
ar
X

iv
:2

10
3.

07
52

2v
1

 [
cs

.D
M

]
 1

2
M

ar
 2

02
1

Königsberg Sightseeing: Eulerian Walks in

Temporal Graphs

Andrea Marino1 and Ana Silva2

1 Dipartimento di Sistemi, Informatica, Applicazioni, Università degli Studi di
Firenze, Firenze, Italy andrea.marino@unifi.it

2 Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, CE,
Brazil anasilva@mat.ufc.br

Abstract. An Eulerian walk (or Eulerian trail) is a walk (resp. trail)
that visits every edge of a graph G at least (resp. exactly) once. This
notion was first discussed by Leonhard Euler while solving the famous
Seven Bridges of Königsberg problem in 1736. What if Euler had to
take a bus? In a temporal graph (G,λ), with λ : E(G) → 2[τ], an edge
e ∈ E(G) is available only at the times specified by λ(e) ⊆ [τ], in the
same way the connections of the public transportation network of a city
or of sightseeing tours are available only at scheduled times. In this sce-
nario, even though several translations of Eulerian trails and walks are
possible in temporal terms, only a very particular variation has been ex-
ploited in the literature, specifically for infinite dynamic networks (Orlin,
1984). In this paper, we deal with temporal walks, local trails, and trails,
respectively referring to edge traversal with no constraints, constrained
to not repeating the same edge in a single timestamp, and constrained to
never repeating the same edge throughout the entire traversal. We show
that, if the edges are always available, then deciding whether (G, λ) has
a temporal walk or trail is polynomial, while deciding whether it has a
local trail is NP-complete even if it has lifetime 2. In contrast, in the
general case, solving any of these problems is NP-complete, even under
very strict hypothesis.

1 Introduction

An Eulerian walk (or Eulerian trail) is a walk (resp. trail) that visits every
edge of a graph G at least (resp. exactly) once. The Eulerian trail notion was
first discussed by Leonhard Euler while solving the famous Seven Bridges of
Königsberg problem in 1736, where one wanted to pass by all the bridges over
the river Preger without going twice over the same bridge. Imagine now a similar
problem, where you have a set of sights linked by possible routes. If the routes
themselves are also of interest, a sightseeing tourism company might want to
plan visits on different days that cover all the routes. One could do that with no
constraints at all (thus performing a walk), or with the very strict constraint of
never repeating a route (thus getting a trail), or constraining oneself to at least
not repeting the same route on the same day (thus getting what we called a local

http://arxiv.org/abs/2103.07522v1

2 Andrea Marino, Ana Silva

trail). If we further assume that some routes might not be always accessible, we
then get distinct problems defined on temporal graphs.

In a temporal graph (G, λ), with λ : E(G) → 2[τ], an edge e ∈ E(G) is avail-
able only at the times specified by λ(e) ⊆ [τ], in the same way the connections of
the public transportation network of a city or of sightseeing tours are available
only at scheduled times. In this scenario, paths and walks are valid only if they
traverse a sequence of adjacent edges e1, . . . , ek such that for each i ∈ [k − 1],
λ(ei) ≤ λ(ei+1), i.e. whose time sequence is non-decreasing (similarly, strictly
increasing sequences, i.e. with λ(ei) < λ(ei+1), can be considered).

Several translations of Eulerian trails and walks are possible in temporal
terms, depending on the constraints we consider. In particular, we study the
following variations. Below, all the walks and trails are implicitly considered to
be temporal, as defined in the previous paragraph.

Problem 1. Given a temporal graph (G, λ), we consider the following problems:

– Eulerian Walk: deciding whether (G, λ) has an Eulerian walk, i.e. a walk
traversing each edge at least once.

– Eulerian Local Trail: deciding whether (G, λ) has an Eulerian local
trail, i.e. a walk traversing each edge at least once and at most once in each
time stamp.

– Eulerian Trail: deciding whether (G, λ) has an Eulerian trail, i.e. a walk
traversing each edge exactly once.

We also consider the related problems where the walks/trails are closed (first
vertex equal to the last one), respectively referring to them asEulerian Closed

Walk, Eulerian Local Tour, and Eulerian Tour.
The research on temporal graphs have attracted a lot of attention in the past

decade (we refer the reader to the surveys [18,16] and the seminal paper [15]),
and they appear also under different names, e.g. as time-varying graphs [3],
as evolving networks [2], and as link streams [16]. Even after all the received
attention, surprisingly enough none of the above problems have been previously
considered.

Concerning Eulerian Walk, one of the closest concepts is the one defined
by Orlin in [20], where he gives a polynomial algorithm to check the existence of
an Eulerian closed walk (i.e. a tour) in dynamic graphs. However, the dynamic
graph model is quite different from the temporal graph model used in this paper,
as pointed out in [18]. Indeed, looking at the corresponding time-expanded graph,
temporal edges can go back in time and the graph is infinite. Nevertheless, the
results presented there seemed to point towards the polinomiality of the problems
investigated here, as observed in [18]: “the results proved for it [the dynamic
graph model] are resounding and possibly give some first indications of what to
expect when adding to combinatorial optimization problems a time dimension”.
We found however that this is not the case, as we will show that even Eulerian

Walk turns out to be much harder on temporal graphs (for more details about
dynamic graphs and the result proved by Orlin in [20] see Appendix A). Taking

Königsberg Sightseeing: Eulerian Walks in Temporal Graphs 3

inspiration in [20], we also define a dynamic-based temporal graph as a temporal
graph whose edges are always available, and we analyze the complexity of the
above problems on these particular instances.

Still concerning Eulerian Walk, a closely related problem is the Tempo-

ral Exploration problem (TEXP) [19], which consists of, given a temporal
graph (G, λ), finding a temporal walk that visits all vertices in G (possibly, more
than once) whose arrival time is minimum. In [19], they prove that this prob-
lem is NP-complete and even not approximable unless P = NP; this is in stark
contrast with the static version of the problem, which can be trivially solved in
linear time. However this is quite different wrt our Eulerian Walk, as we are
considering walks passing through all the edges instead of all the vertices, and
this difference is crucial as a transformation from TEXP to Eulerian Walk

does not seem to be easy. Indeed, by simply transforming each vertex into an
edge, we would get two types of edges, connection-edges and vertex-edges, and
a negative answer to Eulerian Walk could be just motivated by the impos-
sibility of visiting all the connection-edges, which are actually not required to
be visited to solve TEXP. This is not surprising as we are trying to transform
a Hamiltonian walk (i.e. a walk passing by each vertex) into an Eulerian walk.
We mention that, unlike the problems investigated here, a lot of research has
been devoted to temporal node exploration, e.g. bounding the arrival time of
such walks in special instances [9,8] and extending previous results in the case
of non-strictly increasing paths [10].

Concerning Eulerian Trail and Eulerian Local Trail, observe that,
when τ = 1, then both of them degenerate into the original formulation of the
Seven Bridges of Königsberg problem. This is why we think they appear to be
more natural adaptations of the static version of the problem. Nevertheless they
have never been investigated before, up to our knowledge.

Our results Our results are summarized in Table 1 and detailed in Theorem 1.

Theorem 1. Given a temporal graph (G, λ)

1. Eulerian Walk is NP-complete, even if each snapshot of (G, λ) is a forest
of constant size, while it is is polynomial for bounded τ . It is also polynomial
if (G, λ) is dynamic-based.

2. Eulerian Local Trail is NP-complete for each τ ≥ 2 and in the case
(G, λ) is dynamic-based.

3. Eulerian Trail is NP-complete for each τ ≥ 2. It is polynomial if (G, λ)
is dynamic-based.

Same applies to tours, i.e. Eulerian Closed Walk, Eulerian Local Tour,
and Eulerian Tour.

Theorem 1 gives a complete taxonomy of our problems, also focusing on
the possibility of getting polynomial algorithms when we have a small lifetime
τ . In particular, for Eulerian Trail and Eulerian Local Trail, since they
become polynomial when τ = 1, the bound for τ is optimal, giving us a complete

4 Andrea Marino, Ana Silva

Eulerian Walk Eulerian Local Trail Eulerian Trail

General
NP-c for τ unbounded NP-c [from below] NP-complete

Poly for τ fixed for τ = 2

Dynamic-Based Poly†
NP-c for τ = 2 Poly⋆

Table 1: Our results concerning Problem 1. For general temporal graphs
(first row) and for dynamic-based temporal graphs (second row). † corresponds
to deciding whether G is connected. ⋆ corresponds to deciding whether G has
an Eulerian trail.

dichotomy with respect to the lifetime of (G, λ). In contrast Eulerian Walk

is easily solvable for every fixed τ , showing that walks are easier than trails even
on the temporal context.

It is important to remark that none of the above variations immediately
implies any of the others. We will show indeed that the property of being Eulerian
for the static base graph G is in general a necessary but not sufficient condition
for the existence of an Eulerian trail, becoming sufficient only if we restrict to
dynamic-based temporal graphs. In the case of Eulerian local trail, we will see
that this property is not even necessary.

Finally, as a by product of our reductions we get the following result about
static graphs, which can be of independent interest.

Corollary 1. Given a graph G, deciding whether all the edges of G can be cov-
ered with two trails is NP-complete.

Further Related Work. Other than the papers on TEXP previously mentioned,
there is a vast literature about finding special paths or walks in temporal graphs,
and some interesting papers include [4,24,21,19]. Also, it is largely known that
a static graph G has an Eulerian tour (trail) if and only if G has at most one
non-trivial component and all the vertices have even degree (at most two vertices
have odd degree). A graph is called Eulerian if it has an Eulerian tour.

When considering dynamic-based temporal graphs, as edges are assumed to
be always available during the lifetime τ , we could relate our problems to several
other problems on static graphs. A closely related one would be the Chinese
Postman problem, where the edges of the graph have positive weights and one
wants to find an Eulerian closed walk on G with minimum weight; in other
words, one wants to add copies of existing edges in order to obtain an Eulerian
graph of minimum sum weight. Even if we regard the Chinese Postman problem
where the weights are all equal to 1, this is very different from our approach since
for us, repetition of a long common trail in different snapshots does not make
the solution worse, while it would considering the Chinese Postman problem. It
is easy to see though that the solution for the Chinese Postman would give us
an upper bound for the amount of time spent on an Eulerian local tour of a
dynamic-based graph, as we could start a new trail on a new snapshot whenever
an edge repetition was detected. The Chinese Postman problem is largely known

Königsberg Sightseeing: Eulerian Walks in Temporal Graphs 5

to be polynomial [13], and some variations that take time into consideration have
been investigated, mostly from the practical point of view (see e.g. [5,22,23]),
but none of which is equivalent to our problem.

The problem of trying to obtain an Eulerian subgraph (as opposed to a su-
pergraph) has also been studied. In [6], the authors study a family of problems
where the goal is to make a static graph Eulerian by a minimum number of
deletions. They completely classify the parameterized complexity of various ver-
sions of the problem: vertex or edge deletions, undirected or directed graphs,
with or without the requirement of connectivity. Also in [11], the parameterized
complexity of the following Euler subgraph problems is studied: (i) Largest Eu-
ler Subgraph: for a given graph G and integer parameter k, does G contain an
induced Eulerian subgraph with at least k vertices?; and (ii) Longest Circuit: for
a given graph G and integer parameter k, does G contain an Eulerian subgraph
with at least k edges?

Eulerian Local Trail on dynamic-based graphs is actually more closely
related to the problem of covering the edges of a graph with the minimum
number of (not necessarily disjoint) trails, whereas the aforementioned problems
are more concerned with either minimizing edge repetitions or maximizing the
subgraph covered by a single trail. Even if the trail cover problem can be so
naturally defined and involve such a basic structure as trail, up to our knowledge
it has not yet been previously investigated. Note that Eulerian Local Trail

is slightly different from trail cover, since we also require that together the trails
form a walk. In any case, a small modification of our proof of Theorem 1.2
implies that deciding whether the edges of a graph can be covered with at most
two trails is NP-complete (Corollary 1). Interestingly enough, the vertex version
of this problem, namely the path cover problem, has been largely investigated
(see e.g. [1,14,17]).

Preliminaries. We use and extend the notation in [18]. A temporal graph is a
graph together with a function on the edges saying when each edge is active;
more formally, a temporal graph is a pair (G, λ), where λ : E(G) → 2N−{0}. Here,
we consider only finite temporal graphs, i.e., graphs such that max

⋃
e∈E(G) λ(e)

is defined. This value is called the lifetime of (G, λ) and denoted by τ . Given
i ∈ [τ], we define the snapshot Gi as being the subgraph of G containing exactly
the edges active in time i; more formally, V (Gi) = V (G) and E(Gi) = {e ∈
E(G) | i ∈ λ(e)}.

Given vertices v0, vk in a graph G, a v0, vk-walk in G is an alternating se-
quence (v0, e1, v1, . . . , ek, vk) of vertices and edges such that ei goes from vi−1 to
vi for i ∈ {1, . . . , k}. We define a walk in a temporal graph similarly, except that
a walk cannot go back in time. More formally, given a temporal graph (G, λ) and
a v0, vk-walk W = (v0, e1, v1, . . . , ek, vk), we say that W is a temporal v0, vk-walk
if λ(e1) ≤ λ(e2) ≤ . . . ≤ λ(ek). It is closed if it starts and finishes on the same
vertex of G, i.e., if v0 = vk.

We say that a temporal walk W is a local trail if there are no two occurrences
of the same edge of G in the same snapshot, i.e., if W restricted to Gi is a trail
in G for every i ∈ [τ]. We say that W is a trail if there are no two occurrences

6 Andrea Marino, Ana Silva

of the same edge of G in W . A closed (local) trail is also called a (local) tour.
Finally, a temporal walk W is called Eulerian if at least one copy of each edge
of G appears at least once in W . Observe that, by definition, an Eulerian trail
visits every edge exactly once.

A dynamic-based graph is a temporal graph (G, λ) where the edges are always
available.3 We denote a dynamic-based graph simply by (G, [τ]) where τ is the
lifetime of the temporal graph.

2 Eulerian Walk

In this section we focus on Eulerian Walk, i.e. deciding if there is a tempo-
ral walk passing by each edge at least once, proving the results in Item 1 in
Theorem 1, summarized in the first column of Table 1.

In particular, a preliminary result, whose formal proof is reported in Ap-
pendix B.1, concerns the case where the lifetime τ is bounded. It consists basi-
cally of checking whether there is a choice of connected components H1, . . . , Hτ ,
one for each timestamp i, that together cover all the edges of G and is such that
Hi intersects Hi+1, for each i ∈ [τ − 1].

Lemma 1. Given a temporal graph (G, λ) with fixed lifetime τ , solving Eule-

rian Walk on (G, λ) can be done in time O((n+m) · nτ−1), where n = |V (G)|
and m = |E(G)|.

In the following, we show that when τ is unbounded, deciding whether (G, λ)
admits an Eulerian walk is NP-complete by reducing from 3-SAT. This is best
possible because of the above lemma.

Theorem 2. Given a temporal graph (G, λ), deciding whether (G, λ) admits
an Eulerian walk is NP-complete, even if each snapshot of (G, λ) is a forest of
constant size.

Proof. We make a reduction from 3-SAT. Let φ be a 3-CNF formula on variables
{x1, · · · , xn} and clauses {c1, · · · , cm}, and construct G as follows. For each
clause ci, add vertices {ai, bi} to G and edge aibi. Now consider a variable xi,
and let ci1 , · · · , cip be the clauses containing xi positively, and cj1 , · · · , cjq be
the clauses containing xi negatively. Add two new vertices xi, xi to G, and edges
{xiaik | k ∈ [p]} ∪ {xiajk | k ∈ [q]}; denote the spanning subgraph of G formed
by these edges by Hi, and let H ′

i be equal to Hi together with edges {aibi | i ∈
{i1, · · · , ip, j1, · · · , jq}. We can suppose that {i1, · · · , ip} ∩ {j1, · · · , jq} = ∅ as
otherwise the clauses in the intersection would always be trivially valid; thus we
get that Hi, H

′
i are forests. Finally, add a new vertex T and make it adjacent to

every vertex in {xi, xi | i ∈ [n]}.

3 This is the reason why we use the term dynamic-based, as they are similar to the
dynamic networks used in [20] when studying Eulerian trails, except that edges
cannot go back in time and the lifetime is finite.

Königsberg Sightseeing: Eulerian Walks in Temporal Graphs 7

We now describe the snapshots of (G, λ). See Figure 1 to follow the con-
struction. We first build 2 consecutive snapshots in (G, λ) related to xi, for each
i ∈ [n]. The first one is equal to H ′

i, and the second one contains exactly the
edges {Txi, T xi, T xi+1, T xi+1} if i < n, and if i = n, then the second snapshot
is equal to G− {ajbj | j ∈ [m]}; this can be done because this subgraph is con-
nected. Denote by S1

i , S
2
i the first and second snapshot of xi, for each i ∈ [n]. Put

these snapshots consecutively in timestamps 1 through 2n, in the order of the
indexing of the variables. For now, observe that only the last snapshot might not
be a forest; this will be fixed later. We now prove that φ is a satisfiable formula
if and only if (G, λ) admits an Eulerian walk.

G1 G2 G3

x1

a1 a2

b1 b2

x1

a3 a4

b3 b4

x1 x1 x2 x2

T

x2

a1 a2

b1 b2

x2

a3 a4

b3 b4

Fig. 1: First three snapshots of the construction. In this example, we have c1
containing (x1 ∨ x2), c2 containing (x1 ∨ x2), c3 containing (x1 ∨ x2), and c4
containing (x1 ∨ x2).

Observe that, since we are dealing with a walk, we are allowed to repeat edges
as many times as we want; hence, if we visit any vertex inside a component of
a snapshot, we can also visit the entire component. At the same time, it is not
possible to visit more than one component within a snapshot. This is implicitly
used below.

First consider a satisfying assignment of φ. Now, construct an Eulerian walk
as follows. Start by visiting all the edges in the component of H ′

1 containing x1,
if x1 is true, or the one containing x1, otherwise. Then, in S2

1 , jump to x2 if x2

is true, or to x2, otherwise. Repeat the process until reaching S1
n, and at the

last snapshot, visit all the edges in G− {ajbj | j ∈ [m]}. Because each clause ci
contains at least one true variable, we know that edge aibi is visited.

Now, consider an Eulerian walk W of (G, λ), and denote by W
j
i the walk

W restricted to S
j
i , for each i ∈ [n] and j ∈ [2]. We set xi to true if W 1

i

contains xi, and to false otherwise. Now, consider a clause ci containing variables
xk1

, xk2
, xk3

. Because aibi appears only in snapshots S1
k1
, S1

k2
, S1

k3
, and only in

the component containing the literal that appears in ci, we get that at least one
of the three literals must be set to true.

8 Andrea Marino, Ana Silva

Finally, observe that we could repeat the same pattern as the one in the first
2n− 1 snapshots in order to visit the remaining edges in G − {ajbj | j ∈ [m]}.
As long as the edges in {aibi | i ∈ [m]} appear only in the first 2n− 1 snapshots,
the same argument as before still applies, and we get the further constraint
that each snapshot is a forest. Additionally, they can also be considered to have
constant size since 3-SATis NP-complete even if each variable appears at most
three times [7].

Now, if we consider a dynamic-based graph (G, λ), since all the edges are
active throughout its lifetime, we clearly have that there exists an Eulerian walk
if and only if G is connected, as highlighted by the following Lemma.

Lemma 2. Eulerian Walk is polynomial for dynamic-based temporal graphs.

By Lemma 1, Theorem 2, and Lemma 2, we obtain Item 1 of Theorem 1.
Finally, note that if one is interested in closed walks instead, not only our NP-
completeness reduction can be adapted in order to ensure that we can always go
back to the initial vertex, but also the complexity results still hold.

3 Eulerian Local Tours and Trails

In this section we focus on Item 2 of Theorem 1. In the whole section, we will
focus on dynamic-based temporal graphs as the hardness results for general
temporal graphs are implied by the ones we prove for this restricted class. After
the preliminary result in Lemma 3, we focus on proving the hardness result for
the problem of deciding whether (G, [2]) has an Eulerian local tour, explaining
the construction behind our reduction from NAE 3-SAT, whose correctness is
proved in Theorem 3. We also argue that, if G is a cubic graph, then being
Hamiltonian is a necessary but not sufficient condition for (G, [2]) to admit an
Eulerian local tour, arguing the need of an ad hoc reduction for our problem.
As the reduction in Theorem 3 focuses on solving Eulerian Local Tour for
τ = 2, in Corollary 2 we extend this result to each fixed τ and to trails, thus
completing the proof of Item 2 of Theorem 1.

The following Lemma, whose proof is given in Appendix B.2, will help our
proof.

Lemma 3. Let G be a graph. If (G, [2]) has an Eulerian local tour T , then T

restricted to timestamp i must pass by all vertices of odd degree in G, for each
i ∈ [2].

A simple consequence of the above lemma is that, as previously said, if G is
cubic, then G must Hamiltonian in order for (G, [2]) to have an Eulerian local
tour. Since deciding whether a cubic graph is Hamiltonian is NP-complete [12],
this hints towards the NP-completeness of the problem. However, since the other
way around is not necessarily true (see e.g. the graph in Figure 2), we need an
explicit reduction. Indeed, the construction in Figure 2 shows us that we might

Königsberg Sightseeing: Eulerian Walks in Temporal Graphs 9

need an arbitrarily large lifetime in order to be able to visit all the edges of
(G, [τ]) even if G is a 2-connected outerplanar cubic graph (which is trivially
hamiltonian).

Fig. 2: Example of outerplanar graph G such that (G, [2]) does not have an
Eulerian local tour.

In the following we explain the construction behind our reduction from
NAE 3-SAT. Let φ be a CNF formula on variables {x1, · · · , xn} and clauses
{c1, · · · , cm}. We start by presenting a meta-construction, in the sense that part
of the constructed graph will be presented for now as black boxes and the actual
construction is done later, as depicted in Figure 3. The meta part concerns the
clauses; so for now, denote by Ci the black box related to clause ci. Without
going into details, Ci will contain exactly one entry vertex for each of its literal.
So, given a literal ℓ contained in ci, denote by Ii(ℓ) the entry vertex for ℓ in Ci.
All defined three vertices are distinct.

Ci1 Ci2 · · · Cip

Cj1 Cj2 · · · Cjq

Ii Oi

Fig. 3: Edge gadget with clause black boxes.

Now, for each variable xi, let ci1 , · · · , cip be the clauses containing xi posi-
tively and cj1 , · · · , cjq containing xi negatively. Add two new vertices, Ii and Oi

(these will be the entry and exit vertices for the variable gadget), and add the

10 Andrea Marino, Ana Silva

following edges (these compose the paths shown in Figure 3):

Ei = {IiIi1(xi), IiIj1(xi), Iip(xi)Oi, Ijq (xi)Oi}
∪{Iih (xi)Iih+1

(xi) | h ∈ [p− 1]}
∪{Ijh (xi)Ijh+1

(xi) | h ∈ [q − 1]}

The paths will function as a switch, telling us whether the variable is true
or false within the considered snapshot; we then denote by Pi the set of edges
in the path (Ii, Ii1(xi), · · · , Iip(xi), Oi), and by P i the set of edges in the path
(Ii, Ij1 (xi), · · · , Ijq (xi), Oi). Now, to link the variable gadgets and to construct
the clause gadgets, we will need a gadget that will function as an edge that must
appear in the trail performed in G1 and the one performed in G2. For this, we
use Lemma 3 applied to the gadget in Figure 4a; when adding such a gadget
between a pair u, v, we simply say that we are adding the forced edge uv.

Now, to link the variable gadgets, we add three new vertices s1, s2, t and the
following forced edges.

E′ = {sit | i ∈ [2]} ∪ {tI1, Ont} ∪ {OiIi+1 | i ∈ [n]}.

The new vertices simply help us assume where the trail starts and finishes.
Now, let T be an Eulerian local tour of (G, [2]) and denote by Ti the trail in G

defined by T restricted to Gi, for i ∈ [2]. It is fairly easy to see (and we will
prove it shortly) that if we can ensure that T1 uses Pi if and only if T2 uses
P i, then we can prove equivalence with NAE 3-SAT. In other words, the clause
gadget must be so that, for every clause cj containing xi (or equivalently xi),
we get that either both edges incident to Ij(xi) in Pi (or equivalently Ij(xi) in
P i) are used, or none of them is used. Such a gadget is presented in Figure 4b,
where the red edges are forced.

u v

(a) Gadget related to a
forced edge uv.

ci2 ai
1

ai
2

bi1bi2

ci1

Ii(ℓ1)

Ii(ℓ2)

Ii(ℓ3)

(b) Gadget related to clause ci. Red edges represent
forced edges.

Fig. 4: Gadgets for the reduction in Theorem 3.

Königsberg Sightseeing: Eulerian Walks in Temporal Graphs 11

Theorem 3. Let G be a graph, with degree is at most 4. Then Eulerian Local

Tour is NP-complete on (G, [2]).

Proof. Let φ and G be as previously stated. First, consider a truth NAE assign-
ment f to φ. We construct T1, T2 ⊆ E(G) and prove that they form an Eulerian
local tour of G. Start by putting Pi in T1 and P i in T2 if xi is true, and the
other way around if xi is false. From now on, whenever we add a forced edge to
T1 and T2, we are actually adding the trails depicted in Figure 5.

u v

(a) Trail added to T1 when forced
edge uv is added to T1.

u v

(b) Trail added to T2 when forced
edge uv is added to T2.

Fig. 5: Trails related to forced edges.

Now, add E′ to both T1 and T2, and consider ci with literals ℓ1, ℓ2, ℓ3. Sup-
pose, without loss of generality, that ℓ1 is true and ℓ2 is false. We then add to T1

the trail depicted in Figure 6a, and to T2 the one depicted in Figure 6b. Observe
that all internal edges of Ci are covered; also note that the edges incident to
Ii(ℓ3) that come from the variable must be either in T1 or in T2 by construction.
We know that the remaining edges are also covered by T1 ∪ T2 by construction.
Finally, notice that both T1 and T2 touch all odd-degree vertices in a way that
every vertex (including the even-degree ones) has even degree in T1 and in T2,
except s1, s2 which have degree exactly 1. Also note that they form a connected
graph; indeed they are formed by the cycle passing through the variable gadgets
and t, together with some pending trails passing by the clause gadgets. There-
fore, we can find an s1, s2-trail passing by all edges of T1, and an s2, s1-trail
passing by all edges of T2, thus getting our Eulerian local tour.

Now, let T be an Eulerian local tour of (G, [2]), and for each i ∈ [2], denote
by Ti the trail in G defined by T restricted to Gi. First observe that Lemma 3
indeed ensures that T1 and T2 restricted to the gadget related to a forced edge
uv must be exactly as the trails depicted in Figure 5; so in what follows we treat
them exactly like edges that must appear in T1 and T2. Since there are 2 vertices
of degree 1, namely s1 and s2, by Lemma 3 we can suppose that T1 starts in s1
and finishes in s2, while T2 starts in s2 and finishes in s1. Therefore, each of T1

and T2 contains a tour in G− {s1, s2}, and hence:

(I) Every vertex u ∈ V (G) \ {s1, s2} has even degree in both T1 and T2.

Now, we prove that for each xi, if T1 intersects Pi, then T1 does not intersect
P i, the same holding for T2. For this, consider ci with literals ℓ1, ℓ2, ℓ3, and for

12 Andrea Marino, Ana Silva

ci2 ai
1

ai
2

bi1bi2

ci1

Ii(ℓ1)

Ii(ℓ2)

Ii(ℓ3)

(a) Added to T1 when ℓ1 is true.

ci2 ai
1

ai
2

bi1bi2

ci1

Ii(ℓ1)

Ii(ℓ2)

Ii(ℓ3)

(b) Added to T2 when ℓ2 is false.

Fig. 6: Trails in Ci related to a given NAE assignment.

each j ∈ [3], denote by e1i (ℓj), e
2
i (ℓj) the edges incident to Ii(ℓj) not contained

in Ci. We first prove that, for each j ∈ [3] and k ∈ [2]:

(II) Edge e1i (ℓj) is used in Tk if and only if edge e2i (ℓj) is used in Tk.

Without loss of generality, assume j = 1 and let k ∈ [2]; suppose by contra-
diction that e1i (ℓ1) is in Tk, while e2i (ℓ1) is not in Tk. By (I) we get that either
ai1Ii(ℓ1) or a

i
2Ii(ℓ1) is in Tk, say ai1Ii(ℓ1). But then we get that ai1a

i
2 and ai2Ii(ℓ1)

are not in Tk, as otherwise either a
i
1 or Ii(ℓ1) would have odd degree in Tk. This

is a contradiction since we then get ai2 with degree 1 in Tk. The same argument
can be analogously applied when ai2Ii(ℓ1) is in Tk or when j ∈ {2, 3}.

Consider now a variable xi, and let ci1 , · · · , cip be the clauses containing xi

positively and cj1 , · · · , cjq containing xi negatively. Because Ii has degree 3 in G

and E′\{sit | i ∈ [2]} is contained in T1, we get that exactly one between I1Ii1(xi)
and I1Ij1(xi) is contained in T1. From (II), we then get that either Pi is contained
in T1 or P i is contained in T1. Observe that this implies that Pi is contained in
Tk, while P i is contained in T3−k, for some k ∈ [2]. We then set xi to be true if
and only if T1 contains Pi. Because the edges in Ei = {e1i (ℓj), e

2
i (ℓj) | j ∈ [3]}

separate Ci from the rest of the graph and by (I), we get that both T1 and T2

must intersect Ei. Finally by (II) we get that this assignment is a NAE truth
assignment for φ.

Observe that if we add two new vertices of degree one adjacent to vertex t,
then we get a reduction to the problem of deciding whether the edges of G can
be covered by two trails, proving Corollary 1.

Corollary 2. Eulerian Local Tour and Eulerian Local Trail are NP-
complete on temporal graphs with lifetime τ for every fixed τ ≥ 2. This also holds
on dynamic-based graphs.

Königsberg Sightseeing: Eulerian Walks in Temporal Graphs 13

Proof. We first make a reduction from Eulerian Local Tour on (G, [2]) to
Eulerian Local Trail on (G′, [τ]). Given (G, [2]), let G′ be obtained from
G by adding a star on τ + 1 vertices and identifying one of its leaves with a
vertex s ∈ V (G). We argue that (G, [2]) has an Eulerian local tour starting and
finishing in s if and only if (G′, [τ]) has an Eulerian local trail. The lemma follows
because we can then obtain a Turing reduction by building a distinct instance for
each s ∈ V (G). Denote the vertices of the initial star by u, v1, · · · , vτ+1, where
u is the central vertex, and v2 is the vertex where G is pending. Let T be an
Eulerian local tour of (G, [2]) starting and finishing in s, and T1, T2 be the trails
in G defined by T . Build an Eulerian local trail of (G′, [τ]) by visiting v1u, v2u
and T1 in G′

1, then performing T2 and visiting v2u and uv3 in G′
2, and finish to

visit the remaining edges of the star in the obvious way.
Now, let T be an Eulerian local trail of (G′, [τ]), and denote by Ti the trail

in G′ defined by T restricted to G′
i, for each i ∈ [τ]. Observe that because we

have τ + 1 cut edges, we get that each Ti contains at most 2 of them, and in
case it contains exactly 2, say v1u, uv2, then Ti+1 either does not contain any
cut edge, or must intersect Ti in v1u, uv2. This means that the best we can do
in order to finish by time τ is to visit exactly two of them in the first snapshot,
and exactly one more in each of the subsequent snapshots. We can therefore
suppose, without loss of generality that Ti contains viu, vi+1u for each i ∈ [τ].
Note that this implies that every edge of (G, [2]) must be visited in T1 and T2,
with T1 starting in v2 and T2 finishing in v2, as we wanted to prove.

Finally, note that (G′, [τ]) constructed above has an Eulerian local trail if
and only if (G′, τ + 1) has an Eulerian local tour. This completes our proof.

4 Eulerian Tours and Trails

We finally focus on Eulerian Trail and Eulerian Tour, proving that in the
general case they are both NP-complete, hence, proving Item 3 in Theorem 1.
To this aim, we make an adaptation of the construction in Theorem 3. Observe
that here the base graph needs to be Eulerian as otherwise the answer to Eu-

lerian Trail is trivially NO. This also implies that the problem restricted to
dynamic-based graphs is trivial: if the base graph is Eulerian, then the answer
to Eulerian Tour is YES; otherwise, then the answer is NO. The trick now is
to take advantage of the function λ in order to enforce the edges.

Theorem 4. Eulerian Tour and Eulerian Trail are NP-complete, even
on temporal graphs with fixed lifetime τ ≥ 2.

Proof. We first prove the case τ = 2. For this, we simply replace the gadget to
enforce an edge uv in the construction of Section 3 by two paths of length 2,
P 1
uv and P 2

uv, where the edges in P i
uv are active only in snapshot Gi, for each

i ∈ [2]. Because the arguments used in Section 3 depended only on the fact of
uv be indeed an enforced edge, we can apply the same arguments here. The only
difference is that the trails in G1 and G2 now cannot intersect, which indeed is
the case since the intersection between T1 and T2 in Section 3 is exactly the set

14 Andrea Marino, Ana Silva

of forced edges, and since here each appearance of a forced edge uv is actually
related either to P 1

uv or to P 2
uv.

Now, in order to prove the NP-completeness for higher values of τ , we can
simply add new vertices v3, · · · , vτ and edges {s1v3} ∪ {vivi+1 | i ∈ {3, · · · , τ}}.
This gives us that Eulerian Trail is NP-complete on (G, λ) with lifetime τ

for every fixed τ ≥ 2. And if we want a closed trail, it suffices to identify vτ with
s1, if τ ≥ 4, and if τ = 3, we add a new vertices v4 and edges v3v4, v4s1 active
in snapshot G3. This concludes our proof.

References

1. S Arumugam, I Hamid, and VM Abraham. Decomposition of graphs into paths
and cycles. Journal of Discrete Mathematics, 2013, 2013.

2. Pierre Borgnat, Eric Fleury, Jean-Loup Guillaume, Clémence Magnien, Céline Ro-
bardet, and Antoine Scherrer. Evolving networks. In Mining Massive Data Sets
for Security, pages 198–203, 2007.

3. Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro.
Time-varying graphs and dynamic networks. International Journal of Parallel,
Emergent and Distributed Systems, 27(5):387–408, 2012.

4. Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche.
Finding temporal paths under waiting time constraints. In Yixin Cao, Siu-Wing
Cheng, and Minming Li, editors, 31st International Symposium on Algorithms and
Computation, ISAAC 2020, December 14-18, 2020, Hong Kong, China (Virtual
Conference), volume 181 of LIPIcs, pages 30:1–30:18. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

5. Merve Kayacı Çodur and Mustafa Yılmaz. A time-dependent hierarchical chinese
postman problem. Central European Journal of Operations Research, 28(1):337–
366, 2020.

6. Marek Cygan, Dániel Marx, Marcin Pilipczuk, Micha l Pilipczuk, and Ildikó Schlot-
ter. Parameterized complexity of eulerian deletion problems. Algorithmica,
68(1):41–61, 2014.

7. Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour,
and Mihalis Yannakakis. The complexity of multiterminal cuts. SIAM Journal on
Computing, 23(4):864–894, 1994.

8. Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph ex-
ploration. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina
Speckmann, editors, Automata, Languages, and Programming - 42nd International
Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, vol-
ume 9134 of Lecture Notes in Computer Science, pages 444–455. Springer, 2015.

9. Thomas Erlebach and Jakob T Spooner. Faster exploration of degree-bounded
temporal graphs. In 43rd International Symposium on Mathematical Foundations
of Computer Science (MFCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2018.

10. Thomas Erlebach and Jakob T. Spooner. Non-strict temporal exploration. In
Andrea Werneck Richa and Christian Scheideler, editors, Structural Information
and Communication Complexity - 27th International Colloquium, SIROCCO 2020,
Paderborn, Germany, June 29 - July 1, 2020, Proceedings, volume 12156 of Lecture
Notes in Computer Science, pages 129–145. Springer, 2020.

Königsberg Sightseeing: Eulerian Walks in Temporal Graphs 15

11. Fedor V Fomin and Petr A Golovach. Long circuits and large euler subgraphs.
SIAM Journal on Discrete Mathematics, 28(2):878–892, 2014.

12. Michael R Garey, David S. Johnson, and R Endre Tarjan. The planar hamiltonian
circuit problem is np-complete. SIAM Journal on Computing, 5(4):704–714, 1976.

13. MEI Gu GLJAN. Graphic programming using odd or even points, chinese j. Mufh,
1:273–277, 1962.

14. Renzo Gómez and Yoshiko Wakabayashi. Covering a graph with nontrivial vertex-
disjoint paths: existence and optimization. In International Workshop on Graph-
Theoretic Concepts in Computer Science, pages 228–238. Springer, 2018.

15. David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference prob-
lems for temporal networks. In STOC ’00: Proceedings of the thirty-second annual
ACM symposium on Theory of computing, 2000.

16. Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and link
streams for the modeling of interactions over time. Social Network Analysis and
Mining, 8:61, 2018.

17. Paul Manuel. Revisiting path-type covering and partitioning problems. arXiv
preprint arXiv:1807.10613, 2018.

18. Othon Michail. An introduction to temporal graphs: An algorithmic perspective.
Internet Mathematics, 12(4):239–280, 2016.

19. Othon Michail and Paul G Spirakis. Traveling salesman problems in temporal
graphs. Theoretical Computer Science, 634:1–23, 2016.

20. James B Orlin. Some problems on dynamic/periodic graphs. In Progress in Com-
binatorial Optimization, pages 273–293. Elsevier, 1984.

21. Nicola Santoro, Walter Quattrociocchi, Paola Flocchini, Arnaud Casteigts, and
Frédéric Amblard. Time-varying graphs and social network analysis: Temporal
indicators and metrics. CoRR, abs/1102.0629, 2011.

22. Jinghao Sun, Guozhen Tan, and Honglei Qu. Dynamic programming algorithm
for the time dependent chinese postman problem. Journal of Information and
Computational Science, 8:833–841, 2011.

23. Hsiao-Fan Wang and Yu-Pin Wen. Time-constrained chinese postman problems.
Computers & Mathematics with applications, 44(3-4):375–387, 2002.

24. Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. Path
problems in temporal graphs. Proceedings of the VLDB Endowment, 7(9):721–732,
2014.

A A brief summary about Eulerian tours in dynamic

graphs

A dynamic graph is a pair (G, T) where G is a finite digraph and T is a function
T : E(G) → Z, called transit time function. A dynamic graph can also be
seen as a special type of infinite digraph G, where V (G) = V (G) × Z, and
(u, i)(v, j) ∈ E(G) if and only if uv ∈ E(G) and T (uv) = j − i. Observe that the
transit time of an arc can also be negative, and therefore there might exist arcs
going from a vertex (u, i) to a vertex (v, j) with j < i, which in the temporal
graph context would be considered as going back in time. An Eulerian trail in
(G, T) is a trail that passes through all the edges of G. More formally, it is a
function f : Z → V (G) × Z such that f(i)f(i + 1) ∈ E(G) for every i ∈ Z, and

16 Andrea Marino, Ana Silva

for every (u, i)(v, j) ∈ E(G), there exists a unique ℓ such that (u, i)(v, j) is equal
to f(ℓ)f(ℓ+ 1).

Recall that a digraph G is Eulerian if and only: (i) G has at most one non-
trivial component; and (ii) the indegree of u, denoted with d−(u), is equal to its
outdegree, denoted as d+(u), for every u ∈ V (G). Observe that these conditions
are also trivially necessary for the infinite case. Also, note that, given u ∈ V (G),
each in-arc uv of G incident to u gives rise to exactly one in-arc (u, i)(v, i +
T (u, v)) incident to (u, i), for every i ∈ Z. The same clearly holds for every out-
arc. Therefore, one can see that G satisfies (i) and (ii) if and only if G satisfies (i)
and (ii). However, as proved in [20], these are not the only necessary conditions.
Nevertheless, a characterization is still possible, with an additional, also easy to
test, condition.

Theorem 5 ([20]). Let (G, T) be a dynamic graph. Then (G, T) has an Eule-
rian trail if and only the following conditions hold:

1. d−(u) = d+(u) for every u ∈ V (G);
2. G is connected; and
3.

∑
e∈E(G) T (e) ∈ {−1, 1}

Even if the necessary part of the proof is more technical, the sufficiency
part is quite natural, because condition (3) tells us that, given an eulerian tour
T = (v1, · · · , vm, v1) of G and fixing a time i, we can use T to traverse all the
edges incident to (v1, i) in a way that we arrive in (v1, i+1) (or (v1, i− 1) if the
sum is −1) just in time to apply the same process to (v1, i + 1). Because (v1, i)
is chosen arbitrarily, we are ensured to visit all edges of G.

B Proofs

B.1 Proof of Lemma 1

Proof. Let G1, · · · , Gτ be the snapshots of G; note first that if E(Gi) is empty,
then this snapshot can be suppressed. Our problem reduces to deciding whether
there is a choice of connected components H1, . . . , Hτ , one for each timestamp
i, that together cover all the edges of G and is such that Hi intersects Hi+1,
for each i ∈ [τ − 1]. As for each i ∈ [τ], there are at most n nodes in the
intersections, there are at most O(nτ−1) choices. For each choice the test can
be done in O(τ(n + m)), obtaining O(τ(n + m)nτ−1) running time, which is
O((n +m)nτ−1).

B.2 Proof of Lemma 3

Proof. For each i ∈ [2], denote by Ti the trail in G equal to T restricted to
timestamp i, and suppose, by contradiction, that u ∈ V (G) is a vertex with
odd degree not contained in T1. Because T is a temporal tour, observe that T1

is a trail in G starting at some s and finishing at some t, and T2 is a trail in

Königsberg Sightseeing: Eulerian Walks in Temporal Graphs 17

G starting at t and finishing at s, with possibly s = t. This means that the
subgraph of G formed by the edges of T2 is such that every x ∈ V (G) \ {s, t}
has even degree. This is a contradiction because, since no edge incident to u is
visited in T1, we get that all the edges incident to u must be visited in T2, i.e.,
u would have odd degree in T2. The same argument holds in case u is not in T2,
and the lemma follows.

	Königsberg Sightseeing: Eulerian Walks in Temporal Graphs

