
Isomorphic unordered labeled trees
up to substitution ciphering?

Florian Ingels and Romain Azäıs

Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon,
UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France

{florian.ingels,romain.azais}@inria.fr

Abstract. Given two messages – as linear sequences of letters, it is im-
mediate to determine whether one can be transformed into the other by
simple substitution cipher of the letters. On the other hand, if the let-
ters are carried as labels on nodes of topologically isomorphic unordered
trees, determining if a substitution exists is referred to as marked tree
isomorphism problem in the literature and has been show to be as hard
as graph isomorphism. While the left-to-right direction provides the ci-
pher of letters in the case of linear messages, if the messages are carried
by unordered trees, the cipher is given by a tree isomorphism. The num-
ber of isomorphisms between two trees is roughly exponential in the size
of the trees, which makes the problem of finding a cipher difficult by
exhaustive search. This paper presents a method that aims to break the
combinatorics of the isomorphisms search space. We show that in a linear
time (in the size of the trees), we reduce the cardinality of this space by
an exponential factor on average.

Keywords: Labeled Unordered Trees · Tree Isomorphism · Substitution
cipher.

This paper is eligible for best student paper award.

1 Introduction

A simple substitution cipher is a method of encryption that transforms a se-
quence of letters, replacing each letter from the original message by another
letter, not necessarily taken from the same alphabet [7].

Assume you have at your disposal two messages of the same length, and
you want to determine if there exists a substitution cipher that transforms one
message onto the other. This question is easily solved, as the cipher is induced
by the order of letters. One letter after the other, you can build the cipher
by mapping them, until (i) either you arrive at the end of the message, and
the answer is Yes, (ii) either you detect an inconsistency in the mapping and
the answer is No. Actually, this procedure induces an equivalence relation on
messages of the same length: two messages are equivalent (isomorphic) if and

? Supported by European Union H2020 project ROMI.

ar
X

iv
:2

10
5.

05
68

5v
1

 [
cs

.D
M

]
 1

2
M

ay
 2

02
1

2 F. Ingels et R. Azäıs

only if there is a cipher that transforms one message onto the other. See Fig. 1
for an illustration.

Message 1

Message 2

Induced cipher

B C A A

β γ α α

A B C

α β γ

Message 1

Message 2

Induced cipher

B C C A

β γ α α

A B C

α β γ

Fig. 1: Simple substitution cipher induced by the order of letters on two examples, one
where the two messages are isomorphic (left), and one where there are not (right). In
the latter, the last letter of both messages is ignored as an inconsistency is detected at
the penultimate letter.

In this article, we are interested in the analogous problem of determining
whether two messages are identical up to a substitution cipher, but instead of
a linear sequence, the letters are placed as labels on nodes of unordered trees –
i.e. for which the order among children of a same node is not relevant.

Instead of requiring that the two messages are of same length – as it was
the case for sequences, we require that the two trees are isomorphic, i.e. they
share the same topology. The reading order of letters is not induced by the
sequence but by a tree isomorphism, that is a bijection between the nodes of
both trees, that respect topology constraints. While the reading order is unique
for sequences, for trees, the number of isomorphisms is given by a product of as
many factorials as the number of nodes of the tree (see upcoming equation (1)
and illustrative Fig. 4). Although this number depends highly on the topology,
ignoring pathological cases, it is usually extremely large. To give an order of
magnitude, for a million replicates of random recursive trees [14] of size 100, the
average number of tree isomorphisms is 6.88×108 – with a median of 2.21×105.
The tree ciphering isomorphism problem can then be precised as:

“Given two isomorphic unordered trees, is there any tree isomorphism that
induces a substitution cipher of the labels of one tree onto the other?”

This question induces an equivalence relation on trees: two topologically iso-
morphic unordered trees with labels are equivalent if and only if there exists a
tree isomorphism that induces a substitution cipher on the labels that transforms
one tree onto the other – see Theorem 1. The problem is formally introduced in
this paper in Section 2, while an example is provided now in Fig. 2.

Determining if two trees are topologically isomorphic can be achieved within
linear time via the so-called AHU algorithm [1, Ex. 3.2]. Determining if two
labeled trees are isomorphic under the definition above is, on the other hand,
a difficult problem. It is an instance of labeled graph isomorphism – see [13]
and [6] – that was introduced under the name marked tree isomorphism in [4,
Section 6.4], where it has been proved graph isomorphism complete, i.e. as hard

Isomorphic unordered labeled trees up to substitution ciphering 3

A

B B

A C

α

β β

α γ

T1 T2

Fig. 2: Two messages encoded as labels on unordered
trees T1 and T2 (left). T1 and T2 are topologically iden-
tical. There exist two tree isomorphisms between T1 and
T2, one inducing a simple substitution cipher (below,
left) and the other one that does not (below, right). In
the latter, the full tree isomorphism is not parsed as
an inconsistency is detected before. Overall, the two la-
beled trees T1 and T2 are isomorphic since at least one
tree isomorphism leads to a substitution cipher.

A

B B

A C

α

β β

α γ

T1 T2

Induced cipher

A B C

α β γ

A

B B

A C

α

β β

α γ

T1 T2

Induced cipher

A B C

α β γ

as graph isomorphism. The latter is still an open problem, where no proof of
NP-completeness nor polynomial algorithm is known [10].

One classic family of algorithms trying to achieve graph isomorphism are
color refinement algorithms, also known as Weisfeiler-Leman algorithms [12].
Both graphs are colored according to some rules, and the color histograms are
compared afterwards : if they diverge, the graphs are not isomorphic. However,
this test is incomplete in the sense that there exist non-isomorphic graphs that
are not distinguished by the coloring. The distinguishability of those algorithms
is constantly improved – see [8] for recent results – but does not yet answer the
problem for any graph. Actually, AHU algorithm for topological tree isomor-
phism can be interpreted as a color refinement algorithm.

To address the tree ciphering isomorphism problem, one strategy is to explore
the space of tree isomorphisms and look for one that induces a ciphering, if it
exists. As stated earlier and as discussed in Section 2, such a search space is
factorially large. This paper does not seek to solve the tree ciphering isomorphism
problem, but rather to break the combinatorial complexity of the search space.

In Section 3, we present an algorithm fulfilling this objective. Even if it uses
AHU algorithm, our method does not involve a color refinement process. Actu-
ally, we adopt a strategy that is more related to constrained matching problems
in bipartite graphs [5,9]. In details, since we are building two isomorphisms si-
multaneously – one on trees and the other on labels – that must be compatible,
the general idea is to use the constraints of one to make deductions about the
other, and vice versa. For instance, whenever two nodes must be mapped to-
gether, so are their labels, and therefore you can eliminate all potential tree

4 F. Ingels et R. Azäıs

isomorphisms that would have mapped those labels differently. When no more
deductions are possible, our algorithm stops. To complete (if feasible) the two
isomorphisms, and to explore the remaining space, different strategies can be
considered, including, for example, backtracking. However, this is not the pur-
pose of this paper which aims to break the combinatorial complexity of the space
of tree isomorphisms compatible to substitution ciphering.

Finally, in Section 4, we show that our algorithm runs in linear time – at least
experimentally. Moreover, we show on simulated data that it reduces on average
the cardinality of the search space of an exponential factor – which shows the
great interest of this approach especially considering its low computational cost.

2 Problem formulation

2.1 Tree isomorphisms

A (rooted) tree is a connected directed graph without cycle such that (i) there
exists a special node called the root, which has no parent, and (ii) any node
different from the root has exactly one parent. The parent of a node u is denoted
by P(u), where its children are denoted as C(u). Trees are said to be unordered
if the order among siblings is not significant. In a sequel, we use tree to designate
a unordered rooted tree.

The degree of a node is defined as deg(u) = # C(u), and the degree of a tree is
deg(T) = maxu∈T deg(u). The leaves L(T) of a tree T are all the nodes without
any children. The depth D(u) of a node u is the length of the path between u
and the root. The depth D(T) of T is the maximal depth among all nodes. For
any node u of T , we define the subtree T [u] rooted in u as the tree composed of
u and all of its descendants.

Let T1 and T2 be two trees.

Definition 1. A bijection ϕ : T1 → T2 is a tree isomorphism if and only if, for
any u, v ∈ T1, if u is a child of v in T1, then ϕ(u) is a child of ϕ(v) in T2; in
addition, roots must be mapped together.

We can define Isom(T1, T2) as the set of all tree isomorphisms between T1 and
T2. If this set is not empty, then T1 and T2 are topologically isomorphic and we
denote T1 ≡ T2. It is well known that ≡ is an equivalence relation over the set
of trees [11, Chapter 4]. Fig. 3 provides an example of tree isomorphism.

a

bc

d ef g

h

T1

1

2 3

4 5 6 7

8

T2
u ∈ T1 a b c d e f g h

ϕ(u) ∈ T2 1 3 2 6 7 5 4 8

Fig. 3: Two topologically isomorphic trees
T1 and T2 (left) and an example of tree iso-
morphism ϕ ∈ Isom(T1, T2) (above). Nodes
are labeled and colored for ease of compre-
hension.

Isomorphic unordered labeled trees up to substitution ciphering 5

The class of equivalence of node u ∈ Ti under ≡ – denoted by [u] – is the
set of all nodes v ∈ Ti such that Ti[u] ≡ Ti[v]. So-called AHU algorithm [1,
Ex. 3.2] assigns in a bottom-up manner to each node u of both trees a color that
represents [u]. The algorithm can thereby conclude in linear time whether two
trees are isomorphic, if and only if their roots are identically colored.

2

2

2

Fig. 4: A tree T .
Nodes susceptible to
be swapped are boxed
together, leading to
N≡(T) = (2!)3 = 8.

Any tree isomorphism ϕ : T1 → T2

maps u ∈ T1 onto v = ϕ(u) ∈ T2

only if [u] = [v]. Thus, all tree isomor-
phisms can be – recursively from the
root – obtained by swapping nodes (i)
of same equivalence class and (ii) chil-
dren of a same node. Consequently, the number of tree isomorphisms between
T1 and T2 depends only on the class of equivalence of T1 (equivalently T2), and
will be denoted by N≡(T1). For any tree T , we have

N≡(T) =
∏
u∈T

∏
q∈{[v]:v∈C(u)}

(#{v ∈ C(u) : [v] = q})!. (1)

An example is provided in Fig. 4.

2.2 Tree cipherings

We now assume that each node of a tree carries a label. Let T be a tree and
u ∈ T ; we denote by u the label of node u. The alphabet of T , denoted by A(T),
is defined as A(T) = ∪u∈Tu. We say that T is a labeled tree.

Let T1 and T2 be two topologically isomorphic labeled trees and ϕ ∈ Isom(T1, T2).
ϕ naturally induces a binary relation Rϕ over sets A(T1) and A(T2), defined as

∀x ∈ A(T1),∀y ∈ A(T2), x Rϕ y ⇐⇒ ∃u ∈ T1, (x = u) ∧ (y = ϕ(u)).

Fig. 5 illustrates this induced binary relation on an example.

A

BC

C BA C

D

T1

α

γ α

γ α γ β

γ

T2

A

B

C

D

α

β

γ

A(T1) A(T2) Fig. 5: Two topologically
isomorphic labeled trees
(left) and the induced bi-
nary relation (right). The
tree isomorphism ϕ is dis-
played through node col-
ors – cf. Fig. 3.

Such a relation Rϕ is said to be a bijection if and only if for any x ∈ A(T1),
there exists a unique y ∈ A(T2) so that x Rϕ y, and conversely if for any
y ∈ A(T2), there exists a unique x ∈ A(T1) so that x Rϕ y. This is not the case

6 F. Ingels et R. Azäıs

of the relation induced by the example in Fig. 5, since C and D are both in
relation to γ, and also B is in relation to both α and β.

WhenRϕ is a bijection, we can define a bijective function fϕ : A(T1)→ A(T2)
by fϕ(x) = y ⇐⇒ x Rϕ y. This function is called a substitution cipher (fol-
lowing the analogy developed in the introduction) and verifies ∀u ∈ T1, fϕ(u) =

ϕ(u).

Definition 2. ϕ ∈ Isom(T1, T2) is said to be a tree ciphering if and only if Rϕ

is a bijection; in which case we denote T1
ϕ−→ T2.

Let us denote by Cipher(T1, T2) the set of tree cipherings between T1 and T2. If
Cipher(T1, T2) is not empty, then we write T1 ∼ T2 and say that T1 and T2 are
isomorphic by substitution ciphering, since the following results holds.

Theorem 1. ∼ is an equivalence relation over the set of labeled trees.

Proof. The proof is deferred to Appendix A.

Remark 1. It is possible to be more restrictive on the choices of substitution
ciphers. Let (G, ◦) be a subgroup of the bijections between A(T1) and A(T2).
Then, if we replace “Rϕ is a bijection” in Definition 2 by “Rϕ∈ G”, the induced
relation ∼G is also an equivalence relation. With G = {Id}, T1 ∼G T2 means
T1 ≡ T2 plus equality of labels. It is actually the definition adopted for labeled
tree isomorphism in [3, Section 5.1].

Determining if T1 ∼ T2 implies to find ϕ ∈ Isom(T1, T2) such that ϕ is also
in Cipher(T1, T2). Therefore, the cardinality of the search space is given by (1),
and is potentially exponentially large compared to the size of the trees. In the
sequel of the paper, we present an algorithm that aims to break this cardinality.

3 Breaking down the combinatorial complexity

Let be two labeled trees T1 and T2. To build a tree ciphering between T1 and
T2 (if only it exists), a strategy is to ensure that T1 ≡ T2, and then explore
Isom(T1, T2), whose cardinality is given by (1). Since AHU algorithm [1, Ex. 3.2]
solves the problem of determining whether T1 ≡ T2 in linear time, as well as
assigning to each node u its equivalence class [u] under ≡, we use AHU as a
preprocessing step.

In the case of linear messages, illustrated in Fig. 1, the isomorphism on labels
is induced by the reading order, starting with the first letter. In our case, we
know that the roots have to be mapped together and we start here. At each step
of the algorithm, we will add elements to the two bijections we aim to build: ϕ
for the nodes and f for the labels. We present in Subsection 3.1 how to update
those bijections, with the ExtBij procedure.

Besides, the topological constraints imposed by tree isomorphism allow to
sort the nodes of the trees and to group them by susceptibility to be mapped
together. In Subsection 3.2, we introduce two concepts, bags and collections, that

Isomorphic unordered labeled trees up to substitution ciphering 7

reflects this grouping mechanism. The actual mapping of nodes is performed by
the procedure MapNodes, introduced in Subsection 3.3.

Finally, the precise course of the algorithm is presented in Subsection 3.4.
Starting by grouping all the nodes together, we successively add topological
filters to refine the groups of nodes. Whenever possible, if a filter allows us to
deduce that two nodes should be mapped together, we do so, thus reducing the
cardinality of the remaining possibilities. The last filter checks constraints on
labels and allows a last phase of deductions, before concluding the algorithm –
whose analysis is discussed in Section 4.

The course of the algorithm is illustrated through an example in Appendix B.

3.1 Extension of a bijection

During the execution of the algorithm, we construct two mappings: ϕ for the
nodes, and f for the labels. They start as empty mappings ∅ 7→ ∅, and will be
updated through time. They must remain bijective at all times, and the rules
for updating them are presented here.

A partial bijection ψ from E to F is an injective function from a subset Sψ of
E to F . Let a ∈ E and b ∈ F ; suppose we want to determine if the couple (a, b)
is compatible with ψ – in the sense that it respects (or does not contradict) the
partial bijection. First, if a ∈ Sψ, then b must be equal to ψ(a). Otherwise, if
a 6∈ Sψ, then b must not be in the image of ψ, i.e. ∀s ∈ Sψ, ψ(s) 6= b. If those
conditions are respected, then (a, b) is compatible with ψ; furthermore, if a 6∈ Sψ,
then we can extend ψ on Sψ ∪ {a} by defining ψ(a) = b so that ψ remains a
partial bijection. Formally, for any a ∈ E and b ∈ F , with ψ a partial bijection
from E to F , we define

ExtBij(a, b, ψ) =
(
a ∈ Sψ =⇒ ψ(a) = b

)
∧
(
a 6∈ Sψ =⇒ ∀s ∈ Sψ, ψ(s) 6= b

)
;

so that ExtBij(a, b, ψ) returns > if and only if the couple (a, b) is compatible
with the partial bijection ψ. For the sake of brevity, we assume that the function
ExtBij also extends the partial bijection in the case a 6∈ Sψ by defining ψ(a) = b
– naturally only if the function returned >.

ExtBij will be used in the sequel to update both partial bijections ϕ (from
T1 to T2) and f (from A(T1) to A(T2)). However, if one uses the restricted
substitution ciphers presented in Remark 1, one must design a specific version
of ExtBij to update f , accounting for the desired properties.

3.2 Bags and collections

Remark that if two nodes u ∈ T1 and v ∈ T2 are mapped together via ϕ, then
they must share a number of common features: (i) D(u) = D(v), (ii) [u] = [v],
(iii) fϕ(u) = v, and (iv) ϕ(P(u)) = P(v). Our goal is to gather together nodes
that share such common features. For this purpose, we introduce the concepts
of bags and collections.

8 F. Ingels et R. Azäıs

We recall that a partition P of a set X is a set of non-empty subsets Pi of
X such that every element x ∈ X is in exactly one of these subsets Pi. Let P
(resp. Q) be a partition of the nodes of T1 (resp. T2).

A bag B is a couple (Pi, Qj) such that Pi ∈ P,Qj ∈ Q and #Pi = #Qj
– this number is denoted by #B. A bag contains nodes that share a number
of common features, and are therefore candidates to be mapped together. If
a bag is constructed such that Pi and Qj each contain a single element, then
those elements should be unambiguously mapped together – via the function
MapNodes that will be introduced in the next subsection. Formally, this rule
is expressed as:

Deduction Rule 1. While there exist bags B = (Pi, Qj) with Pi = {u} and
Qj = {v}, call MapNodes(u, v, ϕ, f) – and delete B.

A collection C gathers several Pi’s and Qj ’s, that are candidates to form
bags. Formally, C : N → 2P × 2Q with C(n) = ({Pi, i ∈ I}, {Qj , j ∈ J}) –
possibly I = J = ∅ – such that, denoting the components by C1(n) and C2(n),

(i) ∀n,#C1(n) = #C2(n);

(ii) ∀n, ∀Pi ∈ C1(n),#Pi = n and ∃a ∈ A(T1),∀u ∈ Pi, u = a;

(iii) ∀n, ∀Qj ∈ C2(n),#Qj = n and ∃b ∈ A(T2),∀v ∈ Qj , v = b.

We denote by #C(n) the common cardinality of (i); and Pi and Qj the common
labels of (ii) and (iii). Note that the number of n’s such that #C(n) > 0 is finite.

The elements of Ci(n), since they share the same cardinality n, are candidates
to form bags together. If #C(n) = 1, we can form a bag with the two elements
of C1(n) and C2(n):

Deduction Rule 2. While there exist collections C and integers n for which
C(n) = ({Pi}, {Qj}); if ExtBij(Pi, Qj , f), create bag (Pi, Qj) and delete C(n)
– otherwise stop and conclude that T1 6∼ T2.

As it will be described later on, each subset Pi or Qj will belong to either a
bag or a collection. Any node u will either be already mapped in ϕ, or attached
to one bag or collection through the partitions.We denote by p(u) the function
that returns the bag or collection in which u belongs to, if any. We denote by B
the set of all bags, and by C the set of all collections.

3.3 Mapping Nodes

We now present with Algorithm 1 the function MapNodes that performs the
mapping between nodes, while updating ϕ, f,B and C. The latter two, B and
C, are considered to be “global” variables and are therefore not included in the
pseudocode provided.

Isomorphic unordered labeled trees up to substitution ciphering 9

Algorithm 1: MapNodes

Input: u ∈ T1, v ∈ T2, ϕ, f
if ExtBij(u, v, f) and ExtBij(u, v, ϕ)
then

Delete u from p(u) and v from p(v)
SplitChildren(u, v)
if (P(u),P(v)) 6∈ Gϕ then

Return MapNodes(P(u),P(v), ϕ, f)
else

Return >
else

Return ⊥

Once two nodes u and
v are mapped, the topology
constraints impose that P(u)
and P(v) are mapped to-
gether, if not already the case,
but also C(u) and C(v). These
children are either (i) already
mapped – and there is noth-
ing to do, or (ii) in bags or col-
lections potentially contain-
ing other nodes with which
they can no longer be mapped – since their parents are not. In the latter case,
it is then necessary to separate the children of u and v from these bags and
collections. The procedure SplitChildren aims to do that, in the following
manner. For each Pi (resp. Qj) in the current partitions of nodes such that
Pu = Pi ∩ C(u) 6= ∅ (resp. Qv = Qj ∩ C(v) 6= ∅):

– Either (Pi, Qj) forms a bag, in which case we delete it and create instead
two new bags formed by (Pu, Qv) and (Pi \ Pu, Qj \Qv).

– Either there exists a collection C so that Pi ∈ C1(n) and Qj ∈ C2(n) – with
n = #Pi = #Qj . In which case, we remove them from their set Ci(n), and
add instead Pu (resp. Qv) to C1(q) (resp. C2(q)) – with q = #Pu = #Qv –
and Pi \ Pu (resp. Qj \ Qv) to C1(n − q) (resp. C2(n − q)). Note that this
splitting operation changes the sets Ci(·) and therefore we need to apply
Deduction Rule 2 to check whether some bags are to be created or not.

At any time, if MapNodes returns ⊥, then we can immediately conclude
that T1 6∼ T2 and stop. Similarly, if the procedure SplitChildren leads to the
creation of a pathological object (e.g. a bag where #Pi 6= #Qj), we can also
conclude that T1 66∼ T2 and stop. We can conclude that T1 ∼ T2 only when all
nodes have been mapped.

3.4 The algorithm

Let T1 and T2 be two labeled trees; we assume that T1 ≡ T2. Let ϕ : ∅ 7→ ∅ and
f : ∅ 7→ ∅. We start with no collections and a single bag containing all nodes of
T1 and T2. The general idea is to build a finer and finer partition of the nodes
(by applying successive filters), and mapping nodes whenever possible to build
the two isomorphisms considered – if they exist: ϕ and f .

An example of execution of the algorithm can be found in Appendix B.

Depth We partition the only bag B = (T1, T2), defining Ti(d) = {u ∈ Ti :
D(u) = d} for d = 0, . . . ,D(Ti). We delete B from B and for each d, we cre-
ate a new bag (T1(d), T2(d)). Then, apply Deduction Rule 1. Note that since
SplitChildren modifies bags after mapping two nodes, the number of bags
meeting the prerequisite of the mapping deduction rule can vary through the

10 F. Ingels et R. Azäıs

iterations. At this step, since the roots are the only nodes with depth of 0, they
must be mapped together, and the deduction rule is then applied at least once.

Parents and children signature For each bag B = (S1, S2) in B, we partition
S1 and S2 by shared parent, i.e. we define Si(v) = {u ∈ Si : P(u) = v}.
For any such a parent v, we define its children signature σ(v) as the multiset
σ(v) = {[u] : u ∈ C(v)}. Nodes from S1(v) and S2(v′) should be mapped together
only if σ(v) = σ(v′). We then group the nodes by signature – losing at the
same time the parent information, but which will be recovered through the
function MapNodes – and define Si(s) = ∪σ(v)=sSi(v). We then create new
bags (S1(s), S2(s)) for each such s, and finally delete B.

Once all bags have been partitioned, apply again Deduction Rule 1.

Equivalence class under ≡ For each remaining bag B = (S1, S2) in B, we
partition S1 and S2 by equivalence class under ≡, i.e. we define Si(c) = {u ∈
Si : [u] = c}. We then create new bags (S1(c), S2(c)) for each such c, and finally
delete B.

Once all bags have been partitioned, apply again Deduction Rule 1.

Labels For each remaining bag B = (S1, S2) in B, we now look at the labels of
nodes in S1 and S2. We define Si(a) = {u ∈ Si : u = a}. Some of these labels
may have been seen previously and may be already mapped in f , in which case
we can form bags with the related sets Si(a). Formally, we apply the following
deduction rule.

Deduction Rule 3. While there exist two sets (of same cardinality) S1(a) and
S2(b) with f(a) = b, create bag (S1(a), S2(b)). If only one of the two sets exists
(S1(a) with a ∈ Df or S2(b) with b ∈ If) but not its counterpart, we can conclude
that T1 6∼ T2 and stop.

The remaining Si(a) are to be mapped together. However, since we do not
know the mapping between their labels, we cannot yet regroup them in bags.
We create instead a collection C that contains all those Si(a), and delete bag B.

Once all bags have been partitioned, either in new bags or in collections,
apply Deduction Rule 2. Since this rule maps new labels between them, new bags
may be created by virtue of Deduction Rule 3. Consequently, Deduction Rule 3
should be applied every time a bag is created by Deduction Rule 2 – including
during the SplitChildren procedure. Finally, apply again Deduction Rule 1.

4 Analysis of the algorithm

The analysis presented here is based on theoretical considerations and numerical
simulations of labeled trees. For several given n and A, we generated 500 couples
(T1, T2) as follows. To create T1, we generate a random recurvise tree [14] of size
n, and assign a label, randomly chosen from the alphabet A, to each node. We
build T2 as a copy of T1, before randomly shuffling the children of each node.
In this case, T1 ∼ T2. To get T1 6∼ T2, we choose a node u of T2 at random and

Isomorphic unordered labeled trees up to substitution ciphering 11

replace its label by another one, drawn among A(T1) \ {u} – this is the most
difficult case to determine if T1 6∼ T2. The results are gathered in Figs. 6 and 8
and discussed later in the section. Remarkably, in terms of computation times
and combinatorial complexity, they seem to mostly depend on n, and not #A.

4.1 The algorithm is linear

In spite of an intricate back and forth structure between nodes, bags and col-
lections (notably through deduction rules and the SplitChildren procedure),
our algorithm is linear, in the following sense.

Proposition 1. The number of calls to the function MapNodes is bounded by
the size of the trees.

Proof. Each call to MapNodes strictly reduces by one, in each tree, the num-
ber of nodes remaining to be mapped – and thus present among the bags and
collections. As a result, MapNodes cannot be called more times than the total
number of nodes – including the recursive calls of MapNodes on the parents.

It is important to note, however, that this does not guarantee the overall lin-
earity of the algorithm. Indeed, the complexity of a call to MapNodes depends
on the number of deductions that will be made, notably though the SplitChil-
dren procedure.

Nevertheless, it seems that this variation regarding the deductions is com-
pensated globally, since experimentally, as shown in Fig. 6a, in the case T1 ∼ T2,
it appears quite clearly that the total computation time for the preprocessing
phase is linear in the size of the trees. In the case T1 6∼ T2, the algorithm allows
to conclude negatively in a sublinear time on average – as shown in Fig. 6b.

50 75 100 125 150 175 200 225 250

0.005

0.010

0.015

0.020

0.025

0.030

Alphabet Size

5

10

50

100

(a) Computation time when T1 ∼ T2.

50 75 100 125 150 175 200 225 250

0.005

0.010

0.015

0.020

0.025

0.030

Alphabet Size

5

10

50

100

(b) Computation time when T1 6∼ T2.

Fig. 6: Computation time (in s) for the execution of the algorithm of Subsection 3.4,
according to the size of the considered trees. The different sizes of alphabet are displayed
with different colors. In Fig. 6b, the red triangles indicate the average value of the
corresponding computation time in the case T1 ∼ T2 (estimated from Fig. 6a)

12 F. Ingels et R. Azäıs

4.2 The algorithm reduces the complexity by an exponential factor
on average

At any moment during the execution of the algorithm, given B and C, we can
deduce the current size of the search space. Indeed, for each bag B, there are
(#B)! ways to map the nodes between them (not all of them necessarily leading
to a tree isomorphism); for a collection C and for given n, there are (#C(n))!
ways to create bags, each giving n!#C(n) possible mappings. The overall number
of mappings associated to C(n) is then given by (n!)#C(n)(#C(n))!. Let us define
the size of the current search space as

N(B,C) =
∏
B∈B

(#B)!
∏
C∈C

(∏
n

(n!)#C(n)(#C(n))!

)

Applying the deduction rules does not reduce this number at first sight – since
we transform into bags collections with #C(n) = 1 and we map nodes when
#B = 1. On the other hand, each call to SplitChildren reduces this number.
Indeed, for each bag or collection where a child of the mapped nodes appears,
this object is divided into two parts, breaking the associated factorial:

– A bag with (p + q) elements cut into two bags of size p and q reduces the
size of the space by a factor of

(
p+q
p

)
.

– An element of C(p + q) cut into two elements of size p and q induces that
#C(n) decreases by 1, and both #C(p) and #C(q) increase by 1. Overall, the

size of the search space is modified by a factor of
(
p+q
p

) #C(p+q)
(#C(p)+1)(#C(q)+1) .

Each filter during the execution of the algorithm, that consists in splitting each
bag into several ones has also the same effect on the overall cardinality. We can
measure the evolution of the size of the search space by looking at the log-ratio
r(B,C), defined as follows – with N≡(T1) as in (1):

r(B,C) = log10

N(B,C)

N≡(T1)

The search space is reduced if and only if r(B,C) is a negative number. It should
be noted that we start the algorithm with a space size of (#T1)!, i.e. much more
than N≡(T1): the initial log-ratio is then positive. Note that despite having
an initial search space bigger than Isom(T1, T2), the algorithm cannot build a
bijection that is not a tree isomorphism. The first topological filters (depth,
parents, equivalence class) bring the log-ratio close to 0 – as illustrated in Fig. 7
with 500 replicates of random trees of size 100 and an alphabet of size 5.

In more details, if we denote by rfinal(B,C) the log-ratio after the last filter
on labels, Fig. 8 provides a closer look at the results, and we can see that apart
from pathological exceptions obtained with small trees, the log-ratio is always a
negative number, so the algorithm does reduce the search space.

Isomorphic unordered labeled trees up to substitution ciphering 13

Initial Depth Parents Equiv. class Labels

0

25

50

75

100

125

150

Fig. 7: Evolution of r(B,C) when
T1 ∼ T2.

50 75 100 125 150 175 200 225 250

−18

−15

−12

−9

−6

−3

0

Alphabet Size

5

10

50

100

Fig. 8: rfinal(B,C) when T1 ∼ T2, according
to the size of the considered trees. The dif-
ferent sizes of alphabet are displayed with
different colors.

As a conclusion, we observe that the search space is reduced on average of an
exponential factor and that this factor seems linear in the size of the tree. In
other words, it seems that the larger the trees considered, the more exponentially
the search space is reduced – which is a remarkable property and justifies the
interest of our method, especially given its low computational cost.

Implementation The algorithm presented in this paper has been implemented
as a module of the Python library treex [2].

Acknowledgements The authors would like to thank three anonymous review-
ers for their valuable comments on the first version of this manuscript.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The design and analysis of computer
algorithms. Reading (1974)

2. Azäıs, R., Cerutti, G., Gemmerlé, D., Ingels, F.: Treex: a python package for ma-
nipulating rooted trees. Journal of Open Source Software 4(38), 1351 (2019)

3. Azäıs, R., Ingels, F.: The weight function in the subtree kernel is decisive. Journal
of Machine Learning Research 21, 1–36 (2020)

4. Booth, K.S., Colbourn, C.J.: Problems polynomially equivalent to graph isomor-
phism. Computer Science Department, Univ. (1979)

5. Canzar, S., Elbassioni, K., Klau, G.W., Mestre, J.: On tree-constrained matchings
and generalizations. Algorithmica 71(1), 98–119 (2015)

6. Champin, P.A., Solnon, C.: Measuring the similarity of labeled graphs. In: Inter-
national Conference on Case-Based Reasoning. pp. 80–95. Springer (2003)

7. Gardner, M.: Codes, ciphers and secret writing. Courier Corporation (1984)
8. Grohe, M., Schweitzer, P., Wiebking, D.: Deep Weisfeiler Leman. In: Proceedings

of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 2600–
2614. SIAM (2021)

9. Mastrolilli, M., Stamoulis, G.: Constrained matching problems in bipartite
graphs. In: International Symposium on Combinatorial Optimization. pp. 344–355.
Springer (2012)

14 F. Ingels et R. Azäıs

10. Schöning, U.: Graph isomorphism is in the low hierarchy. In: Annual Symposium
on Theoretical Aspects of Computer Science. pp. 114–124. Springer (1987)

11. Valiente, G.: Algorithms on trees and graphs. Springer Science & Business Media
(2002)

12. Weisfeiler, B., Leman, A.: The reduction of a graph to canonical form and the
algebra which appears therein. NTI, Series 2(9), 12–16 (1968)

13. Zemlyachenko, V.N., Korneenko, N.M., Tyshkevich, R.I.: Graph isomorphism
problem. Journal of Soviet Mathematics 29(4), 1426–1481 (1985)

14. Zhang, Y., Zhang, Y.: On the number of leaves in a random recursive tree. Brazilian
Journal of Probability and Statistics pp. 897–908 (2015)

A Proof of Theorem 1

We begin with some preliminary reminders. Let R be a relation over sets E and
F . R is a bijection if and only if ∀x ∈ E,∃!y ∈ F, x R y and ∀y ∈ E,∃!x ∈ E, x R
y.

Let R be a relation over sets E and F ; the converse relation R−1 over sets
F and E is defined as y R−1 x ⇐⇒ x R y. If R is a bijection, then so is R−1.

Let R be a relation over sets E and F ; and S a relation over sets F and G.
The composition of R and S, denoted by S ◦R, is a relation over E and G, and
defined as x (S ◦R) z ⇐⇒ ∃y ∈ F, (x R y)∧ (y S z). If R and S are bijections,
then so is S ◦R.

We now begin the proof. Let T1, T2 and T3 be trees such that T1
ϕ−→ T2

and T2
ψ−→ T3. It should be clear that trivially, T1

Id−→ T1. We aim to prove the
following:

T1
ψ◦ϕ−−−→ T3 and T2

ϕ−1

−−→ T1.

First of all, it is trivial that ψ ◦ ϕ ∈ Isom(T1, T3). The proof then follows
directly from the reminders above and the two following lemmas:

Lemma 1. Rψ◦ϕ = Rψ◦ Rϕ.

Proof. Let x ∈ A(T1) and z ∈ A(T3). It suffices to show

x Rψ◦ϕ z ⇐⇒ ∃y ∈ A(T2), x Rϕ y ∧ y Rψ z.

=⇒ There exists u ∈ T1 so that x = u and z = (ψ ◦ ϕ)(u). Let v = ϕ(u) and
y = v; then u Rϕ v, so x Rϕ y; similarly v Rψ ψ(v) leads to y Rψ z.

⇐= There exists u ∈ T1 so that u = x and y = ϕ(u). Let v = ϕ(u). As y Rψ ψ(v),

then ψ(v) = z and it follows x Rψ◦ϕ z.

Lemma 2. Rϕ
−1= Rϕ−1 .

Proof. Let x ∈ A(T1) and y ∈ A(T2). It suffices to show x Rϕ y ⇐⇒ y Rϕ−1 x.

=⇒ There exists u ∈ T1 so that x = u and y = ϕ(u). Let v = ϕ(u). Since
u = ϕ−1(v), y Rϕ−1 x.

⇐= There exists v ∈ T2 so that v = y and x = ϕ−1(v). Let u = ϕ−1(v). Since
v = ϕ(u), x Rϕ y.

Isomorphic unordered labeled trees up to substitution ciphering 15

B Example of execution of the algorithm of Section 3

We illustrate here the algorithm presented in Section 3 on an example, namely
the trees of Fig. 9. In addition to detailed explanations for each filter operation,
a summary of the process can be found in Table 1 at the end of this section.

B

AA

A BC C

C

T1

β

α α

α β γ γ

γ

T2

Fig. 9: Two topologically isomorphic
labeled trees T1 and T2. The color on
nodes indicates the classes of equiva-
lence of nodes under≡. Nodes are num-
bered from u1 to u8 in T1 (resp. v1 to
v8 in T2) in breadth-first search order.
As in Fig. 4, N≡(T1) = 8.

Initialisation We set ϕ and f as empty bijections and we create a single bag

B =

(
u1, . . . , u8

v1, . . . , v8

)
. At this step, using the notation defined in Subsection 4.2,

N(B,C) = 8! = 40, 320.

Depth We partition B by considering the depth of the nodes. Since D(T1) =
D(T2) = 2, we create the following bags:

B0 =

(
u1

v1

)
, B1 =

(
u2, u3, u4

v2, v3, v4

)
and B2 =

(
u5, u6, u7, u8

v5, v6, v7, v8

)
.

Applying Deduction Rule 1, we call MapNodes(u1, v1, ϕ, f) and delete B0. Since
the children of u1 and v1 already form a bag, the SplitChildren procedure does
not divide any bags. After this step, we have N(B,C) = 3! × 4! = 144, hence a
reduction of the remaining space by a factor 280.

Parents and children signature Since the elements of bag B1 all share the
same parent, nothing happens here. However, let us look at bag B2. We define
the following sets S1(u3) = {u5, u6}, S1(u4) = {u7, u8), S2(v2) = {v5, v6} and
S2(v3) = {v7, v8}. It appears that all those parents u3, u4, v2 and v3 have the
same children signature s = { , }. Therefore, the bag B2 is rebuilt identically.

Equivalence class under ≡ The nodes of B2 all share the same equivalence
class so the bag remains still. On the other hand, bag B1 is splitted into

B =

(
u2

v4

)
and B =

(
u3, u4

v2, v3

)
.

Applying Deduction Rule 1, we call MapNodes(u2, v4, ϕ, f) and delete bag B .
Since the mapped nodes are leaves, there are no children to split, and their
parents are already mapped. We then have N(B,C) = 48 and the remaining
space has been reduced by 3.

Labels Here is what happens to each of the remaining bags:

16 F. Ingels et R. Azäıs

B : We create two sets S1(A) = {u3, u4} and S2(α) = {v2, v3}. Since Deduction

Rule 3 cannot be applied, we create a collection C with C(2) =

(
{u3, u4}
{v2, v3}

)
.

B2: We create the following sets: S1(A) = {u7}, S1(B) = {u8}, S1(C) =
{u5, u6}; S2(α) = {v5}, S2(β) = {v6} and S2(γ) = {v7, v8}. Deduction
Rule 3 allows to create bags Bβ = (S1(B), S2(β)) and Bγ = (S1(C), S2(γ)).
Finally, we create a collection C ′ with C ′(1) = (S1(A), S1(α)).

After this step, we have the following bags and collections:

Bβ =

(
u8

v6

)
, Bγ =

(
u5, u6

v7, v8

)
, C : 2 7→

(
{u3, u4}
{v2, v3}

)
and C ′ : 1 7→

(
{u7}
{v5}

)
where for collections, only the integers for which #C(n) > 0 are given. Applying
Deduction Rule 2, C and C ′ are deleted since #C(2) = 1 and #C ′(1) = 1. We
call ExtBij(A,α, f) and then the bags are:

Bβ =

(
u8

v6

)
, Bγ =

(
u5, u6

v7, v8

)
, BC =

(
u3, u4

v2, v3

)
and BC′ =

(
u7

v5

)
.

Applying Deduction Rule 1, we call MapNodes(u8, v6, ϕ, f), therefore their
parents must be mapped and we call MapNodes(u4, v2, ϕ, f). BC is reduced to
(u3, v2). Applying Deduction Rule 1 to BC and BC′ maps u3 with v2 and u7

with v5. In the end, only Bγ remains and therefore N(B,C) = 2! = 2, hence a
reduction of a factor 24 of the remaining space.

The algorithm stops there; Fig. 10 illustrates the state of the bijections ϕ
and f at the end of the execution.

B

AA

A BC C

C

T1

ϕ

β

α α

α β γ γ

γ

T2

Fig. 10: State of ϕ (left) and f (below)
at the end of the algorithm.

f

A B C

α β γ

Isomorphic unordered labeled trees up to substitution ciphering 17

Filter ϕ f B C N(B,C)

Inititial ∅ 7→ ∅ ∅ 7→ ∅
(
u1, u2, u3, u4, u5, u6, u7, u8

v1, v2, v3, v4, v5, v6, v7, v8

)
∅ 8!

Depth
{
u1 7→ v1

{
B 7→ β

(
u2, u3, u4

v2, v3, v4

)
;

(
u5, u6, u7, u8

v5, v6, v7, v8

)
∅ 3!× 4!

Parents No changes

Equiv. class

{
u1 7→ v1

u2 7→ v4

{
B 7→ β

C 7→ γ

(
u3, u4

v2, v3

)
;

(
u5, u6, u7, u8

v5, v6, v7, v8

)
∅ 2!× 4!

Labels



u1 7→ v1

u2 7→ v4

u3 7→ v3

u4 7→ v2

u7 7→ v5

u8 7→ v6


B 7→ β

C 7→ γ

A 7→ α

(
u5, u6

v7, v8

)
∅ 2!

Table 1: Summary of the state of the different components of the problem at the end
of each filter during the execution of the algorithm.

	Isomorphic unordered labeled trees up to substitution ciphering

