Skip to main content

Cybersickness and Its Implications for Using Virtual Reality Head Mounted Displays in Transport Psychology Research

  • Conference paper
  • First Online:
Advances in Simulation and Digital Human Modeling (AHFE 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 264))

Included in the following conference series:

  • 1145 Accesses

Abstract

Cybersickness (CS), described mainly as unpleasant symptoms of nausea, eye strain, and headache, often occurs during usage of virtual reality (VR) head mounted displays (HMD). CS possesses a barrier for broader usage of VR not just in entertainment industry but also in research. This paper aims to review important findings about the prevalence and severity of CS, and main factors affecting CS. Further, opportunities and effectivity of VR usage in traffic psychology research are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LaViola, J.J., Jr.: A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32, 47–56 (2000)

    Article  Google Scholar 

  2. Budhiraja, P., Miller, M.R., Modi, A.K., Forsyth, D.: Rotation blurring: use of artificial blurring to reduce cybersickness in virtual reality first person shooters. arXiv preprint arXiv:1710.02599 (2017)

  3. Davis, S., Nesbitt, K., Nalivaiko, E.: A systematic review of cybersickness. In: Proceedings of the 2014 Conference on Interactive Entertainment, pp. 1–9 (2014)

    Google Scholar 

  4. Sharples, S., Cobb, S., Moody, A., Wilson, J.R.: Virtual Reality Induced Symptoms and Effects (VRISE): comparison of Head Mounted Display (HMD), desktop and projection display systems. Displays 29, 58–69 (2008)

    Article  Google Scholar 

  5. Stanney, K.M., Kennedy, R.S., Drexler, J.M.: Cybersickness is not simulator sickness. In: Proceedings of the Human Factors and Ergonomics Society annual meeting, pp. 1138–1142. SAGE, Los Angeles (1997)

    Google Scholar 

  6. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220 (1993)

    Article  Google Scholar 

  7. Cobb, S.V.G., Nichols, S., Ramsey, A., Wilson, J.R.: Virtual Reality-Induced Symptoms and Effects (VRISE). Presence Teleop. Virt. Environ. 8, 169–186 (1999)

    Article  Google Scholar 

  8. Arcioni, B., Palmisano, S., Apthorp, D., Kim, J.: Postural stability predicts the likelihood of cybersickness in active HMD-based virtual reality. Displays 58, 3–11 (2019)

    Article  Google Scholar 

  9. Palmisano, S., Szalla, L., Kim, J.: Monocular viewing protects against cybersickness produced by head movements in the Oculus Rift. In: 25th ACM Symposium on Virtual Reality Software and Technology, pp. 1–2 (2019)

    Google Scholar 

  10. Dennison, M.S., Wisti, A.Z., D’Zmura, M.: Use of physiological signals to predict cybersickness. Displays 44, 42–52 (2016)

    Article  Google Scholar 

  11. Kim, Y.Y., Kim, H.J., Kim, E.N., Ko, H.D., Kim, H.T.: Characteristic changes in the physiological components of cybersickness. Psychophysiology 42, 616–625 (2005)

    Google Scholar 

  12. Davis, S., Nesbitt, K., Nalivaiko, E.: Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters. In: Proceedings of the 11th Australasian Conference on Interactive Entertainment (IE 2015), p. 30 (2015)

    Google Scholar 

  13. Ng, A.K., Chan, L.K., Lau, H.Y.: A study of cybersickness and sensory conflict theory using a motion-coupled virtual reality system. Displays 61, 101922 (2020)

    Article  Google Scholar 

  14. Petri, K., Feuerstein, K., Folster, S., Bariszlovich, F., Witte, K.: Effects of age, gender, familiarity with the content, and exposure time on cybersickness in immersive head-mounted display based virtual reality. Am. J. Biomed. Sci. 12, 107–121 (2020)

    Article  Google Scholar 

  15. Sevinc, V., Berkman, M.I.: Psychometric evaluation of Simulator Sickness Questionnaire and its variants as a measure of cybersickness in consumer virtual environments. Appl. Ergon. 82, 102958 (2020)

    Article  Google Scholar 

  16. Rebenitsch, L., Owen, C.: Individual variation in susceptibility to cybersickness. In: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, pp. 309–317 (2014)

    Google Scholar 

  17. Min, B.-C., Chung, S.-C., Min, Y.-K., Sakamoto, K.: Psychophysiological evaluation of simulator sickness evoked by a graphic simulator. Appl. Ergon. 35, 549–556 (2004)

    Article  Google Scholar 

  18. Curry, C., Li, R., Peterson, N., Stoffregen, T.A.: Cybersickness in virtual reality head-mounted displays: examining the influence of sex differences and vehicle control. Int. J. Hum. Comput. Interact. 36, 1161–1167 (2020)

    Article  Google Scholar 

  19. Hildebrandt, J., Schmitz, P., Calero Valdez, A., Kobbelt, L., Ziefle, M.: Get well soon! Human factors’ influence on cybersickness after redirected walking exposure in virtual reality. In: Chen, J.Y.C., Fragomeni, G. (eds.) VAMR 2018. LNCS, vol. 10909, pp. 82–101. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91581-4_7

    Chapter  Google Scholar 

  20. Dziuda, Ł, Biernacki, M.P., Baran, P.M., Truszczyński, O.E.: The effects of simulated fog and motion on simulator sickness in a driving simulator and the duration of after-effects. Appl. Ergon. 45, 406–412 (2014)

    Article  Google Scholar 

  21. Kolasinski, E.M.: Simulator sickness in virtual environments. US Army Research Institute for the Behavioral and Social Sciences (1995)

    Google Scholar 

  22. orcino, T., Trevisan, D., Clua, E.: Minimizing cybersickness in head-mounted display systems: causes and strategies review. In: 2020 22nd Symposium on Virtual and Augmented Reality (SVR), pp. 154–163 (2020)

    Google Scholar 

  23. Porcino, T.M., Clua, E., Trevisan, D., Vasconcelos, C.N., Valente, L.: Minimizing cyber sickness in head mounted display systems: design guidelines and applications. In: 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), pp. 1–6. IEEE (2017)

    Google Scholar 

  24. Dong, X., Yoshida, K., Stoffregen, T.A.: Control of a virtual vehicle influences postural activity and motion sickness. J. Exp. Psychol. Appl. 17, 128 (2011)

    Article  Google Scholar 

  25. Kemeny, A., George, P., Mérienne, F., Colombet, F.: New VR navigation techniques to reduce cybersickness. Electron. Imaging 2017, 48–53 (2017)

    Google Scholar 

  26. Palmisano, S., Mursic, R., Kim, J.: Vection and cybersickness generated by head-and-display motion in the Oculus Rift. Displays 46, 1–8 (2017)

    Article  Google Scholar 

  27. Melo, M., Vasconcelos-Raposo, J., Bessa, M.: Presence and cybersickness in immersive content: effects of content type, exposure time and gender. Comput. Graph. 71, 159–165 (2018)

    Article  Google Scholar 

  28. Clemes, S.A., Howarth, P.A.: The menstrual cycle and susceptibility to virtual simulation sickness. J. Biol. Rhythms 20, 71–82 (2005)

    Article  Google Scholar 

  29. Golding, J.F.: Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Res. Bull. 47, 507–516 (1998)

    Article  Google Scholar 

  30. Kruk, R.: Simulator sickness experience in simulators equipped with fiber optic helmet mounted display systems. In: Flight Simulation Technologies Conference, p. 4135 (1992)

    Google Scholar 

  31. Park, W.D., Jang, S.W., Kim, Y.H., Kim, G.A., Son, W., Kim, Y.S.: A study on cyber sickness reduction by oculo-motor exercise performed immediately prior to viewing Virtual Reality (VR) content on Head Mounted Display (HMD). Vibroeng. Proc. 14, 260–264 (2017)

    Article  Google Scholar 

  32. Nesbitt, K., Davis, S., Blackmore, K., Nalivaiko, E.: Correlating reaction time and nausea measures with traditional measures of cybersickness. Displays 48, 1–8 (2017)

    Article  Google Scholar 

  33. Balk, S.A., Bertola, M.A., Inman, V.W.: Simulator sickness questionnaire: twenty years later (2013)

    Google Scholar 

  34. Kennedy, R.S., Drexler, J.M., Compton, D.E., Stanney, K.M., Lanham, D.S., Harm, D.L.: Configural scoring of simulator sickness, cybersickness and space adaptation syndrome: similarities and differences. In: Virtual and Adaptive Environments: Applications, Implications, and Human Performance Issues, p. 247 (2003)

    Google Scholar 

  35. Nalivaiko, E., Davis, S.L., Blackmore, K.L., Vakulin, A., Nesbitt, K.V.: Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time. Physiol. Behav. 151, 583–590 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This article was produced with the financial support of the Ministry of Transport within the programme of long-term conceptual development of research institutions on the research infrastructure acquired from the Operation Programme Research and Development for Innovations (CZ.1.05/2.1.00/03.0064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sára Klečková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klečková, S., Děcký, P., Zámečník, P. (2021). Cybersickness and Its Implications for Using Virtual Reality Head Mounted Displays in Transport Psychology Research. In: Wright, J.L., Barber, D., Scataglini, S., Rajulu, S.L. (eds) Advances in Simulation and Digital Human Modeling. AHFE 2021. Lecture Notes in Networks and Systems, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-030-79763-8_15

Download citation

Publish with us

Policies and ethics