Skip to main content

Finding Optimal Implementations of Non-native CNOT Gates Using SAT

  • Conference paper
  • First Online:
Book cover Reversible Computation (RC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12805))

Included in the following conference series:

Abstract

Quantum computer architectures place restrictions on the availability of quantum gates. While single-qubit gates are usually available on every qubit, multi-qubit gates like the CNOT gate can only be applied to a subset of all pairs of qubits. Thus, a given quantum circuit usually needs to be transformed prior to its execution in order to satisfy these restrictions. Existing transformation approaches mainly focus on using SWAP gates to enable the realization of CNOT gates that are not natively available in the architecture. As the SWAP gate is a composition of CNOT and single-qubit Hadamard gates, such methods may not yield a minimal solution. In this work, we propose a method to find an optimal implementation of non-native CNOTs, i.e. using the minimal number of native CNOT and Hadamard gates, by using a formulation as a Boolean Satisfiability (SAT) problem. While straightforward representations of quantum states, gates and circuits require an exponential number of complex-valued variables, the approach makes use of a dedicated representation that requires only a quadratic number of variables, all of which are Boolean. As confirmed by experimental results, the resulting problem formulation scales considerably well—despite the exponential complexity of the SAT problem—and enables us to determine significantly improved realizations of non-native CNOT gates for the 16-qubit IBM QX5 architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IBM Q. https://www.research.ibm.com/ibm-q/. Accessed 14 Oct 2020

  2. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70(5) (2004). https://doi.org/10.1103/physreva.70.052328

  3. de Almeida, A.A.A., Dueck, G.W., da Silva, A.C.R.: CNOT gate mappings to Clifford+T circuits in IBM architectures. In: International Symposium on Multiple-Valued Logic, pp. 7–12. IEEE (2019). https://doi.org/10.1109/ISMVL.2019.00010

  4. Ash-Saki, A., Alam, M., Ghosh, S.: QURE: Qubit re-allocation in noisy intermediate-scale quantum computers. In: Design Automation Conference, pp. 141:1–141:6. ACM, New York (2019)

    Google Scholar 

  5. Botea, A., Kishimoto, A., Marinescu, R.: On the complexity of quantum circuit compilation. In: SOCS, pp. 138–142. AAAI Press (2018)

    Google Scholar 

  6. Boykin, P., Mor, T., Pulver, M., Roychowdhury, V., Vatan, F.: A new universal and fault-tolerant quantum basis. Inf. Process. Lett. 75, 101–107 (2000). https://doi.org/10.1016/S0020-0190(00)00084-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Cook, S.A.: The complexity of theorem proving procedures. In: Symposium on Theory of Computing, pp. 151–158 (1971)

    Google Scholar 

  8. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  9. Nash, B., Gheorghiu, V., Mosca, M.: Quantum circuit optimizations for NISQ architectures. Quantum Sci. Technol. 5(2), 025010 (2020)

    Article  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press (2010). https://doi.org/10.1017/CBO9780511976667

  11. Niemann, P., Wille, R., Miller, D.M., Thornton, M.A., Drechsler, R.: QMDDs: efficient quantum function representation and manipulation. IEEE Trans. CAD 35(1), 86–99 (2016). https://doi.org/10.1109/TCAD.2015.2459034

    Article  Google Scholar 

  12. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisf. Boolean Model. Comput. 9(1), 53–58 (2014). https://doi.org/10.3233/sat190101

    Article  Google Scholar 

  13. Ranise, S., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB). www.SMT-LIB.org (2006)

    Google Scholar 

  14. Rintanen, J.: Planning and SAT. In: Handbook of Satisfiability, vol. 185, pp. 483–504 (2009)

    Google Scholar 

  15. Siraichi, M.Y., Santos, V.F.d., Collange, S., Pereira, F.M.Q.: Qubit allocation. In: International Symposium on Code Generation and Optimization, CGO 2018, Vienna, pp. 113–125. ACM (2018). https://doi.org/10.1145/3168822

  16. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: International Symposium on Multiple-Valued Logic, pp. 220–225 (2008)

    Google Scholar 

  17. Wille, R., Burgholzer, L., Zulehner, A.: Mapping quantum circuits to IBM QX architectures using the minimal number of SWAP and H operations. In: Design Automation Conference, pp. 142:1–142:6. ACM (2019)

    Google Scholar 

  18. Zhou, X., Li, S., Feng, Y.: Quantum circuit transformation based on simulated annealing and heuristic search. IEEE Trans. CAD 1 (2020). https://doi.org/10.1109/TCAD.2020.2969647

  19. Zulehner, A., Paler, A., Wille, R.: An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Trans. CAD 38(7), 1226–1236 (2019). https://doi.org/10.1109/TCAD.2018.2846658

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Niemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niemann, P., Müller, L., Drechsler, R. (2021). Finding Optimal Implementations of Non-native CNOT Gates Using SAT. In: Yamashita, S., Yokoyama, T. (eds) Reversible Computation. RC 2021. Lecture Notes in Computer Science(), vol 12805. Springer, Cham. https://doi.org/10.1007/978-3-030-79837-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79837-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79836-9

  • Online ISBN: 978-3-030-79837-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics