Skip to main content

Implementation of an Indoor Position Detecting System Using Mean BLE RSSI for Moving Omnidirectional Access Point Robot

  • Conference paper
  • First Online:
Complex, Intelligent and Software Intensive Systems (CISIS 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 278))

Included in the following conference series:

Abstract

Recently, various communication technologies have been developed in order to satisfy the requirements of many users. Especially, mobile communication technology continues to develop rapidly and Wireless Mesh Networks (WMNs) are attracting attention from many researchers in order to provide cost efficient broadband wireless connectivity. The main issue of WMNs is to improve network connectivity and stability in terms of user coverage. In this paper, we introduce a moving omnidirectional access point robot (called MOAP robot) and propose an indoor position detecting system using mean BLE RSSI for MOAP Robot. In order to realize a moving Access Point (AP), the MOAP robot should move omni directionally in 2 dimensional space. It is important that the MOAP robot moves to an accurate position in order to have a good connectivity. Thus, MOAP robot can provide good communication and stability for WMNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: a survey. Comput. Netw. 47(4), 445–487 (2005)

    Article  Google Scholar 

  2. Asahara, Y., Mima, K., Yabushita, H.: Autonomous mobile robot, self position estimation method, environmental map generation method, environmental map generation apparatus, and data structure for environmental map, uS Patent 9,239,580 (2016)

    Google Scholar 

  3. Ban, R., Kaji, K., Hiroi, K., Kawaguchi, N.: Indoor positioning method integrating pedestrian dead reckoning with magnetic field and WiFi fingerprints. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 167–172 (2015)

    Google Scholar 

  4. Hamamoto, R., Takano, C., Obata, H., Ishida, K., Murase, T.: An access point selection mechanism based on cooperation of access points and users movement. In: 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 926–929 (2015)

    Google Scholar 

  5. Maolin, T.: Gateways placement in backbone wireless mesh networks. Int. J. Commun. Netw. Syst. Sci. 2(01), 44–50 (2009)

    Google Scholar 

  6. Matsuo, K., Barolli, L.: Design and implementation of an omnidirectional wheelchair: Control system and its applications. In: Proceedings of the 9th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA-2014), pp. 532–535 (2014)

    Google Scholar 

  7. Matsuo, K., Liu, Y., Elmazi, D., Barolli, L., Uchida, K.: Implementation and evaluation of a small size omnidirectional wheelchair. In: Proceedings of the IEEE 29th International Conference on Advanced Information Networking and Applications Workshops (WAINA-2015), pp. 49–53 (2015)

    Google Scholar 

  8. Mitsugi, K., Toyama, A., Matsuo, K., Barolli, L.: Optimal number of MOAP robots for WMNs using elbow theory. In: Barolli, L., Li, K.F., Enokido, T., Takizawa, M. (eds.) NBiS 2020. AISC, vol. 1264, pp. 116–126. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57811-4_12

    Chapter  Google Scholar 

  9. Muthaiah, S.N., Rosenberg, C.: Single gateway placement in wireless mesh networks. In: Proceedings of ISCN, vol. 8, pp. 4754–4759 (2008)

    Google Scholar 

  10. Nguyen, D., Recalde, M.E.V., Nashashibi, F.: Low speed vehicle localization using WiFi fingerprinting. In: 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1–5 (2016)

    Google Scholar 

  11. Oda, T., Barolli, A., Spaho, E., Xhafa, F., Barolli, L., Takizawa, M.: Performance evaluation of WMN using WMN-GA system for different mutation operators. In: 2011 14th International Conference on Network-Based Information Systems, pp. 400–406 (2011)

    Google Scholar 

  12. Toyama, A., Mitsugi, K., Matsuo, K., Barolli, L.: Implementation of control interfaces for@moving omnidirectional access point robot. In: Proceedings of the 12th International Conference on Intelligent Networking and Collaborative Systems (INCoS-2020), pp. 281–290 (2020)

    Google Scholar 

  13. Toyama, A., Mitsugi, K., Matsuo, K., Barolli, L.: Optimal number of MOAP robots for WMNs using silhouette theory. In: Proceedings of the 12th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA-2020), pp. 436–444 (2020)

    Google Scholar 

  14. Wang, T., Zhao, L., Jia, Y., Wang, J.: WiFi initial position estimate methods for autonomous robots. In: 2018 WRC Symposium on Advanced Robotics and Automation (WRC SARA), pp. 165–171 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keita Matsuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toyama, A., Mitsugi, K., Matsuo, K., Kulla, E., Barolli, L. (2021). Implementation of an Indoor Position Detecting System Using Mean BLE RSSI for Moving Omnidirectional Access Point Robot. In: Barolli, L., Yim, K., Enokido, T. (eds) Complex, Intelligent and Software Intensive Systems. CISIS 2021. Lecture Notes in Networks and Systems, vol 278. Springer, Cham. https://doi.org/10.1007/978-3-030-79725-6_22

Download citation

Publish with us

Policies and ethics