rt(a, a+ 1) replaces Nt(a), which was used in
the proof for k-set agreement.

– Rt(a, a+ 1) is the subgraph of Gr consisting of the union of all n-vertex cliques in Gr whose
vertices have only seen values a or a+ 1.

– Tt(a) is the set of terminated vertices in Gr that have output value a, i.e. vertices for which
∆ is a.

– Xt(a) is the set of vertices in Gr that represent the states of processes in Q in configurations
reachable from C by a Q-only schedule, for some output query (C,Q, a) to which the
adversary answered none.

The next result follows from the definition of subdivision.

11



Proposition 11. For t ≥ 0 and all inputs a, Rt(a, a + 1) is non-empty and Rt+1(a, a + 1) =
χ(Rt(a, a+ 1),∆). If Tt(a) is non-empty, then χ(Tt(a),∆) = Tt(a).

6.3 The adversarial strategy

Our adversarial strategy ensures that after each response to a query made by the prover in
phase 1, the following invariants will hold:

(1) For each 0 ≤ r < t and each vertex v ∈ Gr, ∆(v) is defined.

(2) If v is a vertex in Gt, then ∆(v) 6= ⊥.

(3) If s represents the state of a process in a configuration that was reached by the prover
and the process took 2r steps in the execution to reach this configuration, then s is a
vertex in Gr, for some 0 ≤ r ≤ t, and ∆(s) is defined.

(4) For any two inputs a 6= b, if Tt(a) and Tt(b) are non-empty, then the distance between
them in Gt is at least 3.

(5) For any input a, if Tt(a) is non-empty and a 6= b, b+ 1, then the distance between Tt(a)
and Rt(b, b+ 1) is at least 2.

(6) For every input a, every vertex in Xt(a) is either in Rt(b, b+ 1), where a 6= b, b+ 1, or at
distance at most one from Tt(b), for some b 6= a.

The following lemma is a consequence of the invariants.

Lemma 12. If a 6= b, then any path between Tt(a) and Tt(b) contains an edge between active
vertices. If a 6= b, b+ 1, then any path between Tt(a) and Rt(b, b+ 1) contains an edge between
active vertices.

Proof. Consider any path v0, v1, . . . , v` between Tt(a) and Tt(b) ∪ Rt(b, b+ 1) in Gt. Let vj be
the last vertex in Tt(a). Then, by invariants (4) and (5), ` ≥ j + 2. Since vj is the last vertex in
Tta, vj+1 and vj+2 are not in Tta. Moreover, by invariant (4), vj+1 and vj+2 are not in Ttc for any
input c 6= a. Hence, {vj+1, vj+2} is an edge between active vertices.

A subdivision maintains the invariants, but increases the distance between vertices that output
different values and between vertices that output a value and vertices that have only seen a
different value or two adjacent different values.

Lemma 13. Suppose all the invariants hold, the adversary defines ∆(v) = ⊥ for each vertex
v in Gt where ∆ is undefined and Gt to construct Gt+1. If a 6= b and both Tt(a) and Tt(b) are
non-empty, then the distance between Tt+1(a) and Tt+1(b) in Gt+1 is greater than the distance
between Tt(a) and Tt(b) in Gt. If a 6= b, b+ 1 and Tt(a) is non-empty, then the distance between
Tt+1(a) and Rt+1(b, b+ 1) in Gt+1 is greater than the distance between Tt(a) and Rt(b, b+ 1) in
Gt. Furthermore, if the adversary increments t, then all the invariants continue to hold.

Proof. Suppose that Tt(a) is non-empty. By Lemma 12, any path between Tt(a) and Rt(b, b+ 1)
for a 6= b, b + 1 contains an edge between active vertices. Hence, by Lemma 10, the distance
between Tt+1(a) = χ(Tt(a),∆) and Rt+1(b, b+ 1) = χ(Rt(b, b+ 1),∆) in Gt+1 is larger than the
distance between Tt(a) and Rt(b, b+ 1) in Gt. Similarly, if a 6= b and Tt(b) is non-empty, then
the distance between Tt+1(a) = χ(Tt(a),∆) and Tt+1(b) = χ(Tt(b),∆) in Gt+1 is larger than
the distance between Tt(a) and Tt(b) in Gt. Hence, invariants (4) and (5) remain true after t is
incremented.

Before incrementing t, the adversary defines ∆(v) = ⊥ for each vertex v ∈ Gt where ∆(v)
was undefined. Since invariant (1) was true, it remains true. Invariant (2) and (6) hold by
construction and the definition of subdivision. Invariant (3) is not affected.

12



The adversarial strategy for phase 1. Initially, the adversary sets ∆(v) = ⊥ for each vertex
v ∈ S0. It then subdivides S0 to construct S1 and sets t = 1. This ensures that invariants (1)
and (2) are true. Invariant (3) is true because, before the first query, the prover has only reached
initial configurations and S0 is the union of all n-vertex cliques representing initial configurations.
No vertices in S0 have terminated, so T0(a) is empty for each input a. Thus invariants (4) and (5)
are vacuously true. No output queries have been performed, so X0(a) is also empty for each input
a and invariant (6) is vacuously true. So, suppose that the invariants are satisfied immediately
prior to some query by the prover during phase 1.

First, consider a query (C, q), where C is a configuration previously reached by the prover
and q is an active process in C. If q took 2r steps in the execution to reach C, then, by invariant
(3), the state s of process q in configuration C is a vertex in Gr and ∆(s) is defined. Since q
is active in C, ∆(s) = ⊥, so, by invariant (2), r < t. In this case, the adversary returns the
configuration Cq, which is the same as C, except that the component belonging to q in Sr+1

changes value from − to s and process q has now performed 2r + 1 steps. Process q remains
active. Invariant (3) remains true: it holds vacuously for the new state of process q and no other
process has changed state. Since ∆ has not been changed, Tt(a) has not changed for any input
a and invariants (1), (2),(4) and (5) remain true. Since no vertices are added to Xt(a) for any
input a, invariant (6) remains true.

So, suppose that q took 2r + 1 steps in the execution to reach C. Let s be the previous state
of process q in this execution and consider the last configuration in this execution in which q
had state s. Then, by invariant (2), s is a vertex in Gr. Since q is active in this configuration,
∆(s) = ⊥. Hence, by invariant (1), r < t. The state s′ of q in configuration Cq consists of its id
and the result of its scan of Sr+1. It is a vertex in Gr+1.

If r < t − 1, then, by invariant (1), ∆(s′) is defined. It is also possible that r = t − 1 and
∆(s′) is defined. In both these cases, all invariants continue to hold.

Now suppose that r = t− 1 and ∆(s′) is not defined. Suppose there exists an input a such
that setting ∆(s′) = a maintains all the invariants. Specifically, suppose the following properties
hold:

– for all inputs b 6= a such that Tt(b) is non-empty, the distance between s′ and Tt(b) in Gt

is at least 3 and

– for all inputs b such that a 6= b, b+ 1, the distance between s′ and Rt(b, b+ 1) in Gt is at
least 2.

In this case, the adversary defines ∆(s′) = a. This adds the vertex s′ to Tt(a) and leaves Tt(b)
unchanged for b 6= a. It also does not change Rt(b, b+1) or Xt(b) for any input b. Hence invariants
(1), (2), (4), (5), and (6) continue to hold. By construction, s′ ∈ Gt and ∆(s′) is defined. For
every other process, its state in Cq is the same as its state in C. Thus invariant (3) continues to
hold. By invariant (6), each vertex u ∈ Xt(a) is either in Rt(b, b+ 1), for some value b such that
a 6= b, b+ 1, or is distance at most one from Tt(b) for some b 6= a. Since the distance between
s′ and Tt(b) in Gt is at least 3, the distance between s′ and u is at least 2. Thus s′ 6∈ Xt(a),
so defining ∆(s′) = a does not contradict the result of any previous output query. Otherwise,
the adversary defines ∆(v) = ⊥ for each vertex v ∈ Gt where ∆(v) is undefined, including s′,
subdivides Gt to construct Gt+1, and increments t. By Lemma 13, all the invariants continue to
hold. In all cases, the adversary returns s′ and ∆(s′).

Second, for an output query (C,Q, y), let Q be the set of vertices in Gt vertices representing
the states of processes in Q in configurations reachable from C by Q-only schedules. If some
vertex v ∈ Q has terminated with output y, then the adversary returns a Q-only schedule from
C that leads to a configuration in which v represents the state of some process. If every vertex
in Q is in Rt(y + 1, y + 2) ∪ Rt(y + 2, y + 3) ∪ Xt(y) or has terminated with an output other
than y, then it would be impossible for the adversary to return a Q-only schedule from C in

13



which some vertex has terminated with output y without violating validity or contradicting
one of its previous answers, so the adversary returns none. Note that adding vertices in
Rt(y + 1, y + 2) ∪ Rt(y + 2, y + 3) ∪ Tt(a) for a 6= y does not make invariant (6) false. Invariants
(1), (2),(3), (4), and (5) also continue to hold.

Otherwise, let U 6= ∅ be the subset of vertices in Q that are not in Rt(y+1, y+2)∪Rt(y+2, y+3),
Xt(y), or Tt(a), for any a 6= y. Note that, by invariant (2), ∆(u) is undefined for all u ∈ U. For
each vertex u ∈ U, let Au be the union of all n-vertex cliques in Gt containing u. We consider
three cases.

Case 1: There is a vertex u ∈ U such that Au ∩ Tt(y) is non-empty. Then the adversary
defines ∆(v) = ⊥ for each vertex v ∈ Gt where ∆(v) is undefined and subdivides Gt to construct
Gt+1. By Lemma 13, all the invariants continue to hold, if a 6= y and Tt(a) is non-empty, then
the distance between Tt+1(y) and Tt+1(a) in Gt+1 is at least 4, and if y 6= b, b + 1, then the
distance between Tt+1(y) and Rt+1(b, b+ 1) in Gt+1 is at least 3.

Let pi be the process whose state is u. Since u ∈ U ⊆ Q, process pi ∈ Q. Let w ∈ Au ∩ Tt(y),
let σ be an n-vertex clique in Au that contains w, and let C ′ be the configuration represented by
σ. Let v be the vertex corresponding to the state of process pi after it takes two steps starting
from C ′ (an update of St+1 followed by a scan of St+1). Next, the adversary increments t. All the
invariants continue to hold, by Lemma 13. Finally, the adversary defines δ(v) = y and returns a
Q-only schedule from C that results in process pi being in state v. This adds vertex v to Tt(y).
Invariants (1), (2), (3), and (6) continue to hold.

Since w is terminated, w is adjacent to every vertex in χ(σ,∆) ⊆ Gt, including v. It follows
that, if Tt(a) is non-empty, then the distance between v and Tt(a) in Gt is at least 3 and the
distance between v and Rt(b, b + 1) in Gt is at least 2. Thus, invariants (4) and (5) hold. By
invariant (6), every vertex in Xt(a) is either in Rt(b, b + 1), where a 6= b, b + 1, or at distance
at most one from Tt(b), for some b 6= a. Since the distance between v and Rt(b, b+ 1) in Gt is
at least 2 and the distance between v and Tt(b) in Gt is at least 3, the distance between v and
Xt(a) is at least 2. Thus v 6∈ Xt(y), so defining ∆(v) = y does not contradict the result of any
previous output query.

Case 2: There is a vertex u ∈ U such that no vertex in Au is terminated. In this case, the
adversary defines δ(v) = ⊥ for each vertex v ∈ Gt where ∆(v) is undefined and subdivides Gt to
construct Gt+1.

Since no vertex in Au is terminated and Au contains all vertices at distance at most 1 from
u in Gt, the distance from u to Tt(a) in Gt is at least 2 for all inputs a. Moreover, since
u 6∈ Rt(y + 1, y + 2) ∪ Rt(y + 2, y + 3), the distance from u to Rt(y + 1, y + 2) ∪ Rt(y + 2, y + 3)
in Gt is at least 1.

Let pi be the process whose state is u. Since u ∈ U ⊆ Q, process pi ∈ Q. In the configuration
represented by any n-vertex clique in Gt, all components of St+1 are −. Thus, the state of pi
after it takes 2 steps starting from any configuration in Gt that contains u is the same. Let v be
the vertex in Gt+1 that represents this state.

Consider any vertex v′ adjacent to v in Gt+1 and let pj be the process whose state is v′. Then
there exists a configuration in which pi is in state v and pj is in state v′. In state v, pi has not
seen the update to St+1 by pj , so, in state v′, pj has not seen the update to St+1 by pi. Since
u 6∈ Rt(y+ 1, y+ 2)∪Rt(y+ 2, y+ 3), v 6∈ Rt+1(y+ 1, y+ 2)∪Rt+1(y+ 2, y+ 3) and, hence, v′ 6∈
Rt+1(y+1, y+2)∪Rt+1(y+2, y+3). Thus the distance from v to Rt+1(y+1, y+2)∪Rt+1(y+2, y+3)
in Gt+1 is at least 2.

Consider any vertex v′′ adjacent to v′ in Gt+1. Then there exists an n-vertex clique σ′ such
that v′, v′′ ∈ χ(σ′,∆). Since v′ ∈ χ(σ′,∆), the definition of subdivision implies that u ∈ σ′.
Hence σ′ ⊆ Au and v′, v′′ ∈ χ(Au,∆). Since no vertex in Au is terminated, the distance between
Au and Tt(a) is at least 1 for every input a. By Lemma 10, the distance between χ(Au,∆) and
χ(Tt(a),∆) is at least 1. By Proposition 11, Tt+1(a) = χ(Tt(a),∆). Thus, v′, v′′ 6∈ Tt+1(a). This
implies that the distance from v to Tt+1(a) in Gt+1 is at least 3.

14



Now the adversary increments t, so all the invariants continue to hold, by Lemma 13.
Finally, the adversary defines ∆(v) = y and returns a Q-only schedule from C that results
in process pi being in state v. This adds vertex v to Tt(y). Invariants (1), (2), (3), and (6)
continue to hold. Since the distance from v to Tt(a) is at least 3 and the distance from v to
Rt(y + 1, y + 2) ∪ Rt(y + 2, y + 3) in Gt is at least 2, invariants (4) and (5) hold. As in the
previous case, defining ∆(v) = y does not contradict the result of any previous output query.

Case 3. For every simplex σ ⊆ U, some vertex w ∈ Aσ has terminated with an output other
than y. In this case, the adversary returns none and adds U to Xt(y). Since each vertex in U is
adjacent to some vertex that has terminated with an output other than y, invariant (6) holds.
Since t and ∆ are not changed, invariants (1), (2), and (3) continue to hold. Since Tt(a) and
Rt(a, a+ 1) are not changed for any input a, invariants (4) and (5) still hold.

6.4 The prover does not win in phase 1

Suppose that the invariants all hold before and after each query made by the prover in phase
1. By invariant (4), at most one value is output in any configuration reached by the prover.
Moreover, by invariant (5), if a process outputs a value a, then there does not exist b such that
a 6= b, b+ 1 and all the inputs are endpoints of the edge {b, b+ 1}. Hence, the prover cannot win
in phase 1 by showing that the protocol violates agreement or validity. It remains to show that
the prover cannot win by constructing an infinite chain of queries in phase 1.

Lemma 14. Every chain of queries in phase 1 is finite.

Proof. Assume, for a contradiction, that there is an infinite chain of queries, (Cj , qj), for j ≥ 0.
Let P be the set of processes that are scheduled infinitely often in this chain. Then there exists
j0 ≥ 0 such that, for all j ≥ j0, qj ∈ P . Let t0 ≥ 1 be the value of t held by the adversary
immediately prior to query (Cj0 , qj0). By invariant (3), every process has taken fewer than 2t0 + 2
steps in the schedule to reach configuration Cj0 , so no process has accessed Sr in this execution,
for all r ≥ t0 + 1. Thus, during the chain of queries, only processes in P access Sr for r ≥ t0 + 1.
Since all the processes in P eventually are scheduled infinitely often in this chain, the adversary
eventually defines ∆(v) = ⊥ for each vertex v ∈ Gr where ∆(v) is undefined subdivides Gr to
construct Gr+1, and increments t from r to r + 1, for all r ≥ t0.

Since no process in P ever terminates, Tr(a) = Tt0a, for all inputs a and all r > t0. By
invariant (4), if Tt0a and Tt0b are non-empty and a 6= b, the distance between Tt0(a) and Tt0(b)
in Gt0 is at least 3 and, so, by Lemma 13, the distance between Tt0+2(a) and Tt0b in Gt0+2 is at
least 5. Similarly, by invariant (5) and Lemma 13, if Tt0(a) is non-empty, the distance between
Tt0+2(a) and Rt0+2(a+ 1, a+ 2) ∪ Rt0+2(a+ 2, a+ 3) in Gt0+2 is at least 4.

Consider the first j1 ≥ j0 such that process qj1 is poised to scan the snapshot object St0+2 in
Cj1 . By invariant (3), the state of process qj1 in configuration Cj1+1 = Cj1qj1 is a vertex v in Gt0+2.
If there is some input a such that Tt0+2(a) is non-empty and the distance from v to Tt0+2(a) in
Gt0+2 is at most 2. Then the distance from v to Tt0+2b in Gt0+2 is at least 3 for all b 6= a such
that Tt0+2(b) is non-empty and the distance from v to Rt0+2(a+ 1, a+ 2) ∪ Rt0+2(a+ 2, a+ 3)
in Gt0+2 is at least 2. According to its strategy for phase 1, the adversary defines ∆(v) = a
after query (Cj1 , qj1). This contradicts the definition of P , since process qj1 terminates. Thus,
the distance from v to any terminated vertex in Gt0+2 is at least 3. Consider any n-vertex
clique σ in Gt0+2 that represents a configuration reachable from configuration Cj1+1. Since
v is a vertex in σ, the distance from σ to any terminated vertex in Gt0+2 is at least 2. In
particular, all vertices in σ are active. Let a be the input of process qj1 . Since qj1 performed
its update to St0+2 prior to configuration Cj1+1 and no other process has performed its scan of
St0+2 prior to Cj1+1, all vertices in σ have seen a. Thus the distance in Gt0+2 between σ and
Rt0+2(a+ 1, a+ 2)∪Rt0+2(a+ 2, a+ 3) is at least 1. Since the distance from σ to any terminated
vertex in Gt0+2 is at least 2, the first edge on any path from σ to a terminated vertex or a vertex
in Rt0+2(a+ 1, a+ 2)∪Rt0+2(a+ 2, a+ 3) is between active vertices. Therefore, by Lemma 10 and

15



Proposition 11, the distance in Gt0+3 between χ(σ,∆) and χ(Tt0+2(b),∆) = Tt0+3(b) is at least
3 for every input b such that Tt0+2(b) is non-empty. Similarly, the distance in Gt0+3 between
χ(σ,∆) and χ(Rt0+2(a+1, a+2)∪Rt0+2(a+2, a+3),∆) = Rt0+3(a+1, a+2)∪Rt0+3(a+2, a+3)
is at least 2.

Consider the first j2 > j1 such that process qj2 is poised to scan the snapshot object St0+3

in Cj2 . The states of qj2 in Cj2+1 = Cj2qj2 is a vertex in χ(σ,∆). According to its strategy
for phase 1, the adversary terminates this vertex after query (Cj2 , qj2). This contradicts the
definition of P .

6.5 The adversarial strategy for later phases

Since the prover does not win in phase 1, it must eventually choose a configuration C ∈ A′(1)
at the end of phase 1. The adversary will update ∆ one final time. Afterwards, it can answer
all future queries by the prover. The prover will eventually be forced to choose a terminal
configuration at the end of some future phase and, consequently, will lose in the next phase.

Assume C is a configuration reached by a non-empty schedule α(2) from an initial configuration
C0 ∈ A(1). Let p be the first process in α(2) and let a be its input in configuration C0. Let
F denote the union of all n-vertex cliques in G1 that represent configurations reachable by a
1-round schedule beginning with p from configuration C0 or an initial configuration that only
differs from C0 by the states of processes that do not occur in α(2). Since p performs its update
to S1 before any process performs its scan of S1 in all such schedules, every vertex in F has seen
a. Thus the distance between F and R1(a+ 1, a+ 2) ∪ R1(a+ 2, a+ 3) in G1 is at least 1.

The adversary defines ∆(v) = ⊥ for each vertex v in Gt where ∆(v) is undefined, subdivides
Gt to construct Gt+1, and increments t. Since all the invariants hold at the end of phase 1,
Lemma 13 says that they still hold and, for any two inputs b 6= b′ such that Tt(b) and Tt(b′) are
non-empty, the distance between Tt(b) and Tt(b′) in Gt is at least 4. In particular, a vertex v in
Gt is adjacent to a vertex w ∈ Tt(b) for at most one input b. Let F′ = χt−1(F,∆) ⊆ Gt. Applying
Lemma 13 t−1 times, it follows that the distance between F′ and Rt(a+1, a+2)∪Rt(a+2, a+3)
in Gt is at least 1.

Invariant (2) says that no vertex in Gt has δ(v) = ⊥. The adversary has not yet terminated
any additional vertices in Gt, so, by Proposition 11, Tt(b) = Tt−1(b) for all input values b. For
every vertex v ∈ F′ for which ∆(v) is undefined, the adversary defines ∆(v) as follows. First,
for each input value b and each vertex v ∈ F′ that is distance 1 from Tt(b) in Gt and such that
∆(v) is undefined, the adversary sets ∆(v) = b. By invariant (5), the distance between Tt(b)
and Rt(b+ 1, b+ 2) ∪ Rt(b+ 2, b+ 3) in Gt is at least 2. Thus setting ∆(v) = b does not violate
validity. Since each vertex in Xt(b) is at least distance 3 from any vertex in Tt(b), this assignment
does not contradict any output query that returned none. Moreover, the distance between any
two vertices in F′ that have output different values is still at least 2. Thus, in each n-vertex
simplex in Gt, all the terminated vertices have output the same value.

Finally, for each vertex v ∈ F′ where ∆(v) is still undefined, the adversary sets ∆(v) = a.
Validity is preserved, since no vertex in F′ is in Rt(a+ 1, a+ 2) ∪ Rt(a+ 2, a+ 3). Agreement
is not violated, since at most two different values are output by the vertices in each n-vertex
simplex in Gt.

In phases ϕ ≥ 2, the prover can only query configurations reachable from some configuration
in A(2). By definition, A(2) is the set of all configurations that are reached by performing α(2)
from initial configurations that only differ from C0 by the states of processes that do not occur in
α(2). It follows that, for any process q and any extension α′ of α(2) from C ′ ∈ A(2), q appears at
most 2t times in α(2)α′ before its state is represented by a vertex in F′. By construction, every
vertex in F′ has terminated. Thus, eventually, the prover chooses a configuration at the end of
some phase in which every process has terminated. The prover loses in the next phase.

16



7 Upper bounds for asynchronous systems

In this section, we provide upper bounds for graphical approximate agreement. We give

– a 1-resilient algorithm on general graphs for n ≥ 2 processes (Section 7.1), and
– a wait-free algorithm on any nicely bridged graph for n ≥ 2 processes (Section 7.2).

Let G = (V,E) be a connected graph. For any set U ⊆ V , the subgraph of G induced
by U is the graph G[U ] = (U,F ), where F = {e ∈ E : e ⊆ U}. The distance between
two vertices u and v in G is denoted by d(u, v). The eccentricity ε(v) of a node v ∈ V is
max{d(u, v) : u ∈ V }. The diameter of G is diam(G) = max{ε(v) : v ∈ V } and the radius rad(G)
of G is min{ε(v) : v ∈ V }. For any nonempty set U ⊆ V , let D(U) = max{d(u, v) : u, v ∈ U}.
In particular, diam(G) = D(V ).

7.1 A 1-resilient algorithm for general graphs

Let G = (V,E) be an arbitrary connected graph, for example, a c-cycle for some c ≥ 4. We show
that we can solve the approximate agreement problem on G assuming at most one process crashes.
Let diam(G) denote the diameter of G. The intuitive idea of the algorithm is simple: First use
2-set agreement to reduce the number of input values to at most 2 and then run approximate
agreement on a path for dlog2 diam(G)e steps.

There is an easy 1-resilient algorithm for 2-set agreement. However, the second step is not
immediate, as there may be many paths of G on which the approximate agreement algorithm
could be run. However, since all processes know the graph G, we can avoid this difficulty by
fixing in advance a shortest path between every pair of vertices. The rest of this section is
dedicated to proving the following result.

Theorem 15. Let G = (V,E) be a connected graph. Then for all n ≥ 2, there exists a 1-resilient
algorithm which solves approximate agreement on G.

Solving 2-set agreement. Fix a total order on V . For any nonempty subset X ⊆ V , let
min(X) be the smallest element of X under this order. Let xi(0) ∈ V be the input of process
pi and let T = dlog2 diam(G)e. We will use a single-writer atomic snapshot object, S0, whose
components are initialised with the special value −. Each process pi:

– performs update on the ith component of the snapshot object S0, setting it to the value xi(0),
– repeatedly performs scan on the snapshot object S0 until at least n− 1 components have

values other than −,
– lets Xi(0) be the set of vertices returned by its last scan, and
– lets xi(1) = min(Xi(0)).

Approximate agreement on a path. For any two vertices u, v ∈ V , fix a shortest path
between u and v in G and let g(u, v) be a fixed node in the center of this path. Then
d(u, g(u, v)), d(v, g(u, v)) ≤ dd(u, v)/2e. For any nonempty set X ⊆ V of size at most two,
define ψ(X) = u if X = {u} and ψ(X) = g(u, v) if X = {u, v}. We will use a sequence S1, . . . , ST
of single-writer atomic snapshot objects, whose components are initialised with the special
value −. For t = 1, . . . , T , each process pi:

– performs update on component i of the snapshot object St, setting it to the vertex xi(t),
– repeatedly performs scan on the snapshot object St until at least n− 1 components have

values other than −,
– lets Xi(t) be the set of vertices returned by its last scan, and
– lets xi(t+ 1) = ψ(Xi(t)).

The output of process pi is the value xi(T + 1).

17



Correctness. Let 0 ≤ t ≤ T . If process pi crashes before computing Xi(t), we define Xi(t) to
be the empty set. Observe that each process pi first performs update on St with xi(t) before
performing scan on St. Thus, if pi computes Xi(t), then Xi(t) is nonempty.

Each component of St is updated at most once. Since scan is an atomic operation, the set of
vertices returned in a scan is a subset of the set of vertices returned in any later scan. Therefore,
Xi(t) ⊆ Xj(t) or Xj(t) ⊆ Xi(t) for any i and j. Each process continues performing scan until
it crashes or St contains at most one −. Thus {Xj(t) : 0 ≤ j ≤ n − 1} contains at most two
nonempty sets. Since xj(t + 1) is a function of Xj(t), it follows that {xj(t + 1) : Xj(t) 6= ∅}
contains at most two different vertices. These are the only values that are used to update
components of St+1, so Xi(t + 1) ⊆ {xj(t + 1) : Xj(t) 6= ∅}. Hence, |Xi(t + 1)| ≤ 2 and, if
Xi(t+ 1) 6= ∅, then xi(t+ 2) = ψ(Xi(t+ 1)) is defined.

Let X(t) =
⋃
{Xi(t) : 0 ≤ i < n}. We use X(T + 1) to denote the set of output values.

Note that X(t) ⊆ V for 0 ≤ t ≤ T + 1 and X(0) is a subset of the input values. If t ≥ 1, then
X(t) ⊆ {xj(t) : Xj(t− 1) 6= ∅}, so |X(t)| ≤ 2.

Lemma 16. Let 1 ≤ t ≤ T . Then D(X(t+ 1)) ≤ dD(X(t))/2e.

Proof. If Xi(t) = X(t) for every nonempty set Xi(t), then xi(t+ 1) = ψ(X(t)). Hence X(t+ 1)
will contain only one vertex and D(X(t + 1)) = 0. Otherwise, Xi(t) is a nonempty, proper
subset of X(t) for some 0 ≤ i < n. Recall that |X(t)| ≤ 2, so Xi(t) = {u} and X(t) = {u, v}
for some vertices u 6= v. Since Xj(t) ⊆ Xi(t) or Xi(t) ⊆ Xj(t) for all 0 ≤ j < n, it follows
that every nonempty set Xj(t) is either equal to {u} or {u, v} and xj(t+ 1) is either equal to
ψ({u}) = u or ψ({u, v}) = g(u, v). By definition of g, we have that d(u, g(u, v)) ≤ dd(u, v)/2e.
Since X(t+ 1) ⊆ {u, g(u, v)}, it follows that D(X(t+ 1)) ≤ dD(X(t))/2e.

Proof of Theorem 15. We verify that the agreement and validity properties of graphical approxi-
mate agreement are satisfied. We proceed by induction to show that vertices in X(t+ 1) lie on
some shortest path between the values in X(t) for all 1 ≤ t ≤ T . The case t = 1 is true because
X(1) ⊆ X(0). Suppose the claim holds for some X(t) such that 1 ≤ t ≤ T . By definition of g
and ψ, all values in X(t+ 1) lie on some shortest path between the values in X(t). Thus, validity
is satisfied. Since X(1) ⊆ V , D(X(1)) ≤ diam(G). As T = dlog2 diam(G)e, Lemma 16 implies
that the distance d(u, v) between any two output values u, v ∈ X(T + 1) is at most

max{d(u, v) : u, v ∈ X(T + 1)} = D(X(T + 1)) ≤ ddiam(G)/2T e ≤ 1.

In Section 8, we extend the same algorithmic idea to the synchronous message-passing setting
under crash faults.

7.2 A wait-free asynchronous algorithm for nicely bridged graphs

Preliminaries. The center of G is the set {v ∈ V : ε(v) = rad(G)} of nodes with minimum
eccentricity in G. A graph G is k-self-centered if every vertex has eccentricity k. This means
that every vertex is in the center of G and diam(G) = rad(G) = k. A graph is chordal if it does
not contain any induced cycles of length greater than three. The 3-sun, also known as the Hajós
graph, is obtained from a triangle {u, v, w} by subdividing each of its edges and connecting the
resulting three vertices {x, y, z} to be a clique. This graph is 2-self-centered and chordal.

A set K ⊆ V of nodes is (shortest path) convex if, for any u, v ∈ K, all nodes on all shortest
paths between u and v are contained in K. For any U ⊆ V , the convex hull 〈U〉 of U is the
smallest convex superset of U . If A ⊆ B, then 〈A〉 ⊆ 〈B〉. A vertex v is simplicial in the graph
G if the neighbours of v in G form a clique.

Bridged and nicely bridged graphs. A subgraph H of G is isometric if the distances
between any two vertices of H are the same in H and G. A graph is bridged if it contains no

18



isometric cycles of length greater than three [20]. All chordal graphs are bridged, but a bridged
graph may contain induced cycles of length greater than five. We say that G = (V,E) is nicely
bridged if any 2-self-centered subgraph H = G[S], induced by a convex set S ⊆ V , is chordal.
Chordal graphs, 3-sun-free bridged graphs, and bridged graphs with no four cliques are examples
of nicely bridged graphs.

We now list some useful properties of bridged graphs. Farber gave the following result about
the radius and diameter of bridged graphs [20].

Lemma 17. For any bridged graph G, we have 3 · rad(G) ≤ 2 · diam(G) + 2. If G is bridged
and does not contain a 3-sun as an induced subgraph, then 2 · rad(G) ≤ diam(G) + 1 holds.

We use the following fact due to Farber and Jamison [21, Theorem 6.5].

Lemma 18. If G = (V,E) is bridged, then D(〈U〉) = D(U) for any nonempty U ⊆ V .

Next, we prove the following simple lemma.

Lemma 19. If G = (V,E) is bridged and H = G[〈U〉] for U ⊆ V , then diam(H) = D(〈U〉).

Proof. Let u, v ∈ 〈U〉. Consider any shortest path between u and v in G. By definition of 〈U〉,
all vertices on this path are in 〈U〉. Thus, this is also a path between u and v in H. Since H is
an induced subgraph of G, any shortest path between u and v in H is also a path between u and
v in G. Hence the distance between u and v in G is the same as the distance between u and v in
H. It follows that D(〈U〉) = diam(H).

Note that an induced subgraph of a bridged graph is not necessarily a bridged graph. For
example, consider wheel graphs. However, the subgraph of a bridged graph induced by a convex
set is bridged.

Lemma 20. Let G = (V,E) be a bridged graph and S ⊆ V . Then the subgraph G[〈S〉] is bridged.

Proof. Let H = G[〈S〉]. Consider a cycle C of length at least four in H. Since C is a cycle in G
and G is bridged, there exists vertices u and v in C such that the distance between them in G
is less than the distance between them in C. Consider a shortest path between u and v in G.
The shortest path convex hull 〈S〉 contains this path, since u and v are vertices of 〈S〉. Thus
H = G[〈S〉] also contains this path. Hence C is not isometric.

The algorithm. For any nonempty set of vertices X ⊆ V , we choose a vertex ψ(X) from the
subgraph H induced by 〈X〉 as follows: If the center of H contains a vertex that is non-simplicial
in H, then let ψ(X) be any such vertex. Otherwise, let ψ(X) be any vertex in the center of H.
By definition, ψ(X) has minimum eccentricity in the subgraph of G induced by 〈X〉. Since ψ(X)
is a vertex in the convex hull of X, it is on some shortest path between two vertices in X.

Let xi(0) be the input of process pi and let T ∗ = dlog3/2 diam(G)e+ 1. The processes com-
municate using a sequence S0, . . . , ST of single-writer snapshot objects, where T = max{|V |, T ∗}.
In each iteration t = 0, . . . , T , each process pi:

– performs update on the ith component of the snapshot object St, setting it to the vertex xi(t),
– performs scan on the snapshot object St,
– defines Xi(t) be the set of vertices returned by its scan, and
– sets xi(t+ 1) = ψ(Xi(t)).

Once pi has computed xi(T + 1), the process outputs this vertex and terminates.

19



Correctness. As before, if pi crashes before computing the set Xi(t), we define Xi(t) to be
the empty set. Let X(t) =

⋃
{Xi(t) : 0 ≤ i < n}. Note that X(t) ⊆ V for 0 ≤ t ≤ T + 1 and

X(0) is a subset of the input values. In particular, X(t) is the set of values returned by the last
scan performed on the snapshot object St. Observe that if y ∈ X(t), then y = xi(t) for some
0 ≤ i < n. This is because each process pj that performs update on St does so only with value
xj(t). Thus, component j of St is either xj(t) or the special initial value −.

We use X(T + 1) to denote the set of output vertices. We show that X(T + 1) satisfies
agreement (all the values are contained in a clique) and validity (all the values are in the shortest
path convex hull of the inputs) of approximate agreement on G. We start with validity.

Lemma 21 (Validity). Let 0 ≤ t ≤ T + 1. Then X(t) ⊆ 〈X(0)〉.

Proof. We proceed by induction on t. For t = 0, we have X(0) ⊆ 〈X(0)〉. Suppose the claim
holds for some 0 ≤ t ≤ T . Let y ∈ X(t + 1). Since y = xi(t + 1) = ψ(Xi(t)), for some
0 ≤ i < n, the vertex y is in 〈Xi(t)〉. As Xi(t) ⊆ X(t), it follows that 〈Xi(t)〉 ⊆ 〈X(t)〉. Thus,
y ∈ 〈Xi(t)〉 ⊆ 〈X(t)〉. By the induction hypothesis, X(t) ⊆ 〈X(0)〉, so y ∈ 〈X(t)〉 ⊆ 〈X(0)〉.

We show that, for 0 ≤ t ≤ T ∗, if the set of values X(t) does not form a clique, then the
diameter of X(t+ 1) is roughly half the diameter of X(t). Recall that D(U) is the maximum
distance in G between the any two nodes in U . Note that D(U ′) ≤ D(U) for U ′ ⊆ U . As in
Section 7.1, Xi(t) ⊆ Xj(t) or Xi(t) ⊆ Xj(t) for i, j ∈ {0, . . . , n− 1}.

Lemma 22. Let 0 ≤ t ≤ T ∗. Then D(X(t+ 1)) ≤ 2
3(D(X(t)) + 1). Moreover, if 〈X(t)〉 does

not contain a 3-sun as an induced subgraph, then D(X(t+ 1)) ≤ 1
2(D(X(t)) + 1).

Proof. Let xi(t+1), xj(t+1) ∈ X(t+1). Recall that, by definition, xi(t+1) = ψ(Xi(t)) ∈ 〈Xi(t)〉
and xj(t+ 1) = ψ(Xj(t)) ∈ 〈Xi(t)〉. Without loss of generality, assume that Xj(t) ⊆ Xi(t). Let
H be the subgraph of G induced by 〈Xi(t)〉. Since G is bridged, the induced subgraph H is also
bridged, by Lemma 20. Since Xj(t) ⊆ Xi(t) ⊆ 〈Xi(t)〉, both xj(t+ 1) and xi(t+ 1) are vertices
of H. Moreover, Xi(t) ⊆ X(t) implies that D(Xi(t)) ≤ D(X(t)). By Lemma 18 and Lemma 19,

diam(H) = D(〈Xi(t)〉) = D(Xi(t)) ≤ D(X(t)).

By definition, xi(t+ 1) = ψ(Xi(t)), which is a vertex in the center of H. Hence, by Lemma 17,

d (xi(t+ 1), xj(t+ 1)) ≤ rad (H) ≤ 2

3
(diam (H) + 1) ≤ 2

3
(D(X(t)) + 1) .

For the second claim, if 〈X(t)〉 does not contain a 3-sun as an induced subgraph, Lemma 17
yields

d (xi(t+ 1), xj(t+ 1)) ≤ rad (H) ≤ 1

2
(diam (H) + 1) ≤ 1

2
(D(X(t)) + 1) .

We can apply Lemma 22 repeatedly to ensure that we quickly end up in a subgraph with
diameter at most two.

Lemma 23. The set X(T ∗) has diameter at most two.

Proof. First, we show by induction that for all 0 ≤ t ≤ T ∗, we have

D(X(t)) ≤
(

2

3

)t
(diam(G)− 2) + 2.

The base case t = 0 is vacuous as the distance between any two vertices is at most the diameter
diam(G). For the inductive step, suppose the claim holds for some 0 ≤ t < T ∗. By Lemma 22,

D(X(t+ 1)) ≤ 2

3
[D(X(t)) + 1] ≤ 2

3

[(
2

3

)t
(diam(G)− 2) + 3

]
=

(
2

3

)t+1

(diam(G)− 2) + 2.

20



Since T ∗ = dlog3/2 diam(G)e+ 1 and the diameter is an integer, we get that

D(X(T )∗) ≤
⌊

2

3 diam(G)
(diam(G)− 2) + 2

⌋
≤
⌊

2

3
+ 2

⌋
= 2.

Lemma 24. If the subgraph induced by 〈X(t)〉 has radius one, then X(t+ 1) is a clique.

Proof. Let xi(t+1), xj(t+1) ∈ X(t+1) and assume without loss of generality that Xj(t) ⊆ Xi(t).
Now 〈Xj(t)〉 ⊆ 〈Xi(t)〉. Since xi(t+1) = ψ(Xi(t)) is a vertex in the center of subgraph induced by
〈Xi(t)〉, it is adjacent to the vertex xj(t+ 1). Hence, any two values in X(t+ 1) are adjacent.

Thus, after reaching a subgraph of radius 1, one more iteration suffices. Moreover, the
algorithm solves the problem on any (possibly non-bridged) graph of radius one. If the graph
does not contain a 3-sun as an induced subgraph, then the algorithm converges in T ∗+1 iterations.
However, the above lemmas do not guarantee progress when the convex hull of X(t) has diameter
two and radius two. We handle this case next.

Handling 2-self-centered graphs. In bridged graphs, the algorithm converges either to a
clique or to a set whose convex hull induces a 2-self-centered subgraph. We show that if G
is nicely bridged, i.e., any 2-self-centered convex subgraph is chordal, our algorithm makes
progress. However, our approach does not work for all bridged graphs, as there are non-chordal
2-self-centered bridged graphs which do not have any simplicial vertices. (For example, see
Appendix A.)

Recall that, if the center of 〈X〉 contains a non-simplicial vertex, then ψ(X) is a non-simplicial
vertex from the center of the subgraph induced by 〈X〉. This allows us to exclude simplicial
vertices, which always exist in any chordal graph [17]. By removing any simplicial vertex, the
convex hull shrinks, as shown by the next lemma.

Lemma 25. Let U be a convex set. If s ∈ U is simplicial in U , then 〈U \ {s}〉 = U \ {s}.

Proof. Suppose s ∈ 〈U \ {s}〉. This means that there are two vertices u, v ∈ U \ {s} such that
the vertex s lies on some shortest path u = w0, , . . . , wk = v between u and v. Let wi = s for
some 0 < i < k. Since wi is simplicial in H, the vertices wi−1 and wi+1 are adjacent in H. But
now the path w0, . . . , wi−1, wi+1, . . . , wk is a shorter path from u to v, a contradiction.

Lemma 26. [17] Every chordal graph G has a simplicial vertex. If G is not a clique, then it has
two non-adjacent simplicial vertices.

Lemma 27. Let 0 ≤ t ≤ T . If D(X(t)) ≥ 2, then 〈X(t+ 1)〉 ( 〈X(t)〉.

Proof. Let H be the subgraph induced by 〈X(t)〉. Assume that H has diameter and radius
two; otherwise, the claim follows from Lemma 23 and Lemma 24. Since G is nicely bridged, H
is chordal. Let S be the set of vertices that are simplicial in H. Since H is chordal and has
diameter at least two, S has two non-adjacent vertices, by Lemma 26. Let S′ = S ∩X(t+ 1).
Observe that if S′ ( S, then Lemma 25 implies 〈X(t + 1)〉 ( 〈X(t)〉. We show that the set
S′ = S ∩X(t+ 1) is either empty or a clique, which implies that S′ ( S.

For the sake of contradiction, let xi(t + 1), xj(t + 1) ∈ S′ ⊆ X(t + 1) be two non-adjacent
vertices. We may assume that Xj(t) ⊆ Xi(t), which implies that 〈Xj(t)〉 ⊆ 〈Xi(t)〉. Since xi(t+1)
and xj(t+ 1) are non-adjacent, they are connected by a vertex v ∈ 〈Xi(t)〉. Note that v is not
simplicial in 〈Xi(t+ 1)〉, but xi(t) is simplicial in 〈Xi(t)〉. By definition, xi(t+ 1) = ψ(Xi(t)) is a
vertex in the center of 〈Xi(t)〉, so it has eccentricity two. This means that v also has eccentricity
two and v is also in the center. But, now, the center of 〈Xi(t)〉 contains a non-simplicial vertex
v, which means that xi(t+ 1) = ψ(Xi(t)) is non-simplicial in 〈Xi(t)〉 by definition of ψ.

Proof of Theorem 7.2. It remains to verify that agreement and validity conditions of graphical
approximate agreement are satisfied. Lemma 21 shows that validity is satisfied. Repeated
application of Lemma 27 implies that X(T + 1) is a clique and, thus, agreement is satisfied.

21



8 Upper bound for synchronous message-passing systems

Finally, we adapt the algorithm of Section 7.1 to the synchronous message-passing setting under
crash faults. This establishes the following upper bound, almost matching the lower bound given
by Corollary 6.

Theorem 28. Let G be a connected graph. For any 0 ≤ f < n, there exists an f-resilient
synchronous message-passing algorithm for n processes that solves approximate agreement on G
in bf/2c+ dlog2 diam(G)e+ 1 rounds.

To show this, we use the following result [12].

Lemma 29. For any 0 ≤ f < n, there exists an f-resilient synchronous message-passing
algorithm for n processes that solves 2-set agreement in bf/2c+ 1 rounds.

Overview. The synchronous message-passing algorithm for graphical approximate agreement
on G follows the same idea as the asynchronous algorithm given in Section 7.1. All processes:

– use 2-set agreement to reduce the size of the set of inputs to at most 2, and then
– run approximate agreement on a path for dlog2 diam(G)e steps.

By Lemma 29, the first part takes bf/2c+1 rounds. By using similar arguments as in Section 7.1,
we show that the second part takes dlog2 diam(G)e rounds, and that the validity and agreement
properties of graphical approximate agreement are satisfied.

Preliminaries. Let xi(0) be the input of process pi for the graphical approximate agreement
problem. As in Section 7.1, we let g(u, v) be a fixed node in the center of a shortest path between
u and v, so d(u, g(u, v)), d(v, g(u, v)) ≤ dd(u, v)/2e holds. For any nonempty set X ⊆ V of size
at most two, define

ψ(X) =

{
u if X = {u},
g(u, v) if X = {u, v}

The algorithm. Let T = dlog2 diam(G)e. Each process pi:

(1) runs the 2-set agreement algorithm of Lemma 29 with input xi(0) for bf/2c+ 1 rounds,

(2) lets xi(1) be its output in the 2-set agreement algorithm,

(3) for t = 1, . . . , T rounds,

– sends the value xi(t) to all processes in the system,

– receives a set Xi(t) of values from other processes,

– lets xi(t+ 1) = ψ(Xi(t)), and

(4) outputs the value xi(T + 1).

Correctness. The proof of correctness of the synchronous algorithm closely follows the proof
of correctness of the asynchronous algorithm given in Section 7.1. If process pi crashes before
computing Xi(t), we define Xi(t) to be the empty set. Let X(t) =

⋃
{Xi(t) : 0 ≤ i < n} be the

set of values received by any process during the tth round of Step (3). Note that each non-faulty
process pi always sends the value xi(t) to itself, so Xi(t) is nonempty if pi has not crashed by
round t of Step (3). We use X(T + 1) to denote the set of output values.

Lemma 30. Let 1 ≤ t ≤ T . Then 1 ≤ |X(t+ 1)| ≤ 2.

22



Proof. We proceed by induction on t. For the base case t = 1, observe that |X(1)| ≤ 2 holds by
the agreement property of 2-set agreement. For the inductive step, suppose that 1 ≤ |X(t)| ≤ 2
holds for some 1 ≤ t ≤ T . Since Xi(t) ⊆ X(t), it follows that {Xi(t) : 0 ≤ i ≤ n− 1} contains
at most two nonempty sets. Moreover, since xi(t+ 1) = ψ(Xi(t)), it follows that X(t+ 1) will
contain at most two different values.

If the set of values X(t) does not form a clique, then the diameter of X(t+ 1) is roughly half
the diameter of X(t)

Lemma 31. Let 1 ≤ t ≤ T . Then D(X(t+ 1)) ≤ dD(X(t))/2e.

Proof. By Lemma 30, we have 1 ≤ |X(t)| ≤ 2 for 0 ≤ t ≤ T . There are two cases to consider.
First, suppose X(t) = {u} for some node u. If Xi(t) is nonempty, then Xi(t) = {u} and
xi(t+ 1) = ψ({u}) = u. Hence, X(t+ 1) will contain only node u and D(X(t+ 1)) = 0.

Next, suppose that X(t) = {u, v} for some nodes u 6= v. The set {Xi(t) : 0 ≤ i ≤ n − 1}
contains at most two nonempty sets. Without loss of generality suppose that these are {u} and
{u, v}. If Xi(t) is nonempty, then xi(t+ 1) is either ψ({u}) = u or ψ({u, v}) = g(u, v). By the
definition of g, we have that d(u, g(u, v)) ≤ dd(u, v)/2e. Since X(t+ 1) ⊆ {u, g(u, v)}, it follows
that D(X(t+ 1) ≤ dD(X(t))/2e.

Proof of Theorem 28. By construction, the algorithm takes

bf/2c+ 1 + T = bf/2c+ dlog2 diam(G)e+ 1

rounds. Thus, we only need to verify that the outputs satisfy agreement and validity of graphical
approximate agreement.

We proceed by induction to show that nodes in X(t+ 1) lie on some shortest path between
the values in X(t) for all 0 ≤ t ≤ T . The case t = 1 is true because by validity of 2-set agreement
X(1) consists only of initial input values. Suppose the claim holds for some X(t) such that
0 ≤ t ≤ T . By definition of g and ψ, all values in X(t+ 1) lie on some shortest path between the
values in X(t). As shortest paths are also minimal paths, the set X(T + 1) of outputs satisfies
validity. Now D(X(0)) ≤ diam(G), since X(0) ⊆ V . By Lemma 31, the distance d(u, v) between
any two output values u, v ∈ X(T + 1) is at most

max{d(u, v) : u, v ∈ X(T + 1)} = D(X(T + 1)) ≤ ddiam(G)/2T e ≤ 1,

since T = dlog2 diam(G)e.

Acknowledgements

We thank anonymous reviewers for their insightful comments and suggestions. This project
has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 805223 ScaleML) and
under the Marie Sk lodowska-Curie grant agreement No. 840605 and from the Natural Science
and Engineering Research Council of Canada grant RGPIN-2020-04178.

References

[1] Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal resilience asynchronous approxi-
mate agreement. In Proc. International Conference on Principles of Distributed Systems
(OPODIS 2015), pages 229–239, 2005. doi:10.1007/11516798 17.

[2] Noa Agmon and David Peleg. Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM Journal on Computing, 36(1):56–82, 2006.

23

https://doi.org/10.1007/11516798_17


[3] Manuel Alcántara, Armando Castañeda, David Flores-Peñaloza, and Sergio Rajsbaum. The
topology of look-compute-move robot wait-free algorithms with hard termination. Distributed
Computing, 32(3):235–255, 2019.

[4] Dan Alistarh, James Aspnes, Faith Ellen, Rati Gelashvili, and Leqi Zhu. Why extension-
based proofs fail. In Proc. 51st Annual ACM SIGACT Symposium on Theory of Computing
(STOC 2019). ACM, 2019. doi:10.1145/3313276.3316407.

[5] Dan Alistarh, James Aspnes, Faith Ellen, Rati Gelashvili, and Leqi Zhu. Brief announcement:
Why extension-based proofs fail. In Proc. 39th ACM Symposium on Principles of Distributed
Computing (PODC 2020), pages 54–56. ACM, 2020.

[6] Krassimir Atanassov. On Sperner’s lemma. Studia Scientiarum Mathematicarum Hungarica,
32, 1996.

[7] Hagit Attiya, Nancy Lynch, and Nir Shavit. Are wait-free algorithms fast? J. ACM, 41(4):
725–763, July 1994. doi:10.1145/179812.179902. URL https://doi.org/10.1145/179812.

179902.

[8] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for t-resilient
asynchronous computations. In Proc. 25th Annual ACM Symposium on Theory of Computing
(STOC 1993), pages 91–100, 1993. doi:10.1145/167088.167119.

[9] Elizabeth Borowsky and Eli Gafni. A simple algorithmically reasoned characterization
of wait-free computation. In Proc. 16th ACM Symposium on Principles of Distributed
Computing, PODC, pages 189–198, 1997. doi:10.1145/259380.259439.

[10] Elizabeth Borowsky, Eli Gafni, Nancy Lynch, and Sergio Rajsbaum. The BG distributed
simulation algorithm. Distributed Computing, 14(3):127–146, 2001. doi:10.1007/PL00008933.

[11] Armando Castañeda, Sergio Rajsbaum, and Matthieu Roy. Convergence and covering on
graphs for wait-free robots. Journal of the Brazilian Computer Society, 24(1):1, 2018.

[12] Soma Chaudhuri, Maurice Herlihy, Nancy A Lynch, and Mark R Tuttle. Tight bounds for
k-set agreement. Journal of the ACM, 47(5):912–943, 2000. doi:10.1145/355483.355489.

[13] Benny Chor, Amos Israeli, and Ming Li. On processor coordination using asynchronous
hardware. In Proc. 6th Annual ACM Symposium on Principles of Distributed Computing
(PODC 1987), pages 86–97, 1987.

[14] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Asynchronous Robots on
Graphs: Gathering, pages 184–217. Springer International Publishing, Cham, 2019. ISBN
978-3-030-11072-7. doi:10.1007/978-3-030-11072-7 8.

[15] Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed
computing by mobile robots: Gathering. SIAM Journal on Computing, 41(4):829–879, 2012.

[16] Jesus A De Loera, Elisha Peterson, and Francis Edward Su. A polytopal generaliza-
tion of Sperner’s lemma. Journal of Combinatorial Theory, Series A, 100(1):1–26, 2002.
doi:10.1006/jcta.2002.3274.

[17] Gabriel Andrew Dirac. On rigid circuit graphs. In Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, volume 25, pages 71–76. Springer, 1961.

[18] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl.
Reaching approximate agreement in the presence of faults. Journal of the ACM, 33(3):
499–516, May 1986. doi:10.1145/5925.5931.

24

https://doi.org/10.1145/3313276.3316407
https://doi.org/10.1145/179812.179902
https://doi.org/10.1145/179812.179902
https://doi.org/10.1145/179812.179902
https://doi.org/10.1145/167088.167119
https://doi.org/10.1145/259380.259439
https://doi.org/10.1007/PL00008933
https://doi.org/10.1145/355483.355489
https://doi.org/10.1007/978-3-030-11072-7_8
https://doi.org/10.1006/jcta.2002.3274
https://doi.org/10.1145/5925.5931


[19] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii
academiae scientiarum Petropolitanae, pages 128–140, 1741.

[20] Martin Farber. On diameters and radii of bridged graphs. Discrete Mathematics, 73(3):
249–260, 1989.

[21] Martin Farber and Robert E. Jamison. On local convexity in graphs. Discrete Mathematics,
66(3):231–247, 1987. doi:10.1016/0012-365X(87)90099-9.

[22] Alan David Fekete. Asymptotically optimal algorithms for approximate agreement. Dis-
tributed Computing, 4(1):9–29, 1990.

[23] Alan David Fekete. Asynchronous approximate agreement. Information and Computation,
115(1):95–124, 1994.

[24] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.
doi:10.1145/3149.214121.

[25] Michael J Fischer, Nancy A Lynch, and Michael Merritt. Easy impossibility proofs for
distributed consensus problems. Distributed Computing, 1(1):26–39, 1986.

[26] Matthias Függer and Thomas Nowak. Fast multidimensional asymptotic and approximate
consensus. In Proc. 32nd International Symposium on Distributed Computing (DISC 2018),
volume 121, pages 27:1–27:16, 2018. doi:10.4230/LIPIcs.DISC.2018.27.

[27] Eli Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony and
asynchrony. In Proc. 17th Annual ACM Symposium on Principles of Distributed Computing
(PODC 1998), PODC ’98, page 143–152, New York, NY, USA, 1998. Association for
Computing Machinery. doi:10.1145/277697.277724.

[28] Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for t-resilient
tasks. In Proc. 25th Annual ACM Symposium on Theory of Computing (STOC 1993), pages
111–120, 1993.

[29] Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability.
Journal of the ACM, 46(6):858–923, 1999. doi:10.1145/331524.331529.

[30] Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st
edition, 2013. ISBN 0124045782, 9780124045781.

[31] Gunnar Hoest and Nir Shavit. Toward a topological characterization of asynchronous
complexity. SIAM Journal on Computing, 36(2):457–497, 2006.

[32] Michael C. Loui and Hosame H. Abu-Amara. Memory requirements for agreement among
unreliable asynchronous processes. Advances in Computing research, 4(163-183):31, 1987.

[33] Hammurabi Mendes, Christine Tasson, and Maurice Herlihy. Distributed computability in
byzantine asynchronous systems. In Proceedings of the 46th ACM Symposium on Theory of
computing, pages 704–713, 2014.

[34] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and Vijay K. Garg. Multidi-
mensional agreement in Byzantine systems. Distributed Computing, 28:423–441, 2015.
doi:10.1007/s00446-014-0240-5.

25

https://doi.org/10.1016/0012-365X(87)90099-9
https://doi.org/10.1145/3149.214121
https://doi.org/10.4230/LIPIcs.DISC.2018.27
https://doi.org/10.1145/277697.277724
https://doi.org/10.1145/331524.331529
https://doi.org/10.1007/s00446-014-0240-5


[35] Thomas Nowak and Joel Rybicki. Byzantine approximate agreement on graphs. In Proc.
33rd International Symposium on Distributed Computing (DISC 2019), volume 146, pages
29:1–29:17, 2019. doi:10.4230/LIPIcs.DISC.2019.29.

[36] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228–234, 1980. doi:10.1145/322186.322188.

[37] Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The
topology of public knowledge. SIAM Journal on Computing, 29(5):1449–1483, 2000.
doi:10.1137/S0097539796307698.

[38] Erik Schenk. Faster approximate agreement with multi-writer registers. In Proc. 36th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 714–723,
1995.

A Examples of nicely bridged graphs

In this section, we give some sufficient conditions for a bridged graph to be nicely bridged. If
C ∪ {x} is an induced wheel of G, then we say that the wheel C ∪ {x} is uniquely centered in G
if there is no y 6= y such that C ∪ {y} is also an induced wheel in G.

Theorem 32. Let G be a bridged graph. Then G is nicely bridged if any of the following hold:

(a) G is chordal.
(b) G does not contain a 3-sun as an induced subgraph.
(c) Every wheel of G is uniquely centered.
(d) G has no cliques of size four.

The 3-sun is depicted in Figure 3(a). It is chordal, and hence, nicely bridged. Figure 3(b)
shows a bridged graph whose every wheel is uniquely centered. In contrast, Figure 3(c) shows a
bridged graph with a wheel that is not uniquely centered. This graph is also not nicely bridged.
Figure 3(d) gives an example of a bridged graph which has no simplicial vertices.

Recall that bridged graphs do not contain any induced cycles of length 4 ≤ k ≤ 5, as every
such cycle would be an isometric cycle of length at least four. In particular, any non-chordal
bridged graph will have an induced cycle of length at least six. To establish Theorem 32, we
start with the following lemma.

Lemma 33. Suppose G is a non-chordal bridged graph of diameter two. Let C be a shortest
induced k-cycle of length k ≥ 6 in G. Then there exists a vertex x such that C ∪ {x} induces a
k-wheel in G.

Proof. Let C = {c1, . . . , ck} be the shortest induced cycle of length k ≥ 6. Since G has diameter
two and C is an induced cycle, we have d(c1, ck−2) = 2. Thus, there is some vertex y connecting
c1 and ck−2. Since G is bridged, then no subset of {c1, x, ck−2, ck−1, ck} can form an induced four
or five cycle. Thus, so x is adjacent to ck and ck−1. The (k − 1)-cycle {c1, . . . , ck−2, x} cannot
be an induced cycle either, as the shortest induced cycle had length k. This also implies that y
has to be adjacent to each c1, . . . , ck−2 and C ∪ {x} induces a k-wheel.

Lemma 34. Suppose G = (V,E) is a bridged graph that contains an induced cycle of length
k > 3. Let C be the shortest such cycle and suppose C ∪ {x} induces a uniquely centered wheel.
For any v ∈ V , let A(v) be the neighbours of v in C. If A(v) 6= ∅, then the following hold:

(a) The set A(v) induces a path of length at most three.
(b) If v is not adjacent to x, then A(v) induces a path of length at most two.

26

https://doi.org/10.4230/LIPIcs.DISC.2019.29
https://doi.org/10.1145/322186.322188
https://doi.org/10.1137/S0097539796307698


(a) (b) (c) (d)

Figure 3: Examples of nicely bridged and not nicely bridged graphs. (a) The 3-sun is chordal and
nicely bridged. (b) A nicely bridged graph. The grey vertices form a uniquely centered wheel. (c)
A non-chordal 2-self-centered bridged graph. The cycle has a wheel that is not uniquely centered:
both red and blue verticess are both axles of the wheel. (d) A 2-self-centered bridged graph with
no simplicial vertices. Each grey vertex is connected to the red and blue vertex.

Proof. Suppose A(v) is nonempty and does not induce a path. Choose from A(v) a pair of two
such vertices ci and cj which have the shortest distance in C. Without loss of generality, we may
assume these are the vertices c1 and ci for some 2 < i ≤ k/2 + 1. Now {v, c1, . . . , ci} induces a
cycle of length 3 < i+ 1 ≤ k/2 + 2 < k. This contradicts the fact that k was the length of the
shortest induced cycle of length at least four.

Next we show that the path induced by A(v) has length at most three. Without loss of
generality, assume that A(v) = {c1, . . . , ch}. For the sake of contradiction, assume that h > 3.
Since C is uniquely centered, v cannot be adjacent to all vertices of C. Hence, this path has length
3 < h < k. Now {c1, v, ch, . . . , ch+1, . . . ck} induces a cycle of length 3 < k−h+2 < k−1, which is
a contradiction. For the last claim, observe that if v is not adjacent to x and A(u) = {c1, . . . , c3},
then {x, c1, v, c3} induces a four cycle.

Lemma 35. If G is bridged and its every induced wheel is uniquely centered, then G is nicely
bridged.

Proof. Suppose G is not nicely bridged, that is, there is a H is 2-self-centered convex subgraph
that is not chordal. By Lemma 20 the graph H is bridged. Since H is bridged, but not chordal,
H contains some induced cycle of length at least six. Let k > 5 be the length of the shortest
induced cycle in H. Fix C = {c1, . . . , ck} to be some induced cycle of length k. By Lemma 33
there exists some vertex x in H such that C ∪ {x} induces a k-wheel.

Because H is 2-self-centered, x has eccentricity two. Thus, there exists some vertex y in H
such that d(x, y) = 2. We show that the existence of such y leads to the existence of a induced
cycle of length 4, 5, or k − 1, which contradicts the assumption that C was the shortest cycle of
length k > 3. Clearly, y /∈ C. By Lemma 34, y is adjacent to at most three consecutive vertices
A(y) of C. Without loss of generality, assume that A(y) ⊆ {c1, c2, c3}.

First, we show that A(y) must be empty. Observe that d(y, c5) = 2. Hence, there is some
vertex v /∈ C ∪ {x} that is adjacent to both y and c5. However, v can be adjacent to at
most three consecutive vertices A(v) of C. If v is not adjacent to c3, then either {v, y, c3, c4}
induces a four cycle or {v, y, c3, c4, c5} induces a five cycle. Thus, v is adjacent to c3. But then
{c1, y, z, c5, . . . , ck} induces a (k − 1)-cycle. Thus, A(y) must be empty.

Since A(y) is empty, the vertex y is not adjacent to any vertex ci ∈ C. But since H is
2-self-centered, d(y, ci) = 2 for all ci ∈ C. Choose a neighbor u of y that is connected to c1. By
Lemma 34 the set A(u) induces a path. Without loss of generality, assume that A(u) = {c1, . . . , cj}
for some 1 ≤ j ≤ 3. Since d(y, c5) = 2, there is some v that is adjacent to y and c5. By Lemma 34
the set A(v) induces a path of length at most three and so A(v) ⊆ {c3, . . . , ck, c1}. Note that
A(u) ∩A(v) can intersect either at c1 or c3, since C has length k ≥ 6.

27



(1) Consider the case A(u) ∩A(v) 6= {c1}. Now A(v) ⊆ {c3, . . . , ch} for 5 ≤ h ≤ k. If u and
v are adjacent, then {c1, u, v, ch, . . . , ck} is an induced cycle of length at least four and
less than k − (h − 5) ≤ k, which is a contradiction. Hence, u and v are not adjacent.
This means that a subset of C ′ = {y, u, c1, x, c5, v} induces a cycle of length at least four.
Since G cannot have any induced cycles of length four or five, C ′ must be an induced
6-cycle. Since C was the shortest induced cycle of length k ≥ 6, it follows that k = 6. By
Lemma 33 there is some z 6= x connected to all vertices of C ′. Now c1, c5 ∈ A(z). Since
A(z) is an induced path of length at most three, this implies that c6 ∈ A(z). Now either
{y, v, c6, c1, u} is an induced 5-cycle or {y, v, c1, u} is an induced 4-cycle, a contradiction.

(2) Consider the case A(u) ∩ A(v) = {c1}. This means that k = 6 and A(v) = {c5, c6, c1}
and v is adjacent to x by Lemma 34. Since d(y, c3) = 2, there is some w adjacent to y
and c3. Now A(w) induces a path of length at most three. Suppose w is not adjacent
to v. Then either {y, w, c3, x, v} or {y, w, x, v} is an induced cycle. Hence, w is adjacent
to v. This implies that A(w) = {c3, c4, c5}, as otherwise we could find another induced
cycle of length either four or five. Thus w is adjacent to x by Lemma 34.

If w is not adjacent to u, then either {y, u, x, w} or {y, u, c1, x, w} is an induced cycle
of length four or five, respectively. Thus, w is adjacent to u. If j ≤ 2 we have that
{u, cj , . . . , c3, w} is an induced cycle of length four or five. Hence A(u) = {c1, c2, c3}. But
then {u, c3, c4, c5, v} is an induced 5-cycle, which is a contradiction.

Proof of Theorem 32. (a) The claim follows from the fact that every induced subgraph of a
chordal graph is also chordal. Hence, this also holds for any subgraph induced by a convex set.

(b) Suppose H is a diameter two subgraph of G induced by a convex set S. By Lemma 20
H = G[S] is bridged. Since G does not contain an induced 3-sun, neither does H. Thus, by
Lemma 17 we have rad(H) ≤ (diam(H) + 1)/2 = 3/2. Since the radius must be integral, H has
radius one, and cannot be 2-self-centered. Therefore, G is nicely bridged.

(c) This is the claim from Lemma 35.
(d) We show the claim by establishing that every wheel of G is uniquely centered. Suppose

there exists a k-wheel for k > 3 that is not uniquely centered. If no such wheel exists, then G
is chordal and it follows from (a) that G is also nicely bridged. Let C = {c0, . . . , ck−1} be the
induced k-cycle forming the wheel and x 6= y be two vertices such that C ∪ {x} and C ∪ {y}
both induce a k-wheel. Note that x and y are not adjacent, as otherwise {c0, c1, x, y} would be a
clique of size four. But since x and y are not adjacent, the set {x, c0, y, c2} induces a four cycle,
which contradicts the fact that G was bridged.

28


	1 Introduction
	1.1 Graphical approximate agreement
	1.2 Contributions

	2 Related work
	3 Models
	3.1 Asynchronous shared memory models
	3.2 The synchronous message-passing model

	4 Impossibility of asynchronous wait-free cycle agreement
	5 Impossibility results via reductions
	5.1 There exists no 2-resilient asynchronous algorithm
	5.2 Time lower bounds for synchronous algorithms
	5.3 Graphs on which approximate agreement is impossible

	6 Impossibility of extension-based proofs
	6.1 Extension-based proofs
	6.2 Preliminaries and invariants
	6.3 The adversarial strategy
	6.4 The prover does not win in phase 1
	6.5 The adversarial strategy for later phases

	7 Upper bounds for asynchronous systems
	7.1 A 1-resilient algorithm for general graphs
	7.2 A wait-free asynchronous algorithm for nicely bridged graphs

	8 Upper bound for synchronous message-passing systems
	A Examples of nicely bridged graphs 

