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Abstract. Reversible CCS (RCCS) is a well-established, formal model
for reversible communicating systems, which has been built on top of
the classical Calculus of Communicating Systems (CCS). In its original
formulation, each CCS process is equipped with a memory that records
its performed actions, which is then used to reverse computations. More
recently, abstract models for RCCS have been proposed in the litera-
ture, basically, by directly associating RCCS processes with (reversible
versions of) event structures. In this paper we propose a detour: starting
from one of the well-known encoding of CCS into Petri nets we apply a
recently proposed approach to incorporate causally-consistent reversibil-
ity to Petri nets, obtaining as result the (reversible) net counterpart of
every RCCS term.

Keywords: Petri Nets · Reversible CCS · Concurrency.

1 Introduction

CCS [17] is a foundational calculus for concurrent systems. Typically, systems are
described as the parallel composition of processes (i.e., components) that com-
municate by sending and receiving messages over named channels. Processes are
then defined in terms of communication actions performed over specific channels:
we write a and a to respectively represent a receive and a send over the channel
a. Basic actions can be composed through prefixing (i.e., sequencing) ( . ), choice
( + ) and parallel ( ‖ ) operators. The original formulation of the semantics of
CCS adheres to the so called interleaved approach, which only accounts for the
executions that arise from a single processor; hence, parallelism can be reduced
to non-deterministic choices and prefixing. For instance, the CCS processes a ‖ b
and a.b + b.a are deemed equivalent, i.e., it does not distinguish a process that
can perform a and b concurrently from one that sequentialises their execution in
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any possible order (interleaving/schedule). Successive works have addressed the
problem of equipping CCS with true concurrent semantics in the style of Petri
nets and Event Structures. It has been shown that every CCS process can be
associated with a Petri net that can mimic its computations. Different flavours
of Petri nets have been used in the literature; for instance, occurrence nets [6],
a variant of Conditions/Events nets [5], and flow nets [3]. The works in [20]
and [3] have additionally shown that the computation of a CCS process can be
represented by using event structures.

Many efforts were made in the last decades to endow computation models
with reversible semantics [1,16] and, in particular, two different models have
been proposed for CCS: RCCS [4,9] and CCSK [19]. Both of them incorpo-
rate a logging mechanism in the operational semantics of CCS that enables the
undoing of computation steps. Moreover, it has been shown that they are iso-
morphic [10] since they only differ on the information that they log: while RCCS
relies on some form of memory/monitor, CCSK uses keys. Previous approaches
have also developed true concurrent semantics for reversible versions of CCS.
For instance, it has been shown that CCSK can be associated with reversible
bundle event structures [7,8]. However, we still lack a Petri net model for RCCS
processes. We may exploit some recent results that connect reversible occurrence
nets with reversible event structures [15,13,14] to indirectly recover a Petri net
model from the reversible bundle event structures defined in [7]. However, we
follow a different approach, which is somehow more direct :

1. we encode (finite) CCS processes into a generalization of occurrence nets,
namely unravel nets, in the vein of Boudol and Castellani [3];

2. we show that unravel nets can be made causally-consistent reversible by
applying the approach in [13];

3. we finally shows that the reversible unravel nets derived by our encoding are
an interpratation of RCCS terms.

An interesting aspect of the proposed encoding is that it highlights that all
the information needed for reversing an RCCS process is already encoded in
the structure of the net corresponding to the original CCS process, i.e., RCCS
memories are represented by the structure of the net. Concretely, if an RCCS
process R is a derivative of some CCS process P , then the encoding of R is
retrieved from the encoding of P , what changes is the position of the markings.
Consider the CCS process P = a.0 that executes a and then terminates. It can
be encoded as the Petri net on the left in Figure 1 (the usage of the apparently
redundant places in the postset of a will be made clearer in Section 3).

The reversible version of P is R = 〈〉.a.0, where 〈〉 denotes an initially empty
memory. According to RCCS semantics, R evolves to R′ = 〈∗, a, 0〉 · 〈〉 . 0 by
executing a. The memory 〈∗, a, 0〉 · 〈〉 in R′ indicates that it can go back to the
initial process R by undoing a. Note that the net corresponding to P (on the left)
has already all the information needed to reverse the action a; morally, a can
be undone by firing it in the opposite direction (i.e., by consuming tokens from
the postset and producing them in its preset), or equivalently, by performing a
reversing transition a that does the job, as shown in the net drawn in the middle
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Fig. 1: Encoding of R = 〈〉 . a.0

of Figure 1. It should be noted that the net on the right of Figure 1 corresponds
to the derivative R′. Consequently, the encoding of a CCS term as a net al-
ready bears all the information needed for reversing it; which contrasts with the
required memories of RCCS. This observation gives an almost straightforward
true concurrent representation of RCCS processes.

Organization of the paper. After setting up some notation, we recall CCS and
RCCS (Section 2). In Section 3 we summarise the basics of Petri nets, unravel
nets and present their reversible counterpart. In Section 4, describe the encoding
of CCS into unravel nets and introduce the mapping from RCCS terms into
reversible unravel nets. In the final section we draw some conclusions and discuss
future developments.

Preliminaries. We denote with N the set of natural numbers. Let A be a set,
a multiset of A is a function m : A→ N. The set of multisets of A is denoted by
∂A. We assume the usual operations on multisets such as union + and difference
−. We write m ⊆ m′ if m(a) ≤ m′(a) for all a ∈ A. For m ∈ ∂A, we denote with
[[m]] the multiset defined as [[m]](a) = 1 if m(a) > 0 and [[m]](a) = 0 otherwise.
When a multiset m of A is a set, i.e. m = [[m]], we write a ∈ m to denote that
m(a) 6= 0, and often confuse the multiset m with the set {a ∈ A | m(a) 6= 0} or
a subset X ⊆ A with the multiset X(a) = 1 if a ∈ A and X(a) = 0 otherwise.
Furthermore we use the standard set operations like ∩, ∪ or \. The multiset m
such that [[m]] = ∅ is denoted with abuse of notation as ∅.

2 CCS and reversible CCS

Let A be a set of actions a, b, c, . . ., and A = {a | a ∈ A} the set of their co-
actions. We denote the set of all possible actions with Act = A ∪ A. We write
α, β for the elements of Actτ = Act ∪ {τ}, where τ /∈ Act stands for a silent
action. The syntax of (finite) CCS is reported in Figure 2. A prefix (or action)
is either an input a, an output a or the silent action τ . A term of the form∑
i∈I αi.Pi represents a process that (non-deterministically) starts by selecting

and performing some action αi and then continues as Pi. We write 0, the idle
process, in lieu of

∑
i∈I αi.Pi when I = ∅ ; similarly, αi.P for a unitary sum in

which I is the singleton {i}. The term P ‖ Q represents the parallel composition
of the processes P and Q. An action a can be restricted so to be visible only
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(Actions) α ::= a | a | τ

(CCS Processes) P,Q ::=
∑
i∈I αi.Pi | (P ‖ Q) | P\a

Fig. 2: CCS Syntax

∑
i∈I

αi.P
αz−−→ Pz (act)

P
α−→ P ′

P ‖ Q α−→ P ′ ‖ Q
(par-l)

Q
α−→ Q′

P ‖ Q α−→ P ‖ Q′ (par-r)

P
α−→ P ′ Q

ᾱ−→ Q′

P ‖ Q τ−→ P ′ ‖ Q′ (syn)
P

α−→ P ′ α /∈ {a, ā}
P\a α−→ P ′\a

(r-res)

Fig. 3: CCS semantics

inside process P , written P\a. Restriction is the only binder in CCS: a occurs
bound in P\a.

We write n(P ) for the set of names of a process P , and, respectively, fn(P )
and bn(P ) for the sets of free and bound names. The set P denotes the set of
all CCS processes.

Definition 1 (CCS Semantics). The operational semantics of CCS is defined
as the LTS (P, Actτ ,→) where the transition relation → is the smallest relation
induced by the rules in Figure 3.

Let us comment on rules of Figure 3. Rule act transforms an action α
into a label. Rules par-l and par-r permit respectively the left and the right
process of a parallel composition to propagate an action. Rule syn regulates the
syncrhonization allowing two process in parallel to handshake. Rule hide forbids
a restricted action to be further propagated.

Reversible CCS. Reversible CCS (RCCS) [4,9] is a reversible variant of CCS.
Processes in RCCS are equipped with a memory, in which a process keeps in-
formation about its past actions. The syntax of RCCS is in Figure 4, where
CCS processes are defined as in the original formulation. A reversible process
is either a monitored process m . P with m a memory and P a CCS process,
the parallel composition R ‖ S of the reversible processes R and S, and the
restriction R\a in which a is restricted to R. A memory is a (possible empty)
stack of events that encodes the history of actions previously performed by a
process; whose top-most element corresponds to the very last action performed
by the monitored process. Memories can contain three different kinds of events4:
partial synchronisations 〈∗, α,Q〉, full synchronisations 〈m,α,Q〉, and memory

4 In this paper we use the original RCCS semantics with partial synchronisation.
Later versions, e.g. [9], use communication keys to univocally identify actions.
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(CCS Processes) P,Q ::=
∑
i∈I αi.Pi | (P ‖ Q) | P\a

(RCCS Processes) R,S ::= m . P | (R ‖ S) | R\a

(Memories) m ::= 〈∗, α,Q〉 ·m | 〈m,α,Q〉 ·m′ | 〈1〉 ·m | 〈2〉 ·m | 〈〉

Fig. 4: RCCS syntax

splits 〈1〉 and 〈2〉. The action α and the process Q in a synchronisation (either
partial or full) record the selected action α of a choice and the discarded branches
Q. The (technical) distinction between partial and full synchronisation will be
made clear when describing the semantics or RCCS. Events 〈1〉 and 〈2〉 represent
the split of a process in two parallel ones. The empty memory is represented by
〈〉. Let us note that in RCCS memories serves also as unique process identifiers.

As for CCS, the only binder in RCCS is restriction (at the level of both CCS
and RCCS processes). We extend functions n, fn and bn to RCCS processes and
memories accordingly. We defineM the set of all the possible memories and PR
the set of all RCCS processes.

Definition 2 (RCCS Semantics). The operational semantics of RCCS is de-
fined as a pair of LTSs on the same set of states and set of labels: a forward LTS
(PR,M× Actτ ,→) and a backward LTS (PR,M× Actτ , ). Transition rela-
tions → and  are the smallest relations induced by the rules in Figure 5 (left
and right columns, respectively). Both relations exploit the structural congruence
relation ≡, which is the smallest congruence on RCCS processes containing the
rules in Figure 6. We define 
 =→ ∪ .

Let us comment on the forward rules (Figure 5, left column). Rule r-act
allows a monitored process to perform a forward action. The action goes along
with the memory m of the process. Since at this point we do not know whether
the process will synchronise or not with the context a partial synchronisation
event of the form 〈∗, αzz,

∑
i∈I\z αi.Pi〉 is put on top of the memory. The ‘*’ will

be replaced by a memory, say, m1 if the process will eventually synchronise with a
process monitored by m1. Let us note that the discarded process Q is recorded in
the memory. Moreover, along with the prefix we also store its position ‘z’ within
the sum. This piece of information is redundant for RCCS, and indeed was not
present in the original semantics. However, it will be of help when encoding a
RCCS process into a net, and when proving the operational correspondence.
We remark that this simple modification does not intact the original semantics
of RCCS. Rules r-par-l and r-par-r propagate an action through a parallel
composition. Rule r-syn allows two parallel processes to synchronize. To do so,
they have to match both the action α and then the two partial synchronisation
of the two processes are updated to two full synchronisation through the op-
erator ‘@’. Let R be a monitored process and m1 and m2 two memories, then
Rm2@m1 stands for the process obtained from R by substituting all occurrences
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m .
∑
i∈I

αi.Pi
m:αz−−−→ 〈∗, αzz,

∑
i∈I\{z}

αi.Pi〉 ·m . Pz (r-act)

〈∗, αzz,
∑

i∈I\{z}

αi.Pi〉 ·m . Pz
m:αz

m .
∑
i∈I

αi.Pi (r-act•)

(r-par-l)
R

m:α−−→ R′

R ‖ S m:α−−→ R′ ‖ S

R
m:α

R′

R ‖ S
m:α

R′ ‖ S
(r-par-l•)

(r-par-r)
S

m:α−−→ S′

R ‖ S m:α−−→ R ‖ S′

S
m:α

S′

R ‖ S
m:α

R ‖ S′
(r-par-r•)

(r-syn)
R

m1:α−−−→ R′ S
m2:ᾱ−−−→ S′

R ‖ S m1,m2:τ−−−−−−→ R′
m2@m1

‖ S′
m1@m2

R
m1:α

R′ S
m2:ᾱ

S′

R ‖ S
m1,m2:τ

R′ ‖ S′
(r-syn•)

(r-res)
R

m:α−−→ R′ α /∈ {a, ā}
R\a m:α−−→ R′\a

R
m:α

R′ α /∈ {a, ā}

R\a
m:α

R′\a
(r-res•)

(r-equiv)
R ≡ R′ R′ m:α−−→ S′ S′ ≡ S

R
m:α−−→ S

R ≡ R′ R′ m:α
S′ S′ ≡ S

R
m:α

S
(r-equiv•)

Fig. 5: RCCS semantics

of 〈∗, α,Q〉 ·m1 by 〈m2, α,Q〉 ·m1. Rule r-res propagates actions through re-
striction provided that the action is not on the restricted name. Rule r-equiv
allows one to exploit structural congruence of Figure 6. Structural rule split
allows a monitored process with a top-level parallel composition to split into a
left and right branch, duplicating the memory. Structural rule res allows one
to push restriction outside monitored processes. Structural rule α allows one to
exploit α-conversion, denoted by =α.

Definition 3 (Initial Process and Coherent process). A RCCS process of
the form 〈〉 . P is called initial. Every process R derived from an initial process
is called coherent process.

3 Petri nets, Unravel Nets and Reversible Unravel Nets

A Petri net is a tuple N = 〈S, T, F,m〉, where S is a set of places and T is a set
of transitions (with S ∩ T = ∅), F ⊆ (S × T ) ∪ (T × S) is the flow relation, and
m ∈ ∂S is called the initial marking.

Petri nets are depicted as usual: transitions are boxes, places are circles and
the flow relation is depicted using directed arcs. The presence of tokens in places
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(split) m . (P ‖ Q) ≡ 〈2〉 ·m . P ‖ 〈1〉 ·m . Q

(res) m . P\a ≡ (m . P )\a if a /∈ fn(m)

(α) R ≡ S if R =α S

Fig. 6: RCCS Structural laws

is signaled by a number of ‘•’ in it. The marking represents the state of the
distributed and concurrent system modeled by the net, and it is distributed.

Given a net N = 〈S, T, F,m〉 and x ∈ S∪T , we define the following multisets:
•x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}. If x is a place then •x and x•

are (multisets) of transitions; analogously, if x ∈ T then •x ∈ ∂S and x• ∈ ∂S.
A transition t ∈ T is enabled at a marking m ∈ ∂S, denoted by m [t〉 , whenever
•t ⊆ m. A transition t enabled at a marking m can fire and its firing produces
the marking m′ = m − •t + t•. The firing of t at a marking m is denoted by
m [t〉m′. We assume that each transition t of a net N is such that •t 6= ∅,
meaning that no transition may fire spontaneously. Given a generic marking m
(not necessarily the initial one), the firing sequence (shortened as fs) of N =
〈S, T, F,m, `〉 starting at m is defined as: (i) m is a firing sequence (of length
0), and (ii) if m [t1〉m1 · · · mn−1 [tn〉mn is a firing sequence and mn [t〉m′,
then also m [t1〉m1 · · · mn−1 [tn〉mn [t〉m′ is a firing sequence. The set of firing
sequences of a net N starting at a marking m is denoted by RNm and it is ranged
over by σ. Given a fs σ = m [t1〉σ′ [tn〉mn, start(σ) is the marking m, lead(σ) is
the marking mn and tail(σ) is the fs σ′ [tn〉mn. Given a net N = 〈S, T, F,m, `〉,
a marking m is reachable iff there exists a fs σ ∈ RNm such that lead(σ) is
m. The set of reachable markings of N is MN = {lead(σ) | σ ∈ RNm }. Given
a fs σ = m [t1〉m1 · · ·mn−1 [tn〉m′, we write Xσ =

∑n
i=1 ti for the multiset

of transitions associated to fs, which we call an execution of the net and we
write E(N) = {Xσ ∈ ∂T | σ ∈ RNm } for the set of the executions of N . Observe
that an execution simply says which transitions (and the relative number of
occurrences of them) has been executed, not their (partial) ordering. Given a fs
σ = m [t1〉m1 · · ·mn−1 [tn〉mn · · · , with ρσ we denote the sequence t1t2 · · · tn · · · .

Definition 4. A net N = 〈S, T, F,m〉 is said to be safe if each marking m ∈
MN is such that m = [[m]].

The notion of subnet will be handy in the following. A subnet is obtained by
restricting places and transitions, and correspondingly the flow relation and the
initial marking.

Definition 5. Let N = 〈S, T, F,m〉 be a Petri net and let T ′ ⊆ T be a subset
of transitions and S′ = •T ′ ∪ T ′•. Then, the subnet generated by T ′ N |T ′ =
〈S′, T′, F′,m′〉, where F ′ is the restriction of F to S′ and T ′, and m′ is the
multiset on S′ obtained by m restricting to the places in S′.
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Unravel nets. To define unravel nets we need the notion of causal net. A safe
Petri net N = 〈S, T, F,m〉 is a causal net (CA for short) when ∀s ∈ S. | •s| ≤ 1
and |s•| ≤ 1, F ∗ is acyclic, T ∈ E(N), and ∀s ∈ S •s = ∅ ⇒ m(s) = 1.
Requiring that T ∈ E(N) implies that each transition can be executed and F ∗

acyclic means that dependencies among transitions are settled. A causal net has
no isolated and unmarked places as ∀s ∈ S •s = ∅ ⇒ m(s) = 1.

Definition 6. An unravel net (UN for short) N = 〈S, T, F,m〉 is a safe net
such that for each execution X ∈ E(N) the subnet N |X is a causal net.

Unravel nets describe the dependencies among the transitions in the executions
of a concurrent and distributed device and are similar to flow nets [2,3]. Flow
nets are safe nets where, for each possible firing sequence, each place can be
marked just once. This requirement implies that the subnet obtained by the
transitions executed in the firing sequence is a causal net and also that all the
transitions t are such that •t 6= ∅.

In an UN conflicting pair of transitions t and t′ are those that are never
together in an execution, i.e. ∀X ∈ E(N). {t, t′} 6⊆ X. Given a place s in an
unravel net, if •s contains more than one transition, then the transitions in •s
are in conflict.

It is worthwhile to observe that the classical notion of occurrence net [18,20] is
indeed a particular kind of UN namely one where the conflict relation is inherited
along the transitive closure of the flow relation and it can can be inferred from
the structure of the net itself. A further evidence that unravel nets generalize
occurrence nets is implied also by the fact that flow nets generalize occurrence
nets as well [2].

An unravel net N = 〈S, T, F,m〉 is complete whenever ∀t ∈ T ∃st ∈ S.
•st = {t} ∧ st

• = ∅. Thus in a complete UN the execution of a transition t is
signaled by the marked place st. Given an UN N , it can be turned easily into a
complete one by adding for each transition the suitable place, without changing
the executions of the net, thus we consider complete UNs only. Completeness
comes handy when defining the reversible counterpart of an UN.

Reversible unravel nets. The definition of reversible unravel net follows the
one of reversible occurrence net [13] and generalize reversible occurrence nets as
unravel nets generalize occurrence nets.

Definition 7. A reversible unravel net (rUN for short) is a quintuple N =
〈S, T, U, F,m〉 such that

1. U ⊆ T and ∀u ∈ U . ∃! t ∈ T \ U such that •u = t• and u• = •t,
2. ∀t, t′ ∈ T . •t = •t′ ∧ t• = t′• ⇒ t = t′,
3.

⋃
t∈T ( •t ∪ t•) = S, and

4. N |T\U is a complete unravel net and 〈S, T, F,m〉 is safe one.

The transitions in U are the reversing ones; hence, we often say that a reversible
unravel netN is reversible with respect to U . A reversing transition u is associated
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with a unique non-reversing transition t (condition 1) and its effects are intended
to undo t. The second condition ensures that there is an injective mapping
h : U → T which in turn implies that each reversible transition has exactly one
reversing transition. The third requirement guarantees that there are no isolated
conditions and the final one states that the subnet obtained forgetting all the
reversing transitions is indeed an unravel net.

Along the lines of [13], we can prove that the set of reachable markings of
a reversible unravel net is not influenced by performing a reversing transition.
Let N = 〈S, T, U, F,m〉 be an rUN. Then MN = MN |

T\U
. A consequence of

this fact is that each marking can be reached by using just forward events. Let
N = 〈S, T, U, F,m〉 be an rUN and σ be an fs. Then, there exists an fs σ′ such
that Xσ′ ⊆ T \ U and lead(σ) = lead(σ′).

Given an unravel net and a subset of transitions to be reversed, it is straight-
forward to obtain a reversible unravel net.

Proposition 1. Let N = 〈S, T, F,m〉 be a complete unravel net and U ⊆ T the

set of transitions to be reversed. Define
−→

NU = 〈S′, T′, U′, F′,m′〉 where S = S′,
U ′ = U × {r}, T ′ = (T × {f}) ∪ U ′,

F ′ = {(s, (t, f)) | (s, t) ∈ F} ∪ {((t, f), s) | (t, s) ∈ F} ∪
{(s, (t, r)) | (t, s) ∈ F} ∪ {((t, r), s) | (s, t) ∈ F}

and m′ = m. Then
−→

NU is a reversible unravel net.

The construction above simply adds as many events (transitions) as transitions
to be reversed in U . The preset of each added event is the postset of the corre-
sponding event to be reversed, and its postset is the preset of the event to be

reversed. We write
−→

N instead of
−→

N T when N = 〈S, T, F,m〉, i.e., when every
transition is reversible.

In Figure 7a we show a non-complete unravel net, whose complete version is
in Figure 7b. The reversible unravel net obtained by reversing every transition
is depicted in Figure 7c.

a b

c

(a) N

a b

c

(b) N ′

aa b b

cc

(c)
−→

N ′

Fig. 7: An UN N , its complete version N ′ and the associated rUN
−→

N ′
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0

(a) N (0)

b.0

b̂.0

b̂.b

b

(b) N (b.0)

a.b.0 â.b.0

â.a

â.b̂.0

â.b̂.b

a â.b

(c) N (a.b.0)

Fig. 8: Example of nets corresponding to CCS processes

4 CCS processes as unravel nets

We now recall the encoding of CCS terms into Petri nets due to Boudol and
Castellani [3]. We just recall that originally the encoding was on proved terms
instead of plain CCS. The difference between proved terms and CCS is that
somehow in a proved term the labels carry the position of the process who
did the action. Hence, we will use decorated version of labels. For instance, â.b
denotes an event b which past was a. That is, if we want to indicate the event
b of the term a.b we will write â.b. Analogously, labels carry also information
about the syntactical structure of a term, actions corresponding to subterms of
a choice and of a parallel composition are also decorated with an index i that
indicates the subterm that performs the actions. An interesting aspect of this
encoding is that these information is reflected in the name of the places and
the transitions of the nets, which simplifies the formulation of the behavioural
correspondence of a term and its associated net. We write `( ) for the function

that removes decorations for a name, e.g., `(â.b̂.c) = c.
We now are in place to define and comment the encoding of a CCS term into

a net. The encoding is inductively defined on the structure of the CCS process.
For a CCS process P , its encoded net is N (P ) = 〈SP , TP , FP ,mP 〉. The net
corresponding to the inactive process 0, is just a net with just one marked place
and with no transition, that is:

Definition 8. The net N (0) = 〈{0}, ∅, ∅, {0}〉 is the net associated to 0 and it
is called zero.

To ease notation in the constructions we are going to present, we adopt following
conventions: let X ⊆ S ∪ T be a set of places and transitions, we write â.X for
the set {â.x | x ∈ X} containing the decorated versions of places and transitions
in X. Analogously we lift this notation to relations: if R is a binary relation on
(S ∪T ), then α̂.R = {(α̂.x, α̂.y) | (x, y) ∈ R} is a binary relation on (α.S ∪α.T ).

The net N (α.P ) corresponding to a process α.P extends N (P ) with two
extra places α.P and â.α and one transition α. The place α.P stands for the
process that executes the prefix α and follows by P . The place â.α is not in
the original encoding of [3]; we have add it to ensure that the obtained net
is complete, which is essential for the definition of the reversible net. This will
become clearer when commenting the encoding of the parallel composition. It
should be noted that this addition does not interfere with the behaviour of the
net, since all added places are final. Also a new transition, named α is created
and added to the net, and the flow relation is updated accordingly. Figures 8a,
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8b and 8c report the respectively the encoding of the inactive process, of the
process b.0 and a.b.0. Moreover the aforementioned figures systematically show
how the prefixing operator is rendered into Petri nets. As a matter of fact, the
net a.b.0 is built starting from the net corresponding to b.0 by adding the prefix
a. We note that also the label of transitions is affected by appending the label
of the new prefix at the beginning. This is rendered in Figure 8c where the
transition mimicking the action b is labeled as â.b indicating that an a was done
before b. In what follows we will often omit such representation from figures.

Definition 9. Let P a CCS process and N (P ) = 〈SP , TP , FP ,mP 〉 be the asso-
ciated net. Then N (α.P ) is the net 〈Sα.P , Tα.P , Fα.P ,mα.P 〉 where

Sα.P = {α.P, α̂.α} ∪ α̂.SP
Tα.P = {α} ∪ α̂.Tp
Fα.P = {(α.P, α), (α, α̂.α)} ∪ {(α, α̂.b) | b ∈ m0P } ∪ α̂.FP
mα.P = {α.P}

For a set X of transitions we write ‖iX for {‖ix | x ∈ X}, which straightforwardly
lifts to relations.

The encoding of the parallel goes along the line of the prefixing one. Also in
this case we have to decorate the places (and transitions) with the position of
the term in the syntax tree. To this end, each branch of the parallel is decorated
with ‖i with i being the i-th position. Regarding the transitions, we have to add
all the possible synchronisations among the processes in parallel. This is why,
along with the transitions of the branches (properly decorated with ‖i) we have
to add extra transitions to indicate the possible synchronisation. Naturally a
synchronisation is possible when one label is the co-label of the other transition.
Figure 9a shows the net corresponding to the process a.b ‖ a.c. As we can see, the
encoding builds upon the encoding of a.b and a.c, by (i) adding to all the places
and transitions whether the branch is the left one or the right one and (ii) adding
an extra transition and place for the only possible synchronisation. We add an
extra place (in line with the prefixes) to mark the fact that a synchronisation has
taken place. Let us note that the extra places a, a and τ are used to understand
whether the two prefixes have been executed singularly (e.g., no synchronisation)
or they contributed to do a synchronisation. Suppose, for example, that the net
had not such places, and suppose that we have two tokens in the places ‖0 â.b and
‖1 ˆ̄a.b. Now, how can we understand whether these two tokens are the result of
the firing sequence a,a or they are the result of the τ transition? It is impossible,
but by using the aforementioned extra-places, which are instrumental to tell if
a single prefix has executed, we can distinguish the τ from the firing sequence
a,a and then reverse accordingly.
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‖0 a.b ‖1 a.c

‖0 â.b

a a

τ

b c

‖1 ˆ̄a.c

‖0 â.b̂ ‖1 ˆ̄a.ĉ

a

b

τ ā

c

(a) N (a.b ‖ ā.c)

+0a.b +1a.c

+0â.b +1ˆ̄a.c

+0â.b̂ +1ˆ̄a.ĉ

b c

a a

a

b

ā

c

(b) N (a.b+ ā.c)

Fig. 9: Example of nets corresponding to CCS parallel and choice operator. We
omit the trailing 0

Definition 10. Let N (P1) and N (P2) be the net associated to the processes P1

and P2. Then N (P1‖P2) is the net 〈SP1‖P2
, TP1‖P2

, FP1‖P2
,mP1‖P2

〉 where

SP1‖P2
= ‖0SP1

∪ ‖1SP2
∪ {s{t,t′} | t ∈ TP1

∧ t′ ∈ TP2
∧ `(t) = `(t′)}

TP1‖P2
= ‖0TP1

∪ ‖1TP2
∪ {{t, t′} | t ∈ TP1

∧ t′ ∈ TP2
∧ `(t) = `(t′)}

FP1‖P2
= ‖0FP1 ∪ ‖1FP2 ∪ {({t, t′}, s{t,t′}) | t ∈ TP1 ∧ t′ ∈ TP2 ∧ `(t) = `(t′)}
∪{(‖is, (t1, t2)) | (s, ti) ∈ FPi} ∪ {(‖is, (t1, t2)) | (s, ti) ∈ FPi}

mP0‖P2 = ‖0mP0
∪ ‖1mP1

The encoding of choice operator is similar to the parallel one. The only
difference is that we do not have to deal with possible synchronisations since the
branches of a choice operator are mutually exclusive. Figure 9b reports the net
corresponding to the process a.b + ā.c. As in the previous examples, the net is
built upon the subnets representing a.b and ā.c.

Definition 11. Let N (Pi) be the net associated to the processes Pi for i ∈ I.
Then +i∈IPi is the net 〈S+i∈IPi

, T+i∈IPi
, F+i∈IPi

,m+i∈IPi
〉 where:

S+i∈IPi
= ∪i∈I+iSPi

T+i∈IPi
= ∪i∈I+iTPi

F+i∈IPi = {(+ix,+iy) | (x, y) ∈ FPi} ∪ {(+js,+it) | s ∈ mPj ∧ •t ∈ mPi ∧ i 6= j}
m+i∈IPi = ∪i∈I+imPi .

We write T a for the set {t ∈ T | nm(`(t)) = a}. The encoding of the hiding
operator simply removes all transitions whose labels corresponds to actions over
the restricted name.
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‖0 a.a

‖1 +0a

‖0 â.a

a

‖1 +0ˆ̄a a

b

τ

τ

‖0 â.â

a

‖1 +1b

‖1 +1b̂

a

a τ

τ

ā b

Fig. 10: A complex example: N (a.a ‖ a+ b)

Definition 12. Let P a CCS process and N (P ) = 〈SP , TP , FP ,mP 〉 be the as-
sociated net. Then N (P \ a) is the net 〈SP\a, TP\a, FP\a,mP\a〉 where

SP\a = \aSP
TP\a = \a(TP \ Ta)
FP\a = {(\as, \at) | (s, t) ∈ FP , t 6∈ T aP } ∪ {(\at, \as) | (t, s) ∈ FP , t 6∈ T aP }
mP\a = \amP .

Figure 10 shows a more complex example, the net corresponding to the pro-
cess a.a ‖ a+ b. In this case, the process on the right of the parallel composition
can synchronise with the one on the left one in two different occasions. This is
why there are two different transitions representing the synchronisation. Also,
since the right process of the parallel is a choice operator, it can happen that the
right branch of it is executed, thus interdicting the synchronisation. Let us note
that since the right branch of the parallel operator is a choice one, composed
by two branches, the encoding labels these branches with ‘‖1 +0’ and ‘‖1 +1’ to
indicate respectively the left and right branch of the choice operator, which is
the right branch of a parallel operator. The following proposition is instrumental
for our result.

Proposition 2. The nets defined in Definition 8, Definition 9, Definition 10,
Definition 11 and Definition 12 are complete unravel nets.

We are now in place to define what is the net corresponding to a RCCS process.
So far we have spoken about encoding CCS processes into nets. We remark that
since RCCS is built upon CCS processes, also the encoding of RCCS is built
upon the encoding of CCS. To do so, we first need the notion of ancestor, that
is the initial process from which an RCCS process is derived. Let us note that
since we are considering coherent RCCS processes (see Definition 3), an RCCS
process has always an ancestor. The ancestor ρ(R) of an RCCS process R can
be calculated syntactically from R, since all the information about the past are
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ρ(〈〉 . P ) = P

ρ(〈 , αzz,
∑

i∈I\{z}

αi.Pi〉 ·m . P ) = ρ(m .
∑
i∈I

αi.Pi)

ρ(〈i〉 ·m . P ) = 〈i〉 ·m . P

ρ(P1‖P2) = ρ(m . P ′
1‖P ′

2) where ρ(Pi) = 〈i〉 ·m . P ′
i ∧ i ∈ {1, 2}

ρ(P \ a) = ρ(P ) \ a

Fig. 11: The ancestor of an RCCS process

stored into memories. The only point in which a process has to wait for its sibling
is when a memory fork 〈1〉 or 〈2〉 is met.

Definition 13. Given a coherent RCCS process R, its ancestor ρ(R) is induc-
tively defined as in Figure 11.

The idea behind the ancestor process is that the encoding of an RCCS process
and of its ancestor should give the same net, what changes is the position where
the markings are placed. And such position is derived by the information stored
into memories. We then define the marking function µ(·) defined inductively as
follows:

µ(〈〉 . P ) = {P} µ(P0‖P1) = ‖0µ(P0) ∪ ‖1µ(P1) µ(P \ a) = \aµ(P1)

µ(〈m′, αi, Q〉 ·m . P ) = µ(m .+iα̂.P ) ∪ {st,t′ | t = m .+iα ∧ t = m′ .+i
′α}

µ(〈∗, αi, Q〉 ·m . P ) = µ(m .+iα̂.P ) ∪ µ(m .+iα)

We are now in place to define what is the reversible net corresponding to an
RCCS process:

Definition 14. Let R be an RCCS term with ρ(R) = P . Then
−−−→

N (R) is the net
〈S, T, F, µ(R)〉 where N (P ) = 〈S, T, F,m〉.

Proposition 3. Let R be an RCCS term with ρ(R) = P . Then
−−−→

N (R) is a
reversible unravel net.

In a few words Proposition 3 tells us that the reversible net corresponding to
a coherent RCCS R is that one of its ancestor. The contribution of R to the
construction of its net relies in the markings, that is the computational history
contained in R is what determines the markings. This is rendered in Figures 12a
and 12b where the two nets are the same since the two processes R1 and R2

shares the same origin. What changes is the where markings are placed, since
R1 and R2 represents different computation from the origin process.

We can now state our main result in terms of bisimulation:
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‖0 a.b ‖1 a.c

‖0 â.b ‖1 ˆ̄a.c

‖0 â.b̂ ‖1 ˆ̄a.ĉ

a a

b c

τ

aa

bb

τ τ ā ā

c c

(a)
−−−−→

N (R1)

‖0 a.b ‖1 a.c

‖0 â.b ‖1 ˆ̄a.c

‖0 â.b̂ ‖1 ˆ̄a.ĉ

a a

b c

τ

aa

bb

τ τ ā ā

c c

(b)
−−−−→

N (R2)

Fig. 12: Example of nets corresponding to RCCS process R1 = 〈∗, a1,0〉 ·〈1〉 · 〈〉.
b ‖ 〈2〉 · 〈〉 . ā.c and R2 = 〈∗, b1,0〉 · 〈m2, a1,0〉 · 〈1〉 · 〈〉 . b ‖ 〈m1, a

1,0〉 · 〈2〉 · 〈〉 . c
with mi = 〈i〉 · 〈〉

Theorem 1. Let P be a finite CCS process, then 〈〉 . P ∼
−−−→

N (P ).

Proof sketch. It is sufficient to show that

R = {(R, 〈S, T, F, µ(R)〉) | ρ(R) = P,
−−−→

N (P ) = 〈S, T, F,m〉}

is a bisimulation. Let us note that all the transitions in the generated net have a
unique name, which is the path from the root to the term in the abstract syntax
tree. There is a one to one correspondence between this path and the memory
of a process which can mimic the same action/transition.

5 Conclusions and future works

On the line of previous research we have equipped a reversible process calculus
with a non sequential semantics by using the classical encoding of process calculi
into nets. What comes out from the encoding is that the machinery to reverse a
process was already present in the encoding.

Our result relies on unravel nets, that are able to represent or -causality.
The consequence is that the same event may have different pasts. Unravel nets
are naturally related to bundle event structures [11,12], where the dependencies
are represented using bundles, namely finite subsets of conflicting events, and
the bundle relation is usually written as X 7→ e. Starting from an unravel net
〈S, T, F,m〉, and considering the transition t ∈ T , the bundles representing the
dependencies are •s 7→ t for each s ∈ •t, and the conflict relation can be easily
inferred by the semantic one definable on the unravel net. This result relies on the
fact that in any unravel net, for each place s, the transitions in •s are pairwise
conflicting. The reversible bundle structures add to the bundle relation (defined
also on the reversing events) a prevention relation, and the intuition behind



16 H. Melgratti, C. A. Mezzina, G. M. Pinna

this relation is the usual one: some events, possibly depending on the one to
be reversed, are still present and they prevent that event to be reversed. The
problem here is that in an unravel net, differently from occurrence nets, is not so
easy to determine which transitions depend on the happening of a specific one,
thus potentially preventing it from being reversed. An idea would be to consider
all the transitions in s• for each s ∈ t•, but it has to be carefully checked if
this is enough. Thus, which is the proper “reversible bundle event structure”
corresponding to the reversible unravel nets has to be answered, though it is
likely that the conditions to be posed on the prevention relations will be similar
to the ones considered in [7,8]. Once that also this step is done, we will have
the full correspondence between reversible processes calculi and non sequential
models.
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