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Abstract. This work examines strategies to handle large shared data objects in
distributed storage systems (DSS), while boosting the number of concurrent ac-
cesses, maintaining strong consistency guarantees, and ensuring good operation
performance. To this respect, we define the notion of fragmented objects: con-
current objects composed of a list of fragments (or blocks) that allow operations
to manipulate each of their fragments individually. As the fragments belong to
the same object, it is not enough that each fragment is linearizable to have useful
consistency guarantees in the composed object. Hence, we capture the consis-
tency semantic of the whole object with the notion of fragmented linearizability.
Then, considering that a variance of linearizability, coverability, is more suited
for versioned objects like files, we provide an implementation of a distributed
file system, called COBFS, that utilizes coverable fragmented objects (i.e., files).
In COBFS, each file is a linked-list of coverable block objects. Preliminary em-
ulation of COBFS demonstrates the potential of our approach in boosting the
concurrency of strongly consistent large objects.

Keywords: Distributed storage · Large objects · Linearizability · Coverability.

1 Introduction

In this paper we deal with the storage and use of shared readable and writable data in
unreliable distributed systems. Distributed systems are subject to perturbations, which
may include failures (e.g., crashes) of individual computers, or delays in processing or
communication. In such settings, large (in size) objects are difficult to handle. Even
more challenging is to provide linearizable consistency guarantees to such objects.

Researchers usually break large objects into smaller linearizable building blocks,
with their composition yielding the complete consistent large object. For example, a
linearizable shared R/W memory is composed of a set of linearizable shared R/W ob-
jects [2]. By design, those building blocks are usually independent, in the sense that
? Supported by the Cyprus Research and Innovation Foundation under the grant agreement

POST-DOC/0916/0090.

ar
X

iv
:2

10
2.

12
78

6v
2 

 [
cs

.D
C

] 
 7

 M
ar

 2
02

1



2 A. F. Anta et al.

changing the value of one does not affect the operations performed on the others, and
that operations on the composed objects are defined in terms of operations invoked on
the (smallest possible) building blocks. Operations on individual linearizable registers
do not violate the consistency of the larger composed linearizable memory space.

Some large objects, however, cannot be decomposed into independent building
blocks. For example, a file object can be divided into fragments or blocks, so that write
operations (which are still issued on the whole file) modify individual fragments. How-
ever, the composition of these fragments does not yield a linearizable file object: it is
unclear how to order writes on the file when those are applied on different blocks con-
currently. At the same time, it is practically inefficient to handle large objects as single
objects and use traditional algorithms (like the one in [2]) to distribute it consistently.

Related work: Attiya, Bar-Noy and Dolev [2], proposed an algorithm, colloquially re-
ferred to as ABD, that emulates a distributed shared R/W register in message-passing,
crash-prone, asynchronous environments. To ensure availability, the object is replicated
among a set of servers and to provide operation ordering, a logical timestamp is associ-
ated with each written value. ABD tolerates replica server crashes, provided a majority
of servers do not fail. Write operations involve a single communication round-trip. The
writer broadcasts its request to all servers and it terminates once it collects acknowledg-
ments from some majority of servers. A read involves two round-trips. In the first, the
reader broadcasts a request to all servers, collects acknowledgments from some major-
ity of servers, and it discovers the maximum timestamp. To ensure that any subsequent
read will return a value associated with a timestamp at least as high as the discovered
maximum, the reader propagates the value associated with the maximum timestamp to
at least a majority of servers before completion, forming the second round-trip. ABD
was later extended for the multi-writer/multi-reader model in [21], and its performance
was later improved by several works, including [11,16,17,13,15]. Those solutions con-
sidered small objects, and relied on the dissemination of the object values in each oper-
ation, imposing a performance overhead when dealing with large objects.

Fan and Lynch [12] attempted to reduce performance overheads by separating the
metadata of large objects from their value. In this way, communication-demanding op-
erations were performed on the metadata, and large objects were transmitted to a limited
number of hosts, and only when it was “safe” to do so. Although this work improved the
latency of operations, compared to traditional approaches like [2,21], it still required to
transmit the entire large object over the network per read and write operation. Moreover,
if two concurrent write operations affected different “parts” of the object, only one of
them would prevail, despite updates not being directly “conflicting.”

Recently, Erasure-Coded (EC) approaches have gained momentum and have proved
being extremely effective in saving storage and communication costs, while maintaining
strong consistency and fault-tolerance [6,7,10,19,20,8,28,23]. EC approaches rely on
the division of a shared object into coded blocks and deliver a single block to each
data server. While very appealing for handling large objects, they face the challenge
of efficiently encoding/decoding data. Despite being subdivided into several fragments,
reads and writes are still applied on the entire object value. Therefore, multiple writers
cannot work simultaneously on different parts of an object.
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Value continuity is important when considering large objects, oftentimes overseen
by distributed shared object implementations. In files, for example, a write operation
should extend the latest written version of the object, and not overwrite any new value.
Coverability was introduced in [24] as a consistency guarantee that extends lineariz-
ability and concerns versioned objects. An implementation of a coverable (versioned)
object was presented, where ABD-like reads return both the version and the value of
the object. Writes, on the other hand, attempt to write a “versioned” value on the object.
If the reported version is older than the latest, then the write does not take effect and it
is converted into a read operation, preventing overwriting a newer version of the object.
Contributions: In this work we set the goal to study and formally define the consistency
guarantees we can provide when fragmenting a large R/W object into smaller objects
(blocks), so that operations are still issued on the former but are applied on the latter. In
particular, the contributions of this paper are as follows:

– We define two types of concurrent objects: (i) the block object, and (ii) the frag-
mented object. Blocks are treated as R/W objects, while fragmented objects are
defined as lists of block objects (Section 3).

– We examine the consistency properties when allowing R/W operations on individ-
ual blocks of the fragmented object, in order to enable concurrent modifications.
Assuming that each block is linearizable, we define the precise consistency that the
fragmented object provides, termed Fragmented Linearizability (Section 4).

– We provide an algorithm that implements coverable fragmented objects. Then, we
use it to build a prototype implementation of a distributed file system, called COBFS,
by representing each file as a linked-list of coverable block objects. COBFS adopts
a modular architecture, separating the object fragmentation process from the shared
memory service, which allows to follow different fragmentation strategies and shared
memory implementations. We show that COBFS preserves the validity of the frag-
mented object and satisfies fragmented coverability (Section 5).

– We describe an experimental development and deployment of COBFS on the Emu-
lab testbed [1]. Preliminary results are presented, comparing our proposed algorithm
to its non-fragmented counterpart. Results suggest that a fragmented object imple-
mentation boosts concurrency while reducing the latency of operations (Section 6).

2 Model

We are concerned with the implementations of highly-available replicated concurrent
objects that support a set of operations. The system is a collection of crash-prone, asyn-
chronous processors with unique identifiers (ids) from a totally-ordered set I, composed
of two main disjoint sets of processes: (a) a set C of client processes ids that may per-
form operations on a replicated object, and (b) a set S of server processes ids that each
holds a replica of the object. Let I = C ∪ S.

Processors communicate by exchanging messages via asynchronous point-to-point
reliable4 channels; messages may be reordered. Any subset of client processes and up
to a minority of servers (less than |S|/2), may crash at any time in an execution.

4 Reliability is not necessary for the correctness of the algorithms we present. It is just used for
simplicity of presentation.
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Executions, histories and operations: An execution ξ of a distributed algorithm A
is an alternating sequence of states and actions of A reflecting the evolution in real
time of the execution. A history Hξ is the subsequence of the actions in ξ. We say
that an operation π is invoked (starts) in an execution ξ when the invocation action
of π appears in Hξ, and π responds to the environment (ends or completes) when the
response action appears in Hξ. An operation is complete in ξ when both its invocation
and matching response actions appear in Hξ in that order. A history Hξ is sequential
if it starts with an invocation action and each invocation is immediately followed by
its matching response; otherwise, Hξ is concurrent. Finally, Hξ is complete if every
invocation in Hξ has a matching response in Hξ (i.e., each operation in ξ is complete).
We say that an operation π precedes in real time an operation π′ (or π′ succeeds in real
time π) in an execution ξ, denoted by π → π′, if the response of π appears before the
invocation of π′ in Hξ. Two operations are concurrent if neither precedes the other.
Consistency: We consider linearizable [18] R/W objects. A complete history Hξ is
linearizable if there exists some total order on the operations in Hξ s.t. it respects the
real-time order→ of operations, and is consistent with the semantics of operations.

Note that we use read and write in an abstract way: (i) write represents any operation
that changes the state of the object, and (ii) read any operation that returns that state.

3 Fragmented Objects

A fragmented object is a concurrent object (e.g., can be accessed concurrently by multi-
ple processes) that is composed of a finite list of blocks. Section 3.1 formally defines the
notion of a block, and Section 3.2 gives the formal definition of a fragmented object.

3.1 Block Object

A block b is a concurrent R/W object with a unique identifier from a set B. A block
has a value val(b) ∈ Σ∗, extracted from an alphabet Σ. For performance reasons it
is convenient to bound the block length. Hence, we denote by B` ⊂ B, the set that
contains bounded length blocks, s.t. ∀b ∈ B` the length of |val(b)| ≤ `. We use |b| to
denote the length of the value of b when convenient. An empty block is a block b whose
value is the empty string ε, i.e., |b| = 0. Operation create(b,D) is used to introduce a
new block b ∈ B`, initialized with value D, such that |D| ≤ `. Once created, block b
supports the following two operations: (i) read()b that returns the value of the object b,
and (ii) write(D)b that sets the value of the object b to D, where |D| ≤ `.

A block object is linearizable if is satisfies the linearizability properties [22,18] with
respect to its create (which acts as a write), read, and write operations. Once created, a
block object is an atomic register [22] whose value cannot exceed a predefined length `.

3.2 Fragmented Object

A fragmented object f is a concurrent R/W object with a unique identifier from a set F .
Essentially, a fragmented object is a sequence of blocks from B, with a value val(f) =
〈b0, b1, . . . , bn〉, where bi ∈ B, for i ∈ [0, n]. Initially, each fragmented object contains
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an empty block, i.e., val(f) = 〈b0〉with val(b0) = ε. We say that f is valid and f ∈ F`
if ∀bi ∈ val(f), bi ∈ B`. Otherwise, f is invalid. Being a R/W object, one would expect
that a fragmented object f ∈ F`, for any `, supports the following operations:

– read()f returns the list 〈val(b0), . . . , val(bn)〉, where val(f) = 〈b0, b1, . . . , bn〉
– write(〈D0, . . . , Dn〉)f , |Di| ≤ `,∀i ∈ [0, n], sets the value of f to 〈b0, . . . , bn〉

s.t. val(bi) = Di,∀i ∈ [0, n].

Having the write operation to modify the values of all blocks in the list may hin-
der in many cases the concurrency of the object. For instance, consider the following
execution ξ. Let val(f) = 〈b0, b1〉, val(b0) = D0, val(b1) = D1, and assume that
ξ contains two concurrent writes by two different clients, one attempting to modify
block b0, and the other attempting to modify block b1: π1 = write(〈D′0, D1〉)f and
π2 = write(〈D0, D

′
1〉)f , followed by a read()f . By linearizability, the read will return

either the list written in π1 or in π2 on f (depending on how the operations are ordered
by the linearizability property). However, as blocks are independent objects, it would
be expected that both writes could take effect, with π1 updating the value of b0 and π2
updating the value of b1. To this respect, we redefine the write to only update one of the
blocks of a fragmented object. Since the update does not manipulate the value of the
whole object, which would include also new blocks to be written, it should allow the
update of a block b with a value |D| > `. This essentially leads to the generation of new
blocks in the sequence. More formally, the update operation is defined as follows:

– update(bi, D)f updates the value of block bi ∈ f such that:
• if |D| ≤ `: sets val(bi) = D;
• if |D| > `: partition D = {D0, . . . , Dk} such that |Dj | ≤ `,∀j ∈ [0, k], set
val(bi) = D0 and create blocks bji , for j ∈ [1, k] with val(bji ) = Dj , so that
f remains valid.

With the update operation in place, fragmented objects resemble store-collect ob-
jects presented in [3]. However, fragmented objects aim to minimize the communication
overhead by exchanging individual blocks (in a consistent manner) instead of exchang-
ing the list (view) of block values in each operation. Since the update operation only
affects a block in the list of blocks of a fragmented object, it potentially allows for a
higher degree of concurrency. It is still unclear what are the consistency guarantees we
can provide when allowing concurrent updates on different blocks to take effect. Thus,
we will consider that only operations read and update are issued in fragmented objects.
Note that the list of blocks of a fragmented object cannot be reduced. The contents of a
block can be deleted by invoking an update with an empty value.

Observe that as a fragmented object is composed of block objects, its operations are
implemented by using read, write, and create block operations. The read()f performs
a sequence of read block operations (starting from block b0 and traversing the list of
blocks) to obtain and return the value of the fragmented object. Regarding update op-
erations, if |D| ≤ `, then the update(bi, D)f operation performs a write operation on
the block bi as write(D)bi . However, if |D| > `, then D is partitioned into substrings
D0, . . . , Dk each of length at most `. The update operation modifies the value of bi as
write(D0)bi . Then, k new blocks b1i , . . . , b

k
i are created as create(bji , Dj),∀j ∈ [1, k],

and are inserted in f between bi and bi+1 (or appended at the end if i = |f |). The
sequential specification of a fragmented object is defined as follows:
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Definition 1 (Sequential Specification). The sequential specification of a fragmented
object f ∈ F` over the complete sequential history H is defined as follows. Initially
val(f) = 〈b0〉 with val(b0) = ε. If at the invocation action of an operation π in H has
val(f) = 〈b0, . . . , bn〉 and ∀bi ∈ f, val(bi) = Di, and |Di| ≤ `. Then:

– if π is a read()f , then π returns 〈val(b0), . . . , val(bn)〉. At the response action of
π, it still holds that val(f) = 〈b0, . . . , bn〉 and ∀bi ∈ f, val(bi) = Di.

– if π is an update(bi, D)f operation, bi ∈ f , then at the response action of π,
∀j 6= i, val(bj) = Dj , and
• if |D| ≤ `: val(f) = 〈b0, . . . , bn〉, val(bi) = D;
• if |D| > `: val(f) = 〈b0, . . . , bi, b1i , . . . , bki , bi+1, . . . , bn〉, such that val(bi) =
D0 and val(bji ) = Dj ,∀j ∈ [1, k], where D = D0|D1| · · · |Dk and |Dj | ≤
`,∀j ∈ [0, k].5

4 Fragmented Linearizability

A fragmented object is linearizable if it satisfies both the Liveness (termination) and
Linearizability (atomicity) properties [22,18]. A fragmented object implemented by a
single linearizable block is trivially linearizable as well. Here, we focus on fragmented
objects that may contain a list of multiple linearizable blocks, and consider only read
and update operations. As defined, update operations are applied on single blocks,
which allows multiple update operations to modify different blocks of the fragmented
object concurrently. Termination holds since read and update operations on the frag-
mented object always complete. It remains to examine the consistency properties.
Linearizability: Let Hξ be a sequential history of update and read invocations and
responses on a fragmented object f . Linearizability [22,18] provides the illusion that
the fragmented object is accessed sequentially respecting the real-time order, even when
operations are invoked concurrently6:

Definition 2 (Linearizability). A fragmented object f is linearizable if, given any com-
plete history H , there exists a permutation σ of all actions in H such that:

– σ is a sequential history and follows the sequential specification of f , and
– for operations π1, π2, if π1 → π2 in H , then π1 appears before π2 in σ.

Observe, that in order to satisfy Definition 2, the operations must be totally ordered.
Let us consider again the sample execution ξ from Section 3. Since we decided not
to use write operations, the execution changes as follows. Initially, val(f) = 〈b0, b1〉,
val(b0) = D0, val(b1) = D1, and then ξ contains two concurrent update operations
by two different clients, one attempting to modify the first block, and the other attempt-
ing to modify the second block: π1 = update(b0, D

′
0)f and π2 = update(b1, D

′
1)f

(|D′0| ≤ ` and |D′1| ≤ `), followed by a read()f operation. In this case, since both

5 The operator “|” denotes concatenation. The exact way D is partitioned is left to the imple-
mentation.

6 Our formal definition of linearizability is adapted from [4].
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(a) (b)

Fig. 1: Executions showing the operations on a fragmented object. Fig. (a) shows lin-
earizable reads on the fragmented object (and serialization points), and (b) reads on the
fragmented object that are implemented with individual linearizable reads on blocks.

update operations operate on different blocks, independently of how π1 and π2 are or-
dered in the permutation σ, the read()f operation will return 〈D′0, D′1〉. Therefore, the
use of these update operations has increased the concurrency in the fragmented object.

Using linearizable read operations on the entire fragmented object can ensure the
linearizability of the fragmented object as can be seen in the example presented in Fig-
ure 1(a). However, providing a linearizable read when the object involves multiple R/W
objects (i.e., an atomic snapshot) can be expensive or impact concurrency [9]. Thus, it is
cheaper to take advantage of the atomic nature of the individual blocks and invoke one
read operation per block in the fragmented object. But, what is the consistency guaran-
tee we can provide on the entire fragmented object in this case? As seen in the example
of Fig. 1(b), two reads concurrent with two update operations may violate linearizabil-
ity on the entire object. According to the real time ordering of the operations on the
individual blocks, block linearizability is preserved if the first read on the fragmented
object should return (D′0, D1), while the second read returns (D0, D

′
1). Note that we

cannot find a permutation on these concurrent operations that follows the sequential
specification of the fragmented object. Thus, the execution in Figure 1(b) violates lin-
earizability. This leads to the definition of fragmented linearizability on the fragmented
object, which relying on the fact that each individual block is linearizable, it allows ex-
ecutions like the one seen in Fig. 1(b). Essentially, fragmented linearizability captures
the consistency one can obtain on a collection of linearizable objects, when these are
accessed concurrently and individually, but under the “umbrella” of the collection.

In this respect, we specify each read()f operation of a certain process, as a sequence
of read()b operations on each block b ∈ f by that process. In particular, a read oper-
ation read()f that returns 〈val(b0), . . . , val(bn)〉 is specified by n + 1 individual read
operations read()b0 ,..., read()bn , that return val(b0), ..., val(bn), respectively, where
read()b0 →, . . . ,→ read()bn .

Then, given a history H , we denote for an operation π the history Hπ which
contains the actions extracted from H and performed during π (including its invo-
cation and response actions). Hence, if val(f) is the value returned by read()f , then
H read()f contains an invocation and matching response for a read()b operation, for each
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b ∈ val(f). Then, fromH , we can construct a historyH|f that only contains operations
on the whole fragmented object. In particular, H|f is the same as H with the following
changes: for each read()f , if 〈val(b0), . . . , val(bn)〉 is the value returned by the read
operation, then we replace the invocation of read()b0 operation with the invocation of
the read()f operation and the response of the read()bn block with the response action
for the read()f operation. Then we remove from H|f all the actions in H read()f .

Definition 3 (Fragmented Linearizability). Let f ∈ F` be a fragmented object, H a
complete history on f , and val(f)H ⊆ B the value of f at the end of H . Then, f is
fragmented linearizable if there exists a permutation σb over all the actions on b in H ,
∀b ∈ val(f)H , such that:

– σb is a sequential history that follows the sequential specification of b 7, and
– for operations π1, π2 that appear in H|f extracted from H , if π1 → π2 in H|f ,

then all operations on b in Hπ1 appear before any operations on b in Hπ2 in σb.

Fragmented linearizability guarantees that all concurrent operations on different
blocks prevail, and only concurrent operations on the same blocks are conflicting. Con-
sider two reads r1 and r2, s.t. r1 → r2; then r2 must return a supersequence of blocks
with respect to the sequence returned by r1, and that for each block belonging in both
sequences, its value returned by r2 is the same or newer than the one returned by r1.

5 Implementing Files as Fragmented Coverable Objects

Having laid out the theoretical framework of Fragmented Objects, we now present a
prototype implementation of a Distributed File System, we call COBFS.

When manipulating files it is expected that a value update builds upon the current
value of the object. In such cases a writer should be aware of the latest value of the ob-
ject (i.e., by reading the object) before updating it. In order to maintain this property in
our implementation we utilize coverable linearizable blocks as presented in [24]. Cov-
erability extends linearizability with the additional guarantee that object writes succeed
when associating the written value with the “current” version of the object. In a differ-
ent case, a write operation becomes a read operation and returns the latest version and
the associated value of the object. Due to space limitations we refer the reader to [24]
for the exact coverability properties.

By utilizing coverable blocks, our file system provides fragmented coverability as
a consistency guarantee. In our prototype implementation we consider each object to
be a plain text file, however the underlying theoretical formulation allows for extending
this implementation to support any kind of large objects.
File as a coverable fragmented object: Each file is modeled as a fragmented object
with its blocks being coverable objects. The file is implemented as a linked-list of blocks
with the first block being a special block bg ∈ B, which we call the genesis block, and
then each block having a pointer ptr to its next block, whereas the last block has a null
pointer. Initially each file contains only the genesis block; the genesis block contains
special purpose (meta) data. The val(b) of b is set as a tuple, val(b) = 〈ptr, data〉.

7 The sequential specification of a block is similar to that of a R/W register [22], whose value
has bounded length.
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Fig. 2: Basic architecture of COBFS

Overview of the Basic Architecure: The basic architecture of COBFS appears in
Fig. 2. COBFS is composed of two main modules: (i) a Fragmentation Module (FM),
and (ii) a Distributed Shared Memory Module (DSMM). In summary, the FM imple-
ments the fragmented object while the DSMM implements an interface to a shared
memory service that allows read/write operations on individual block objects. Follow-
ing this architecture, clients may access the file system through the FM, while the blocks
of each file are maintained by servers through the DSMM. The FM uses the DSMM
as an external service to write and read blocks to the shared memory. To this respect,
COBFS is flexible enough to utilize any underlying distributed shared object algorithm.
File and block id assignment: A key aspect of our implementation is the unique assign-
ment of ids to both fragmented objects (i.e. files) and individual blocks. A file f ∈ F is
assigned a pair 〈cfid, cfseq〉 ∈ C×N, where cfid ∈ C is the universally unique identi-
fier of the client that created the file (i.e., the owner) and cfseq ∈ N is the client’s local
sequence number, incremented every time the client creates a new file and ensuring
uniqueness of the objects created by the same client.

In turn, a block b ∈ B of a file is identified by a triplet 〈fid, cid, cseq〉 ∈ F ×
C × N, where fid ∈ F is the identifier of the file in which the block belongs to,
cid ∈ C is the identifier of the client that created the block (this is not necessarily the
owner/creator of the file), and cseq ∈ N is the client’s local sequence number of blocks
that is incremented every time this client creates a block for this file (this ensures the
uniqueness of the blocks created by the same client for the same file).
Distributed Shared Memory Module: The DSMM implements a distributed R/W
shared memory based on an optimized coverable variant of the ABD algorithm,
called COABD [24]. The module exposes three operations for a block b: dsmm-readb,
dsmm-write(v)b, and dsmm-create(v)b. The specification of each operation is shown
in Algorithm 1. For each block b, the DSMM maintains its latest known version verb
and its associated value valb. Upon receipt of a read request for a block b, the DSMM
invokes a cvr-read operation on b and returns the value received from that operation.

To reduce the number of blocks transmitted per read, we apply a simple yet very
effective optimization (Algorithm 2): a read sends a READ request to all the servers in-
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Algorithm 1 DSM Module: Operations on a coverable block object b at client p

1: State Variables:
2: verb ∈ N initially 0; valb ∈ V initially⊥;

3: function dsmm-read( )b,p
4: 〈valb, verb〉 ← b.cvr-read()
5: return valb
6: end function

7: function dsmm-create(val)b,p
8: 〈valb, verb〉 ← b.cvr-write(val, 0)
9: end function

10: function dsmm-write(val)b,p
11: 〈valb, verb〉 ← b.cvr-write(val, verb)
12: return valb
13: end function

Algorithm 2 Optimized coverable ABD (read operation)

1: at each reader r for object b
2: State Variables:
3: tgb ∈ N+ ×W initially 〈0,⊥〉; valb ∈ V , initially
⊥

4: function cvr-read( )
5: send 〈READ, verb〉 to all servers . Query Phase
6: wait until |S|+1

2 servers reply
7: maxP ← max({〈tg′, v′〉 received from some server})

8: ifmaxP.tg > tgb then
9: send (WRITE,maxP ) to all servers .

Propagate Phase
10: wait until |S|+1

2 servers reply
11: 〈tgb, valb〉 ← maxP
12: end if
13: return(〈tgb, valb〉)

14: end function

15: at each server s for object b
16: State Variables:
17: tgb ∈ N+×W initially 〈0,⊥〉; valb ∈ V , initially
⊥

18: function rcv(M )q . Reception of a message from q

19: ifM.type 6= READ andM.tg > tgb then
20: 〈tgb, valb〉 ← 〈M.tg,M.v〉
21: end if
22: ifM.type = READ andM.tg ≥ tgb then
23: send(〈tgb,⊥〉) to q . Reply without content
24: else
25: send(〈tgb, valb〉) to q . Reply with content
26: end if
27: end function

cluding its local version in the request message. When a server receives a READ request
it replies with both its local tag and block content only if the tag enclosed in the READ
request is smaller than its the local tag; otherwise it replies with its local tag without
the block content. Once the reader receives replies from a majority of servers, it detects
the maximum tag among the replies, and checks if it is higher than the local known
tag. If it is, then it forwards the tag and its associated block content to a majority of
servers; if not then the read operation returns the locally known tag and block content
without performing the second phase. While this optimisation makes a little difference
on the non-fragmented version of the ABD (under read/write contention), it makes a
significant difference in the case of the fragmented objects. For example, if each read is
concurrent with a write causing the execution of a second phase, then the read sends the
complete file to the servers; in the case of fragmented objects only the fragments that
changed by the write will be sent over to the servers, resulting in significant reductions.

The create and write operations invoke cvr-write operations to update the value
of the shared block b. Their main difference is that version 0 is used during a create
operation to indicate that this is the first time that the block is written. Notice that the
write in create will always succeed as it will introduce a new, never before written
block, whereas operation write may be converted to a read operation, thus retrieving
and returning the latest value of b. We refer the reader to [24] for the implementation of
cvr-read and cvr-write, which are simple variants of the corresponding implementations
of ABD [2]. We state the following lemma:

Lemma 1. The DSMM implements R/W coverable block objects.
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Fig. 3: Example of a writer x writing text at the beginning of the second block of a text
file with id fid = 7. The hash value of the existing second block “4bad..” is replaced
with “d595..” and a new block with hash value “8223..” is inserted immediately after.
The block bid = x 7-x 2 and the new block bid = x 7-x 4 are sent to the DSM.

Proof. When both the read and write operations perform two phases the correctness of
the algorithm is derived from Theorem 10 in [24]. It is easy to see that the optimiza-
tion does not violate linearizability. The second phase of a read is omitted when all the
servers reply with a tag smaller or equal to the local tag of the reader r. Since how-
ever, a read propagates its local tag to a majority of servers at every tag update, then
every subsequent operation will observe (and return) the latest value of the object to be
associated with a tag at least as high as the local tag of r.
Fragmentation Module: The FM is the core concept of our implementation. Each
client has a FM responsible for (i) fragmenting the file into blocks and identify modified
blocks, and (ii) follow a specific strategy to store and retrieve the file blocks from the
R/W shared memory. As we show later, the block update strategy followed by FM is
necessary in order to preserve the structure of the fragmented object and sufficient to
preserve the properties of fragmented coverability. For the file division of the blocks and
the identification of the newly created blocks, the FM contains a Block Identification
(BI) module that utilizes known approaches for data fragmentation and diff extraction.
Block Identification (BI): Given the data D of a file f the goal of BI is to break D into
data blocks 〈D0, . . . , Dn〉, s.t. the size of each Di is less than a predefined upper bound
`. Furthermore, by drawing ideas from the RSYNC (Remote Sync) algorithm [26],
given two versions of the same file, say f and f ′, the BI tries to identify blocks that
(a) may exist in f but not in f ′ (and vice-versa), or (b) they have been changed from f
to f ′. To achieve these goals BI proceeds in two steps: (1) it fragments D into blocks,
using the rabin fingerprints rolling hash algorithm [25], and (2) it compares the hashes
of the blocks of the current and the previous version of the file using a string matching
algorithm [5] to determine the modified/new data blocks. The role of BI within the
architecture of COBFS and its process flow appears in Fig. 3, while its specification is
provided in Algorithm 3. A high-level description of BI has as follows:
– Block Division: Initially, the BI partitions a given file f into data blocks based on

its contents, using rabin fingerprints. This algorithm identifies the block boundaries
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Algorithm 3 Fragmentation Module: BI and Operations on a file f at client p

1: State Variables:
2: H initially ∅; ` ∈ N;
3: Lf a linked-list of blocks, initially 〈bg〉;
4: bcf ∈ N initially 0;

5: function fm-block-identify( )f,p
6: 〈newD, newH〉 ← RabinFingerprints(f, `)
7: curH = hash(Lf )

8: . hashes of the data of the blocks in Lf

9: C ← SMatching(curH, newH)
10: . modified
11: for 〈h(bj), hk〉 ∈ C.mods s.t. h(bj) ∈

curH, hk ∈ newH do
12: D ← {Dk : Dk ∈ newD ∧ hk =

hash(Dk)}
13: fm-update(bj , D)f,p
14: end for
15: . inserted
16: for S ∈ C.inserts s.t. hi ∈ S are in sequence

do
17: D ← {Di : hi ∈ S ∧ Di ∈ newD ∧

hi = hash(Di)}
18: b← bj s.t. ∀hi ∈ S inserted after h(bj)
19: fm-update(b,D)f,p
20: end for
21: end function

22: function fm-read( )f,p
23: b← val(bg).ptr

24: Lf ← 〈bg〉 . reset Lf

25: while b not NULL do
26: val(b)← dsmm-read()b,p
27: Lf .insert(val(b))

28: b← val(b).ptr
29: end while
30: return Assemble(Lf )

31: end function

32: function fm-update(b,D = 〈D0, D1, . . . , Dk〉)f,p
33: for j = k : 1 do
34: bj ← 〈f, p, bcf ++〉 . set block id
35: val(bj).data = Dj . set block data
36: if j < k then
37: val(bj).ptr = bj+1 . set block ptr
38: else
39: val(bj).ptr = val(b).ptr

40: . point last to b ptr
41: end if
42: Lf .insert(val(bj))

43: dsmm-create(val(bj))bj
44: end for
45: val(b).data = D0

46: if k > 0 then
47: val(b).ptr = b1 . change b ptr if |D| > 1
48: end if
49: dsmm-write(val(b))b
50: end function

and it performs content-based chunking by calculating and returning the fingerprints
(block hashes) over a sliding window, and guarantees that each block identified has
a bounded size of no more than `.

– Block Matching: Given the set of blocks 〈D0, . . . , Dm〉 and associated block
hashes 〈h0, . . . , hm〉 generated by the rabin fingerprint algorithm, the BI tries to
match each hash to a block identifier, based on the block ids produced during the pre-
vious division of file f , say 〈b0, . . . , bn〉. We produce the vector 〈h(b0), . . . , h(bn)〉
where h(bi) = hash(val(bi).data) from the current blocks of f , and using a string
matching algorithm [5] we compare the two hash vectors to obtain one of the fol-
lowing statuses for each entry: (i) equal, (ii) modified, (iii) inserted, (iv) deleted.

– Block Updates: Based on the hash statuses computed through block matching
previously, the blocks of the fragmented object are updated. In particular, in the
case of equality, if a hi = h(bj) then Di is identified as the data of block
bj . In case of modification, e.g. (h(bj), hi), an update(bj , {Di})f,p action is
then issued to modify the data of bj to Di (Lines 10:13). In case new hashes
(e.g. 〈hi, hk〉) are inserted after the hash of block bj (i.e. h(bj)), then the action
update(bj , {val(bj).data,Di, Dk})f,p is performed to create the new blocks after
bj (Lines 15: 19). In our formulation block deletion is treated as a modification that
sets an empty data value thus, in our implementation no blocks are deleted.
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FM Operations: The FM’s external signature includes the two main operations of a
fragmented object: readf , and updatef . Their specifications appear in Algorithm 3.
Read operation - read()f,p: To retrieve the value of a file f , a client p may invoke a
readf,p to the fragmented object. Upon receiving, the FM issues a series of reads on
file’s blocks; starting from the genesis block of f and proceeding to the last block by
following the pointers in the linked-list of blocks comprising the file. All the blocks are
assembled into one file via the Assemble() function. The reader p issues a read for all
the blocks in the file. This is done to ensure the property stated in the following lemma:

Lemma 2. Let ξ be an execution of COBFS with two reads ρ1 = readf,p and ρ2 =
readf,q from clients p and q on the fragmented object f , s.t. ρ1 → ρ2. If ρ1 returns a
list of blocks L1 and ρ2 a list L2, then ∀bi ∈ L1, then bi ∈ L2 and version(bi)L1

≤
version(bi)L2

.

Update operation - update(b,D)f,p: Here we expect that the update operation accepts
a block id and a set of data blocks (instead of a single data object), since the division
is performed by the BI module. Thus, D = 〈D0, . . . , Dk〉, for k ≥ 0, with the size
|D| =

∑k
i=0 |Di| and the size of each |Di| ≤ ` for some maximum block size `. Client

p attempts to update the value of a block with identifier b in file f with the data in D.
Depending on the size of D the update operation will either perform a write on the
block if k = 0, or it will create new blocks and update the block pointers in case k > 0.
Assuming that val(b).ptr = b′ then:

– k = 0: In this case update, for block b, calls write(〈val(b).ptr,D0〉, 〈p, bseq〉)b.
– k > 0: Given the sequence of chunks D = 〈D0, . . . , Dk〉 the following block

operations are performed in this particular order:
→ create(bk = 〈f, p, bcp++〉, 〈b′, Dk〉, 〈p, 0〉) ** Block bk ptr points to b′ **
→ . . .
→ create(b1 = 〈f, p, bcp++〉, 〈b2, D1〉, 〈p, 0〉) ** Block b1 ptr points to b2 **
→ write(〈b1, D0〉, 〈p, bseq〉)b ** Block b ptr points to b1 **

The challenge here was to insert the list of blocks without causing any concurrent
operation to return a divided fragmented object, while also avoiding blocking any on-
going operations. To achieve that, create operations are executed in a reverse order: we
first create block bk pointing to b′, and we move backwards until creating b1 pointing
to block b2. The last operation, write, tries to update the value of block b0 with value
〈b1, D0〉. If the last coverable write completes successfully, then all the blocks are in-
serted in f and the update is successful; otherwise none of the blocks appears in f and
thus the update is unsuccessful. This is captured by the following lemma:

Lemma 3. In any execution ξ of COBFS, if ξ contains an π = update(b,D)f,p, then
π is successful iff the operation b.cvr-write called within dsmm-write(val(b))b,p, is
successful.

Proof. It is easy to see that if π = update(b,D)f,p is successful, then all
the dsmm-write operations invoked within π, including dsmm-write(val(b))b,p,
are successful. It remains to show that π can only by unsuccessful whenever
dsmm-write(val(b))b,p is unsuccessful. In the case where D contains a single chunk,
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i.e. D = 〈D0〉 then π invokes a single dsmm-write(val(b))b,p with val(b).data = D0.
If the cvr-write invoked in that operation is unsuccessful then π is also unsuccessful. In
the case where k > 0, π invokes k−1 create operations with new block identifiers (due
to the incremented block counter bc). The cvr-write operation on every such block will
be successful as (i) the block id 〈f, p, bc〉 (and thus the block) can only be generated
by process p, and (ii) the block is not yet inserted in the link-list. So no other write
operation will attempt to cvr-write the same block concurrently. So the only operation
that may fail in this case as well, is the dsmm-write(val(b))b,p as b was a part of the list
and may be accessed concurrently by a writer q 6= p.

Now a read operation may return a list that contains a block bi only if bi was written
by a successful update operation. More formally:

Lemma 4. In any execution ξ of COBFS, if a ρ = readf,p operation returns a list
L then for any block b ∈ L there exists successful update(∗)f,∗ operation that either
precedes or is concurrent to ρ and invokes sm-create(val(b))b operation.

Proof. According to our protocol it is clear that a block with id b appears in the list of
f only if that is created and written during an updatef,∗ operation. Also, if the block is
created by an update that precedes ρ, then no other block in the list will point to b, ρ
will not invoke a sm-readb operation for b, and thus b /∈ L.

So it remains to examine the case where ρ may obtain b from an unsuccessful
updatef,∗. Let us assume by contradiction that a read operation may return a block
b for a file f created by an unsuccessful update. Let b ∈ 〈b1, . . . , bn〉, the list of blocks
that the update needs to write on the DSM. In particular, the operation will create all
the blocks 〈b2, . . . , bn〉 and attempt to write block b1. There are two cases to consider:
(i) either b is equal to b1, or (ii) b is in 〈b2, . . . , bn〉.

If case (i) is true, then p will invoke a sm-write(val(b))b as b is the block that is
updated. However, since we assume that the update was not successful, then by Lemma
3, the write operation is not successful. Thus, according to the coverable DSM, b was
never written and this contradicts the assumption that p obtain b ∈ L.

If case (ii) holds, then b was created by p (an operation that cannot fail). However,
since the update is not successful, then b1 was not written in the list. It is also true that
there is no link path leading to b since the only path was b1 → b2 → . . . → b. So,
during the traversal of the blocks, the read operation will not see b1 and thus will never
reach and obtain b, contradicting again our initial assumption.

The above lemma will help us to show that the linked-list used for implementing
our fragmented object stays connected in any execution.

Lemma 5. In any execution ξ of COBFS, if a readf,p operation returns a list L =
〈bg, b1, . . . , bn〉 for a file f , then val(bg).prt = b1, val(bi).ptr = bi+1, for 1 ≤ i <
n− 1, and val(bn).ptr = ⊥.

Proof. Assume by contradiction that there exist some bi ∈ L, s.t. val(bi).ptr 6= bi+1

(or val(bg).prt 6= b1). By Lemma 4, a block bi may appear in the list returned by
a read operation only if it was created by a successful update operation, say w.l.o.g.
π = update(b,D)f,∗. Let D = 〈D0, . . . , Dk〉 and B = 〈b1, . . . , bk〉 be the set of k − 1
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blocks created in π, with bi ∈ B. By the design of the algorithm we create a single
linked path from b to bk, by pointing b to b1 and each bj to bj+1, for 1 ≤ j < k. Block
bk points to the block pointed by b at the invocation of π, say b′. So there exists a path
b→ b1 → . . .→ bi that also leads to bi. According again to the algorithm, bj+1 ∈ B is
created and written before bj , for q ≤ j < k. So when the bj .cvr-write is invoked, the
operation bj+1.cvr-write has completed, and thus when b is written successfully all the
blocks in the path are inserted successfully in f . So, if now bi is different than bk by the
construction of the update then both bi and bi+1 are in the list with val(bi).ptr = bi+1

contradicting our assumption.
If now bi = bk, then val(bi).ptr = b′. Since b was pointing to b′ at the invocation

of π then b′ was either (i) created during the update operation that also created b, or
(ii) was created before b. In case (i), by Lemma 3, the update operation that created
b was successful and thus b′ must be created and inserted in f as well. In case (ii) it
follows that b is the last inserted block of an update and is assigned to point to b′. With
a simple induction one may show that the update operation that created b′ must precede
the update that created b. Since no block is deleted, then b′ remains in L when bi is
created and thus bi points to an existing block. Furthermore, since π was successful,
then it successfully written b and hence only the blocks in B were inserted between b
and b′ at the response of π. So b′ must be the next block after bi in L at the response of
π and there is a path between b and b′. This completes our proof.

This leads us to the following:

Theorem 1. COBFS implements a R/W Fragmented Coverable object.

Proof. By Lemma 1 every block operation in COBFS satisfies coverability and together
with Lemma 2 it follows that COBFS implements a coverable fragmented object satis-
fying the properties presented in Definition 3 Also, the BI ensures that the size of each
block is limited under a bound ` and Lemma 5 ensures that each operation obtains a
connected list of blocks. Thus, COBFS implements a valid fragmented object.

6 Preliminary Evaluation

To further appreciate the proposed approach from an applied point of view, we per-
formed a preliminary evaluation of COBFS against COABD. Due to the design of the
two algorithms, COABD will transmit the entire file per read/update operation, while
COBFS will transmit as many blocks as necessary for an update operation, but perform
as many reads as the number of blocks during a read operation. The two algorithms
use the read optimization of Algorithm 2. Both were implemented and deployed on
Emulab, [27], a network testbed with tunable and controlled environmental parameters.
Experimental Setup: Across all experiments, three distinct types of distributed nodes
are defined and deployed within the emulated network environment as listed below.
Communication between the distributed nodes is via point-to-point bidirectional links
implemented with a DropTail queue.

– writer w ∈W ⊆ C : a client that dispatches update requests to servers.
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– reader r ∈ R ⊆ C: a client that dispatches read requests to servers
– server s ∈ S: listens for reader and writer requests and is responsible for main-

taining the object replicas according to the underlying protocol they implement.

Performance Metrics: We assess performance using: (i) operational latency, and (ii)
the update success ratio. The operational latency is computed as the sum of commu-
nication and computation delays. In the case of COBFS, computational latency en-
compasses the time necessary for the FM to fragment a file object and generate the
respective hashes for its blocks. The update success ratio is the percentage of update
operations that have not been converted to reads (and thus successfully changed the
value of the indented object). In the case of COABD, we compute the percentage of
successful updates on the file as a whole over the number of all updates. For COBFS,
we compute the percentage of file updates, where all individual block updates succeed.
Scenarios: Both algorithms are evaluated under the following experimental scenarios:

– Scalability: examine performance as the number of service participants increases
– File Size: examine performance when using different initial file sizes
– Block Size: examine performance under different block sizes (COBFS only)

We use a stochastic invocation scheme in which reads are scheduled randomly from
the intervals [1...rInt] and updates from [1..wInt], where rInt, wInt = 4sec. To
perform a fair comparison and to yield valuable observations, the results shown are
compiled as averages over five samples per each scenario.
Scalability Experiments: We varied the number of readers |R|, the number of writ-
ers |W |, and the number of servers |S| in the set {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}.
While testing for readers’ scalability, the number of writers and servers was kept con-
stant, |W |, |S| = 10. Using the same approach, scalability of writers, and in turn
of servers, was tested while preserving the two other types of nodes constant (i.e.
|R|, |S| = 10 and |R|, |W | = 10 respectively). In total, each writer performed 20
updates and each reader 20 reads. The size of the initial file used was set to 18 kB,
while the maximum, minimum and average block sizes (rabin fingerprints parameters)
were set to 64 kB, 2 kB and 8 kB respectively.
File Size Experiments: We varied the fsize from 1MB to 1GB by doubling the file
size in each simulation run. The number of writers, readers and servers was fixed to
5. In total, each writer performed 5 updates and each reader 5 reads. The maximum,
minimum and average block sizes were set to 1MB, 512 kB and 512 kB respectively.
Block Size Experiments: We varied the minimum and average bsizes of COBFS from
1 kB to 64 kB. The number of writers, readers and servers was fixed to 10. In total, each
writer performed 20 updates and each reader 20 reads. The size of the initial file used
was set to 18 kB, while the maximum block size was set to 64 kB
Results: Overall, our results suggest that the efficiency of COBFS is inversely propor-
tional to the number of block operations, rather than the size of the file. This is primarily
due to the individual block-processing nature of COBFS. More in detail:
Scalability: In Fig. 4(a), the operational latency of updates in COBFS remains almost
unchanged and smaller than of COABD. This is because COABD writer updates a
rather small file, while each COBFS writer updates a subset of blocks which are mod-
ified or created. The computational latency of FM in COBFS is negligible, when com-
pared to the total update operation latency, because of the small file size. In Fig. 4(c), we
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 4: Simulation results for algorithms COABD and COBFS.
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observe that the update operation latency in COABD increases even more as the num-
ber of servers increases. As more updates are successful in COBFS, reads may transfer
more data compared to reads in COABD, explaining their slower completion as seen in
Fig. 4(b). Also, readers send multiple read block requests of small sizes, waiting each
time for a reply, while COABD readers wait for a message containing a small file.

Concurrency: The percentage of successful file updates achieved by COBFS are sig-
nificantly higher than those of COABD. This holds for both cases where the number
of writers increased (see Fig. 4(a)) and the number of servers increased (see Fig. 4(c)).
This demonstrates the boost of concurrency achieved by COBFS. In Fig. 4(a) we no-
tice that as the number of writers increases (hence, concurrency increases), COABD
suffers greater number of unsuccessful updates, i.e., updates that have become reads
per the coverability property. Concurrency is also affected when the number of blocks
increases, Fig. 4(d). The probability of two writes to collide on a single block decreases,
and thus COBFS eventually allows all the updates (100%) to succeed. COABD does
not experience any improvement as it always manipulates the file as a whole.

File Size: Figure 4(d) demonstrates that the update operation latency of COBFS remains
at extremely low levels. The main factor that significantly contributes to the slight in-
crease of COBFS update latency is the FM computation latency, Fig. 4(e). We have
set the same parameters for the rabin fingerprints algorithm for all the initial file sizes,
which may have favored some file sizes but burdened others. An optimization of the ra-
bin algorithm or a use of a different algorithm for managing blocks could possibly lead
to improved FM computation latency; this is a subject for future work. The COBFS
update communication latency remains almost stable, since it depends primarily on the
number and size of update block operations. That is in contrast to the update latency
exhibited in COABD which appears to increase linearly with the file size. This was
expected, since as the file size increases, it takes longer latency to update the whole file.

Despite the higher success rate of COBFS, the read latency of the two algorithms is
comparable due to the low number of update operations. The read latencies of the two
algorithms with and without the read optimization can be seen in Fig. 4(f). The COABD
read latency increases sharply, even when using the optimized reads. This is in line with
our initial hypothesis, as COABD requires reads to request and propagate the whole file
each time a newer version of the file is discovered. Similarly, when read optimization
is not used in COBFS, the latency is close of COABD. Notice that each read that
discovers a new version of the file needs to request and propagate the content of each
individual block. On the contrary, read optimization decreases significantly the COBFS
read latency, as reads transmit only the contents of the blocks that have changed.

Block Size: From Figs. 4(g)(h) we can infer that when smaller blocks are used, the up-
date and read latencies reach their highest values. In both cases, small bsize results in
the generation of larger number of blocks from the division of the initial file. Addition-
ally, as seen in Fig. 4(g), the small bsize leads to the generation of more new blocks
during update operations, resulting in more update block operations, and hence higher
latencies. As the minimum and average bsizes increase, lower number of blocks need
to be added when an update is taking place. Unfortunately, smaller number of blocks
leads to a lower success rate. Similarly, in Fig. 4(h), smaller block sizes require more
read block operations to obtain the file’s value. As the minimum and average bsizes
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increase, lower number of blocks need to be read. Thus, further increase of the mini-
mum and average bsizes forces the decrease of the latencies, reaching a plateau in both
graphs. This means that the emulation finds optimal minimum and average bsizes and
increasing them does not give better (or worse) latencies.

7 Conclusions

We have introduced the notion of linearizable and coverable fragmented objects and
proposed an algorithm that implements coverable fragmented files. It is then used to
build COBFS, a prototype distributed file system in which each file is specified as a
linked-list of coverable blocks. COBFS adopts a modular architecture, separating the
object fragmentation process from the shared memory service allowing to follow dif-
ferent fragmentation strategies and shared memory implementations. We showed that
it preserves the validity of the fragmented object (file) and satisfies fragmented cover-
ability. The deployment on Emulab serves as a proof of concept implementation. The
evaluation demonstrates the potential of our approach in boosting the concurrency and
improving the efficiency of R/W operations on strongly consistent large objects.

For future work, we aim to perform a comprehensive experimental evaluation of
COBFS that will go beyond simulations (e.g., full-scale, real-time, cloud-based exper-
imental evaluations) and to further study parameters that may affect the performance
of the operations (e.g., file size, block size, etc), as well as to build optimizations and
extensions, in an effort to unlock the full potential of our approach.
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Appendix
A Fragmented Objects with Coverable Blocks

When writing a value to a linearizable R/W object, the value written does not need to
be dependent on the previous written value. However, in some objects (e.g. files), it is
expected that a value update will build upon (and thus avoid to overwrite) the current
value of the object. In such cases a writer should be aware of the latest value of the
object (i.e., by reading the object) before updating it. Although a read-modify-write
(RMW) semantic would be more appropriate for this type of objects, it can only be
achieved through consensus, which is known to be merely impossible to solve in an
asynchronous environment with crashes [14].

To this respect, in [24] the notion of coverability was introduced to leverage the
solvability of R/W object implementations, while providing a weak RMW object. In-
formally, coverability, extends linearizability with the additional guarantee that object
writes succeed when associating the written value with the “current” version of the ob-
ject. In a different case, a write operation becomes a read operation and returns the latest
version and the associated value of the object.

More formally, coverability uses a totally ordered set of versions, say Versions , and
introduces the notion of versioned (coverable) objects. A coverable object is a type of
R/W object where each value written is assigned with a version from the set Versions .
The coverable R/W object X offers two operations: (i) X.cvr-write(val, ver)p, and
(ii) X.cvr-read()p. A process p invokes a cvr-write(val, ver)p operation when it per-
forms a write operation that attempts to change the value of the object. The opera-
tion returns the value of the object and its associated version, along with a flag in-
forming whether the operation has successfully changed the value of the object or
failed. A write is successful if it changes the value of the register; otherwise the
write is unsuccessful. The read operation cvr-read()p involves a request to retrieve
the value of the object. The response of this operation is the value of the regis-
ter together with the version of the object that this value is associated with. Denot-
ing a successful write cvr-write(v, ver)(v, ver′, chg)p as tr-write(ver)[ver′]p (updat-
ing the object from version ver to ver′), and cvr-write(v, ver)(v′, ver′, unchg)p as
tr-write(ver)[ver′, unchg]p, a coverable implementation satisfies the following prop-
erties (for the formal definition see [24]).

Definition 4 (Coverability [24]). A valid execution ξ is coverable with respect to a
total order <ξ on all successful write operations,Wξ,succ, in ξ if:

– (Consolidation) If a tr-write(verj)[∗] ∈ Wξ,succ then verj is larger than any
version written by a preceding successful write operation.

– (Continuity) if tr-write(ver)[veri] ∈ Wξ,succ, then ver was written by a preced-
ing write operation or ver = ⊥ the initial version

– (Evolution) The version of the object is incrementally evolving and thus for two
version ‘chains’ formed by concurrent writes on a single initial version ver, the
last version of the longest chain is larger than the latest version on the shorter
chain.
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If a fragmented object utilizes coverable blocks, instead of linearizable blocks, then
Definition 3 provides what we would call fragmented coverability: Concurrent update
operations on different blocks would all prevail (as long as each update is tagged with
the latest version of each block), whereas only one update operation on the same block
would prevail (all the other updates on the same block that are concurrent with this
would become a read operation). As we see in the next section fragmented coverability
is a good alternative to RMW semantics to implement large objects, like files, of which
any new value may depend on the current value of the object.

B Additional Operations Supported by the Prototype

To enhance the practicality of our prototype we have equipped it with additional oper-
ations, which are all framed around the two main operations of the FM.

Besides updating the contents of a file, reading a file and managing blocks, the FM
supports a number of other useful operations, such as creating a file, renaming a file,
deleting a file, obtaining a list of the existing files and an advanced list operation.

To store information about the files that the FM manages, internally the FM main-
tains a dictionary D. In more detail, a key entry is a file path fpath of fid, and the
corresponding value is a tuple consisting the bid of the genesis block bg of fid and the
file id fid of the fragmented file f . That is, D : {key, value} = {fpath, 〈bg, fid〉}.

The FM uses fpath as key for this dictionary, in order to be able to monitor the
changes that take place for each file. However, in the level of the Atomic Shared Object
Algorithm, all the information about a file is stored based on its fid.

It is worth mentioning that, the format of a block that sending to the Atomic Shared
Object Algorithm, is a dictionary containing the header and the literal data of the block.
The header includes some information about the block, i.e. the hash value, a boolean
value that indicates if the block is the genesis one, the next bid, the block size and
the modification time of the block. If the block is the genesis block, the header it also
contains the fpath.

– Create Operation: When a new file is created on the client’s filesystem, the FM
fragments it into its respective blocks (including the genesis block), and writes
them on the servers by invoking a sequence of write operations for the entirety
of the blocks comprising the file.

– Rename Operation: When a file is renamed on the client, the FM executes a
special write request, where it writes the genesis block of the file that includes
the new fpath in its header.

– Delete Operation: When a file is deleted on the client, the FM discards the fid
entry from its dictionary and sends a special write request to the servers, with
the genesis bid bgen of the file. The servers set the tag of the bgen to -1, in order
to notify that the file is deleted in case another client tries to have access to it
before the delete operation is completed. As a result, no further operations can
be performed on the deleted file, since the FM and the servers do not have access
to its genesis block.
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– List Operation: To obtain the list of existing files, the FM contacts the servers
and obtains the fid, the fpath and the genesis block id bid of each file, which
then allows for further read operations to be issued.

– Advanced List Operation: The advanced list operation, is similar to the simple
list one, giving some additional information about each file. At first, the FM
requests a simple list operation. Then for each file in the resulted list, it requests
a series of block list operations. Each block list operation informs the FM about
the size and the modified size of the block. As a result, the FM can calculate the
size of the whole file and the maximum modified time that a block of the file has
changed.
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