Skip to main content

On the Neighborhood-Connectivity of Locally Twisted Cube Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 279))

Abstract

Interconnection networks are emerging as an approach to solving system-level communication problems. A network may be modeled by a graph whose vertices represent the nodes, and whose edges represent communication links. For any vertex v in a graph G, let \(N_G(v)\) denote the open neighborhood of v, and let \(N_G[v] = \{v\} \cup N_G(v)\) denote the closed neighborhood of v. The connectivity has long been a classic factor that characterizes both network reliability and fault tolerance. A set F of vertex subsets of G is called a neighborhood-cut if \(G-F\) is disconnected, and each element of F happens to be the closed neighborhood of some vertex in G. The neighborhood-connectivity of G is the minimum cardinality over all neighborhood-cuts in G. The locally twisted cube network is a promising alternative to hypercube, which is well known as one of the most popular network architectures for high-performance computing. In this paper, we determine the exact neighborhood-connectivity of locally twisted cubes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akers, S.B., Krishnamurthy, B.: A group theoretic model for symmetric interconnection networks. IEEE Trans. Comput. 38(4), 555–566 (1989)

    Article  MathSciNet  Google Scholar 

  2. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, London (2008)

    Book  Google Scholar 

  3. Chang, N.-W., Hsieh, S.-Y.: \(\{2,3\}\)-Extraconnectivities of hypercube-like networks. J. Comput. Syst. Sci. 79, 669–688 (2013)

    Article  MathSciNet  Google Scholar 

  4. Dally, W.J., Towles, B.: Principles and Practices of Interconnection Networks. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  5. Day, K., Tripathi, A.: Arrangement graphs: a class of generalized star graphs. Inf. Process. Lett. 42(5), 235–241 (1992)

    Article  MathSciNet  Google Scholar 

  6. Efe, K.: The crossed cube architecture for parallel computing. IEEE Trans. Parallel Distrib. Syst. 3, 513–524 (1992)

    Article  Google Scholar 

  7. Flahive, M., Bose, B.: The topology of Gaussian and Eisenstein-Jacobi interconnection networks. IEEE Trans. Parallel Distrib. Syst. 21(8), 1132–1142 (2010)

    Article  Google Scholar 

  8. Han, Y., Fan, J., Zhang, S., Yang, J., Qian, P.: Embedding meshes into locally twisted cubes. Inf. Sci. 180, 3794–3805 (2010)

    Article  MathSciNet  Google Scholar 

  9. Harary, F., Hayes, J.P., Wu, H.-J.: A survey of the theory of hypercube graphs. Comput. Math. Appl. 15, 277–289 (1988)

    Article  MathSciNet  Google Scholar 

  10. Hsieh, S.-Y., Tu, C.-J.: Constructing edge-disjoint spanning trees in locally twisted cubes. Theor. Comput. Sci. 410, 926–932 (2009)

    Article  MathSciNet  Google Scholar 

  11. Hsieh, S.-Y., Wu, C.-Y.: Edge-fault-tolerant hamiltonicity of locally twisted cubes under conditional edge faults. J. Comb. Optim. 19, 16–30 (2010)

    Article  MathSciNet  Google Scholar 

  12. Wei, C.-C., Hsieh, S.-Y.: \(h\)-restricted connectivity of locally twisted cubes. Discret. Appl. Math. 217, 330–339 (2017)

    Article  MathSciNet  Google Scholar 

  13. Hsu, L.-H., Lin, C.-K.: Graph Theory and Interconnection Networks. CRC Press, Boca Raton (2008)

    Book  Google Scholar 

  14. Hung, R.-W.: Embedding two edge-disjoint Hamiltonian cycles into locally twisted cubes. Theor. Comput. Sci. 412, 4747–4753 (2011)

    Article  MathSciNet  Google Scholar 

  15. Kung, T.-L.: Flexible cycle embedding in the locally twisted cube with nodes positioned at any prescribed distance. Inf. Sci. 242, 92–102 (2013)

    Article  MathSciNet  Google Scholar 

  16. Kung, T.-L., Chen, H.-C.: Improving the panconnectedness property of locally twisted cubes. Int. J. Comput. Math. 91(9), 1863–1873 (2014)

    Article  MathSciNet  Google Scholar 

  17. Kung, T.-L., Chen, H.-C., Lin, C.-H., Hsu, L.-H.: Three types of two-disjoint-cycle-cover pancyclicity and their applications to cycle embedding in locally twisted cubes. Comput. J. 64(1), 27–37 (2021)

    Article  MathSciNet  Google Scholar 

  18. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays \(\cdot \) Trees \(\cdot \) Hypercubes. Morgan Kaufmann, San Mateo (1992)

    MATH  Google Scholar 

  19. Li, T.-K., Lai, C.-J., Tsai, C.-H.: A novel algorithm to embed a multi-dimensional torus into a locally twisted cube. Theor. Comput. Sci. 412, 2418–2424 (2011)

    Article  MathSciNet  Google Scholar 

  20. Loh, P.K.K., Hsu, W.J., Pan, Y.: The exchanged hypercube. IEEE Trans. Parallel Distrib. Syst. 16(9), 866–874 (2005)

    Article  Google Scholar 

  21. Ma, M., Xu, J.-M.: Panconnectivity of locally twisted cubes. Appl. Math. Lett. 19, 673–677 (2006)

    Article  MathSciNet  Google Scholar 

  22. Ma, M., Xu, J.-M.: Weak edge-pancyclicity of locally twisted cubes. ARS Comb. 89, 89–94 (2008)

    MATH  Google Scholar 

  23. Martínez, C., Beivide, R., Stafford, E., Moretó, M., Gabidulin, E.M.: Modeling toroidal networks with the Gaussian integers. IEEE Trans. Comput. 57(8), 1046–1056 (2008)

    Article  MathSciNet  Google Scholar 

  24. Menger, K., Kurventheorie, Z.: Fundam. Math. 10, 96–115 (1927)

    Article  Google Scholar 

  25. Saad, Y., Shultz, M.H.: Topological properties of hypercubes. IEEE Trans. Comput. 37, 867–872 (1988)

    Article  Google Scholar 

  26. Xu, J.-M.: Topological Structure and Analysis of Interconnection Networks. Kluwer Academic Publishers, Dordrecht/Boston/London (2001)

    Book  Google Scholar 

  27. Xu, X., Zhai, W., Xu, J.-M., Deng, A., Yang, Y.: Fault-tolerant edge-pancyclicity of locally twisted cubes. Inf. Sci. 181, 2268–2277 (2011)

    Article  MathSciNet  Google Scholar 

  28. Yang, X., Evans, D.J., Megson, G.M.: The locally twisted cubes. Int. J. Comput. Math. 82, 401–413 (2005)

    Article  MathSciNet  Google Scholar 

  29. Yang, X., Megson, G.M., Evans, D.J.: Locally twisted cubes are \(4\)-pancyclic. Appl. Math. Lett. 17, 919–925 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Ministry of Science and Technology, Taiwan, under Grant No. MOST 109-2221-E-468-009-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzu-Liang Kung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kung, TL., Lin, CK., Hung, CN. (2022). On the Neighborhood-Connectivity of Locally Twisted Cube Networks. In: Barolli, L., Yim, K., Chen, HC. (eds) Innovative Mobile and Internet Services in Ubiquitous Computing. IMIS 2021. Lecture Notes in Networks and Systems, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-030-79728-7_31

Download citation

Publish with us

Policies and ethics