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Abstract

We consider the following class of submodular k-multiway partitioning problems:
(Sub-k-MP) min

∑k
i=1 f(Si) : S1]S2] · · · ]Sk = V and Si 6= ∅ for all i ∈ [k]. Here f

is a non-negative submodular function, and ] denotes the union of disjoint sets. Hence
the goal is to partition V into k non-empty sets S1, S2, . . . , Sk such that

∑k
i=1 f(Si)

is minimized. These problems were introduced by Zhao et al. partly motivated by
applications to network reliability analysis, VLSI design, and hypergraph cut, and
other partitioning problems.

In this work we revisit this class of problems and shed some light on their hardness
of approximation in the value oracle model. We provide new unconditional hardness
results for Sub-k-MP in the special settings where the function f is either monotone
or symmetric. We then extend Sub-k-MP to a larger class of partitioning problems,
where the functions fi(Si) can be different, and there is a more general partitioning
constraint S1 ] S2 ] · · · ] Sk ∈ F for some family F ⊆ 2V of feasible sets. We
provide a black box reduction that allows us to leverage several existing results from
the literature; leading to new approximations for this class of problems.

1 Introduction

Submodularity is a property of set functions equivalent to the notion of diminishing re-
turns. We say that a set function f : 2V → R is submodular if for any two sets A ⊆ B ⊆ V
and an element v /∈ B, the corresponding marginal gains satisfy f(A ∪ {v}) − f(A) ≥
f(B ∪ {v}) − f(B). Submodular functions are a classical object in combinatorial opti-
mization and operations research [20]. They arise naturally in many contexts such as set
covering problems, cuts in graphs, and facility location problems. In recent years, they
have found a wide range of applications in different computer science areas.

Since a submodular function is defined over an exponentially large domain, as is typical
in the field we assume access to a value oracle that returns f(S) for a given set S. A great
variety of submodular maximization and minimization problems under a wide range of
constraints have been considered in the literature. In this work, we are primarily interested
in the following class of submodular partitioning problems:

Submodular k-Multiway Partitioning (Sub-k-MP): Given a non-negative sub-
modular function f : 2V → R+ over a ground set V , the goal is to partition V into k
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non-empty sets S1, S2, . . . , Sk such that
∑k

i=1 f(Si) is minimized. That is,

(Sub-k-MP) min

k∑
i=1

f(Si) : S1 ] S2 ] · · · ] Sk = V and Si 6= ∅ for all i ∈ [k],

where we use ] to denote the union of disjoint sets.
Special important cases occur when in addition the function f is either monotone

or symmetric. We refer to those as Mon-Sub-k-MP and Sym-Sub-k-MP respectively.
Recall that a set function f is monotone if f(A) ≤ f(B) whenever A ⊆ B ⊆ V , and
symmetric if f(S) = f(V \ S) for any S ⊆ V .

In the absence of the non-emptyness constraints Si 6= ∅, the problem is trivial since
the partition (V, ∅, . . . , ∅) is always optimal by submodularity. However, although at first
glance the non-emptyness constraints may seem inconspicuous, they lead to interesting
models and questions in terms of tractability. We discuss this in more detail next.

These problems were introduced by Zhao, Nagamochi, and Ibaraki in [32] partly mo-
tivated by applications to hypergraph cut and partition problems. They mention how
Sub-k-MP arises naturally in settings like network reliability analysis ([31]) and VLSI
design ([7]). They also discuss how this class captures several important problems as spe-
cial cases. For instance, the well-studied Graph-k-Cut problem in graphs where the goal
is to remove a subset of edges of minimum weight such that the remaining graph has at
least k connected components. This problem is a special case of Sym-Sub-k-MP, where f
corresponds to a cut function in a graph and hence it is symmetric and submodular. An-
other example is the more general Hypergraph-k-Cut problem on hypergraphs, where
the goal is to remove a subset of hyperedges of minimum weight such that the remain-
ing hypergraph has at least k connected components. This problem is a special case of
Sub-k-MP (see [32, 4] for further details).

The above class of submodular partitioning problems, however, is not as well under-
stood. No hardness of approximation for these problems seems to be known under the
standard P 6= NP assumption. In fact, it is not known whether these problems are in P
for fixed values of k > 4 (even in the simpler monotone and symmetric cases). We discuss
this in more detail in Section 1.1.

One goal of this work is to revisit these problems and shed some light onto their
hardness of approximation in the value oracle model. These hardness results are, thus,
information theoretic. That is, limits on the approximability of a problem when only
polynomially many queries to the value oracle are allowed. We provide new hardness
results for Sym-Sub-k-MP and Mon-Sub-k-MP.

A second goal is to extend Sub-k-MP to a more general class of problems and initiate
the study of its tractability. This seems natural given that Sub-k-MP already captures
fundamental problems such as Graph-k-Cut and Hypergraph-k-Cut, and in addition,
its complexity is not as well understood. We consider the class of problems given by

k-way MA-Min(F) min
k∑
i=1

fi(Si) : S1 ] · · · ] Sk ∈ F and Si 6= ∅ for all i ∈ [k],

where the functions fi are all non-negative submodular and potentially different, and
the family F ⊆ 2V can be any collection of subsets of V . We denote this class by k-
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way Multi-Agent Minimization (k-way MA-Min). This is partially motivated by the
work of Santiago and Shepherd [26] which considers the following class of multi-agent
submodular minimization problems:

MA-Min(F) min

k∑
i=1

fi(Si) : S1 ] · · · ] Sk ∈ F .

We study the connections between these multi-agent problems and their k-way ver-
sions. In particular, we show that in many cases the approximation guarantees for MA-
Min(F) can be extended to the corresponding k-way versions at a small additional loss.

1.1 Related work

Zhao et al. [32] show that a simple greedy splitting algorithm achieves a (2 − 2/k)-
approximation for both Mon-Sub-k-MP and Sym-Sub-k-MP (Queyranne [24] announced
the same result for symmetric submodular functions), and a (k−1)-approximation for the
more general Sub-k-MP. All these approximations hold for arbitrary (i.e., not necessarily
fixed) values of k. Okumoto et al. [23] showed that Sub-k-MP is polytime solvable for
k = 3, and Guiñez and Queyranne [14] showed that the symmetric version Sym-Sub-k-
MP is polytime solvable for k = 4. We next discuss in more detail the cases where k is
fixed (i.e., not part of the input) and when k is part of the input.

For fixed values of k, the Graph-k-Cut problem can be solved in polynomial time
[13, 18]. In recent work Chandrasekaran et al. [3] gave a randomized polytime algorithm
for Hypergraph-k-Cut, whose complexity had remained an intriguing open problem
even for fixed values of k. In subsequent work Chandrasekaran and Chekuri [2] gave a
deterministic polytime algorithm. For the more general submodular multiway partitioning
problems, Chekuri and Ene [4] gave a (1.5− 1/k)-approximation for Sym-Sub-k-MP and
a 2-approximation for Sub-k-MP. The latter was improved to 2− 2/k by Ene et al. [9].

When k is part of the input Graph-k-Cut is NP-Hard [13]. Hence all the above prob-
lems are also NP-Hard (see Appendix A for details about the monotone case). Moreover,
the symmetric and general version are also APX-Hard since they generalize Graph-k-
Cut. We note that Graph-k-Cut was claimed to be APX-Hard by Papadimitriou (see
[28]), although a formal proof never appeared in the literature until the recent work of
Manurangsi [22]. The latter gave conditional hardness by showing that assuming the
Small Set Expansion Hypothesis, it is NP-hard to approximate Graph-k-Cut to within
a 2 − ε factor of the optimum for every constant ε > 0. Chekuri and Li [6] give a
simple reduction showing that an α-approximation for Hypergraph-k-Cut implies an
O(α2)-approximation for Densest-k-Subgraph. This gives conditional hardness of ap-
proximation for Hypergraph-k-Cut since the best known approximation for Densest-
k-Subgraph is O(n1/4+ε) [1], and Manurangsi [21] shows that assuming the Exponential
Time Hypothesis there is no polynomial-time algorithm with an approximation factor of
n1/(log logn)

c
for some constant c > 0. The Densest-k-Subgraph problem is believed to

not admit an efficient constant factor approximation assuming P 6= NP . Since Sub-k-MP
generalizes Hypergraph-k-Cut, the above gives conditional hardness on Sub-k-MP.

The hardness of approximation for the class of submodular multiway partitioning prob-
lems, however, is not as well understood. No hardness of approximation for these problems
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seems to be known under the P 6= NP assumption or under the value oracle model. In
fact, it is not even known whether Mon-Sub-k-MP, Sym-Sub-k-MP, or Sub-k-MP, are
in P for fixed low values of k (read k > 3 for the monotone and general versions, and k > 4
for the symmetric version).

For the class of multi-agent minimization problems MA-Min(F), the special case where
F = {V } is known as Minimum Submodular Cost Allocation and has been previously
studied [15, 30, 8, 5]. The works of Goel et al. [11] and Santiago and Shepherd [26]
studied these problems under more general families. For a comprehensive review of multi-
agent submodular optimization problems see [25].

We are not aware of previous work for the k-way MA-Min(F) class of problems besides
the special case of Sub-k-MP. That is, the case with F = {V } and fi = f for all i.

1.2 Our contributions

The contributions of this work are three-fold: new hardness results, a black box reduction,
and new applications. We discuss each of these three blocks next.

In this work we initiate the study of the hardness of approximation in the value oracle
model for different variants of Sub-k-MP. We provide the first unconditional hardness of
approximation results for Sym-Sub-k-MP and Mon-Sub-k-MP in the value oracle model.
For the latter problem we are not aware of any previous (even conditional) hardness result.
For Sym-Sub-k-MP our bound matches the (conditional) inapproximability factor of 2−ε
from the work of [22]. See Section 2 for proof details and further discussion.

Theorem 1. Given any ε > 0, any algorithm achieving a (2 − ε)-approximation for the
Sym-Sub-k-MP problem when k is part of the input, requires exponentially many queries
in the value oracle model.

Theorem 2. Given any ε > 0, any algorithm achieving a (43 − ε)-approximation for the
Mon-Sub-k-MP problem when k is part of the input, requires exponentially many queries
in the value oracle model.

Our main algorithmic result is a black box procedure which, at a small additional
loss, turns a solution for the multi-agent problem (i.e., MA-Min(F)) into a solution for
the k-way version (i.e., k-way MA-Min(F)). We do this in the case where the objective
functions fi are non-negative and monotone, and for families F that are upwards closed
(i.e., if S ∈ F and T ⊇ S then T ∈ F). The latter is a mild assumption given that the
functions are monotone. Our guarantees are tight up to a small constant additive term.

Theorem 3. Let F be an upwards closed family. Then an α(n, k)-approximation for
monotone MA-Min(F) implies an (α(n, k) + 1)-approximation for monotone k-way MA-
Min(F). In addition, there are instances where achieving an (α(n, k)+1

3−ε)-approximation
requires exponentially many queries in the value oracle model for any ε > 0.

We remark that improving the above additive term would lead to an improvement
of the best current approximation factor for Mon-Sub-k-MP (i.e., the setting where
F = {V } and fi = f for all i). The multi-agent version of this problem: min

∑k
i=1 f(Si) :

S1 ] · · · ] Sk = V , has a trivial 1-approximation by taking the partition V, ∅, . . . , ∅, and
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Mon-Sub-k-MP Sym-Sub-k-MP
Mon-Sub-k-MP
over vertex covers

Approx Hardness Approx Hardness Approx Hardness
Known 2− 2/k [32] - 2− 2/k [32] 2− ε (conditional) [22] - 2− ε [11]

This paper 2 (faster) 4/3− ε - 2− ε (unconditional) 3 -

Table 1: Comparison of some of the results in this paper with previous work.

hence by Theorem 3 we obtain a 2-approximation for the corresponding k-way version,
i.e., for Mon-Sub-k-MP. This matches asymptotically the best known approximation of
2− 2/k for this problem given in [32]. It is not known however whether this is tight.

The above black box result leads to interesting applications (see Section 3 for full
details). For instance, the problem k-way MA-Min(F) with monotone functions fi and
where F corresponds to the family of vertex covers of a graph, admits a tight O(log n)-
approximation. Moreover, in the case where all the functions fi are the same, this becomes
a 3-approximation. To the best of our knowledge this is the current best approximation
for this problem. The special case k = 1 corresponds to the submodular vertex cover
problem studied in [11], where a hardness of 2− ε is shown in the value oracle model.

Corollary 1. There is a 3-approximation algorithm for the problem min
∑

i∈[k] f(Si) :
S1] · · · ]Sk ∈ F and Si 6= ∅ for all i ∈ [k], where f is non-negative monotone submodular
and F is the family of vertex covers of a graph.

Another direct consequence of Theorem 3 is providing a very simple 2-approximation
for Mon-Sub-k-MP. The argument in fact shows that one very specific partition achieves
the desired bound. In addition to simple, the procedure to build such a partition is also
fast. Indeed, the running time of the (2−2/k)-approximation algorithm provided by Zhao
et al. [32] is kn3EO, where EO denotes the time that a call to the value oracle takes. On
the other hand, the running time of this procedure is O(nEO+n log n) and hence almost
linear.

Corollary 2. There is a 2-approximation algorithm for Mon-Sub-k-MP running in time
O(nEO + n log n), where EO denotes the time that a call to the value oracle takes.

We summarize some of our results and compare them with previous work in Table 1.

2 Hardness results in the value oracle model

In this section we provide the first unconditional hardness of approximation results in
the value oracle model for Sym-Sub-k-MP and Mon-Sub-k-MP. In addition, for Mon-
Sub-k-MP we are not aware of any (even conditional) hardness of approximation result
previous to this work.

Our results are based on the technique of building two functions that are hard to
distinguish with high probability for any (even randomized) algorithm. This was first used
in the work of Goemans et al. [12], and has since then been used in several subsequent
works [10, 29, 11, 16, 27].
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2.1 A 2-factor inapproximability oracle hardness for Sym-Sub-k-MP

The current best known (conditional) hardness of approximation for Sym-Sub-k-MP
follows from the result of Manurangsi [22], where it is shown that assuming the Small
Set Expansion Hypothesis, it is NP-hard to approximate Graph-k-Cut to within a 2− ε
factor of the optimum for every constant ε > 0. Since Sym-Sub-k-MP generalizes Graph-
k-Cut, the same conditional hardness of approximation automatically applies. In this
section we prove an unconditional lower bound hardness for Sym-Sub-k-MP in the value
oracle model (Theorem 1). To the best of our knowledge this is the first result of this kind
for this problem.

To prove the desired result, we first build two indistinguishable functions as follows.
Let |V | = n be an even number, R be a random set of size n

2 , and R̄ denote its complement.
Define parameters ε2 = 1

nω(lnn) and β = n
4 (1 + ε), such that β is an integer. Consider

the functions

f1(S) = min
{
|S|, n

2

}
− |S|

2
and f2(S) = min

{
|S|, n

2
, β + |S ∩R|, β + |S ∩ R̄|

}
− |S|

2
.

These functions were already used in the work of Svitkina and Fleischer [29] to prove
polynomial hardness of approximation for the submodular sparsest cut and submodular
balanced cut problems. They show that the above two functions are non-negative sym-
metric submodular and hard to distinguish. That is, any (even randomized) algorithm
that makes a polynomial number of oracle queries has probability at most n−ω(1) of dis-
tinguishing the functions f1 and f2.

We use this to show hardness of approximation for Sym-Sub-k-MP as follows.

Claim 1. Consider the Sym-Sub-k-MP problem with k = n
2 + 1 and inputs f1 and f2.

Then, if the input is f1 any feasible solution has objective value at least n
2 , while if the

input is f2 then the optimal value is at most n
4 (1 + ε).

Proof. Since we have n elements that must be split into n
2 +1 non-empty sets, no more than

n
2 items can be assigned to any given set. That is, for any feasible solution S1, S2, . . . , Sk
we must have that |Si| ≤ n

2 . It then follows that when the input is f1, any feasible solution

S1, S2, . . . , Sk has objective value exactly
∑k

i=1 f1(Si) =
∑k

i=1

(
|Si| − |Si|

2

)
= n

2 .
On the other hand, when the input is f2, a feasible solution is given by taking S1 =

R̄, S2 = {r1}, S3 = {r2}, . . . , Sk = {rn/2}, where R = {r1, r2, . . . , rn/2}. This has objective
value

k∑
i=1

f2(Si) = f2(R̄) +
k∑
i=2

f2(ri−1) =
(
β − n

4

)
+

k∑
i=2

(
1− 1

2

)
= β − n

4
+
n

4
= β =

n

4

(
1 + ε

)
.

From the above result it follows that the gap between the optimal solutions for Sym-
Sub-k-MP when the inputs are f1 and f2 is at least

OPT1
OPT2

≥
n
2

n
4 (1 + ε)

=
2

1 + ε
.
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Since ε = o(1) this gap can be arbitrarily close to 2 for large values of n. Given that f1
and f2 are hard to distinguish, this now leads to Theorem 1.

Proof [Theorem 1. ] Assume there is an algorithm that makes polynomially many queries
to the value oracle and that achieves a (2 − δ)-approximation for Sym-Sub-k-MP for
some constant δ > 0. Let the functions f1 and f2 be as defined above, and choose n and
the parameter ε(n) so that (1 + ε(n))(2 − δ) < 2, i.e., so that ε(n) < δ/(2 − δ). Since
ε(n) = o(1) and δ is a constant, this is always possible.

Consider the output of the algorithm when the input is f2. By Claim 1 in this case
the optimal solution is at most n

4 (1 + ε), and hence the algorithm finds a feasible solution
(S1, S2, . . . , Sk) such that

∑
i∈[k] f2(Si) ≤ (2 − δ)(1 + ε)n4 <

n
2 , where the last inequality

follows from the choice of ε. However, there is no feasible solution (S′1, S
′
2, . . . , S

′
k) such

that
∑

i∈[k] f1(S
′
i) <

n
2 , since by Claim 1 any feasible solution for f1 has value at least n/2.

That means that if the input is the function f1 the algorithm outputs a different answer,
thus distinguishing between f1 and f2. A contradiction.

2.2 A 4/3-factor inapproximability oracle hardness for Mon-Sub-k-MP

In this section we prove an unconditional lower bound hardness of approximation for
Mon-Sub-k-MP in the value oracle model (Theorem 2). To the best of our knowledge,
this is the first hardness of approximation result (either conditional or unconditional) for
Mon-Sub-k-MP. As discussed in Appendix A, the conditional hardness of approximation
for Graph-k-Cut does not extend to Mon-Sub-k-MP, since the objective function in
that case must take negative values.

The argument is similar to the one from Section 2.1. We consider the two functions

f3(S) = min
{
|S|, n

2

}
and f4(S) = min

{
|S|, n

2
, β + |S ∩R|, β + |S ∩ R̄|

}
,

where all the parameters are as defined in Section 2.1. Note that f3 = f1+g and f4 = f2+g,
where g(S) = |S|/2. Since both f1 and f2 are submodular, and g is modular, it follows
that f3 and f4 are also submodular. Moreover, it is straightforward to check that both f3
and f4 are also non-negative and monotone.

Since f1 and f2 are hard to distinguish, and f3(S) 6= f4(S) if and only if f1(S) 6= f2(S),
it follows that f3 and f4 are also hard to distinguish.

The following result shows the gap between the optimal solutions of the corresponding
problems.

Claim 2. Consider the Mon-Sub-k-MP problem with k = n
2 + 1 and inputs f3 and f4.

Then, if the input is f3 any feasible solution has objective value at least n, while if the
input is f4 then the optimal value is at most 3+ε

4 n.

Proof. The argument is very similar to that of Claim 1. Since any feasible solution
S1, S2, . . . , Sk must satisfy |Si| ≤ n

2 for all i, it then follows that when the input is f3, any

feasible solution S1, S2, . . . , Sk has objective value exactly
∑k

i=1 f3(Si) =
∑k

i=1 |Si| = n.
On the other hand, when the input is f4, a feasible solution is given by S1 = R̄, S2 =

{r1}, S3 = {r2}, . . . , Sk = {rn/2}, where R = {r1, r2, . . . , rn/2}. This has objective value∑k
i=1 f4(Si) = n

4 (1 + ε) + n
2 = 3+ε

4 n.
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It follows that the gap between the optimal solutions for Mon-Sub-k-MP when the
inputs are f3 and f4 is at least

OPT3
OPT4

≥ 4

3 + ε
.

Since ε = o(1) this gap can be arbitrarily close to 4/3 for large values of n. Given that f3
and f4 are hard to distinguish, this now leads to Theorem 2.

Proof [Theorem 2. ] Assume there is an algorithm that makes polynomially many queries
to the value oracle and that achieves a (4/3− δ)-approximation for Mon-Sub-k-MP for
some constant δ > 0. Let the functions f3 and f4 be as defined above, and choose n and
the parameter ε(n) so that (3+ε4 )(43 − δ) < 1, i.e., so that ε < 9δ

4−3δ . Since ε(n) = o(1) and
δ is a constant, this can always be done.

Consider the output of the algorithm when the input is f4. By Claim 2 in this case
the optimal solution is at most 3+ε

4 n, and hence the algorithm finds a feasible solution
(S1, S2, . . . , Sk) such that

∑
i∈[k] f4(Si) ≤ (43 − δ)3+ε4 n < n, where the last inequality

follows from the choice of ε. However, there is no feasible solution (S′1, S
′
2, . . . , S

′
k) such

that
∑

i∈[k] f3(S
′
i) < n, since by Claim 2 any feasible solution for f3 has value at least n.

That means that if the input is the function f3 the algorithm outputs a different answer,
thus distinguishing between f3 and f4. A contradiction.

3 From multi-agent minimization to the k-way versions

In this section we show that if the functions fi are monotone, then a feasible solution to the
MA-Min(F) problem can be turned into a feasible solution to the corresponding k-way
version (i.e., k-way MA-Min(F)) at almost no additional loss. Moreover, our argument
is completely black box with respect to how the approximation for the MA-Min instance
is obtained (i.e., it could be via a greedy algorithm, a continuous relaxation, or any other
kind of approach). We show the following.

Theorem 3. Let F be an upwards closed family. Then an α(n, k)-approximation for
monotone MA-Min(F) implies an (α(n, k) + 1)-approximation for monotone k-way MA-
Min(F). In addition, there are instances where achieving an (α(n, k)+1

3−ε)-approximation
requires exponentially many queries in the value oracle model for any ε > 0.

Proof. Denote by OPT the value of the optimal solution to the k-way problem and by
OPT the value of the optimal solution to MA-Min(F). Then it is clear that OPT ≤ OPT
since any feasible solution for the k-way version is also feasible for MA-Min(F).

Let G = ([k] ] V,E) denote the complete bipartite graph where the weight of an edge
(i, v) is given by fi(v). Let M be a minimum [k]-saturating matching in G, that is a
minimum cost matching such that every node in [k] gets assigned at least one element.
Since the edges have non-negative weights it is clear that |M | = k, i.e., each node i ∈ [k]
gets assigned exactly one element from V . Denote the edges of the matching by M =
{(1, u1), (2, u2), . . . , (k, uk)}, and let U := {u1, u2, . . . , uk} be the elements in V that M is
incident to.
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We then have that the cost of M is at most OPT . Indeed, if (S∗1 , S
∗
2 , . . . , S

∗
k) is

an optimal solution to the k-way instance, we can remove elements from the sets S∗i
arbitrarily until each of the sets consists of exactly one element. By monotonicity, removing
elements can only decrease the objective value of the solution. Moreover, since now each
set consists of exactly one element, this is a feasible [k]-saturating matching, and hence
its cost is at least the cost of M . That is,

∑
i∈[k] fi(ui) ≤ OPT .

Let (S1, S2, . . . , Sk) be an α-approximation for the MA-Min(F) instance. Then we
have

∑
i∈[k] fi(Si) ≤ α ·OPT ≤ α ·OPT . We combine this solution with the matching M

by defining new sets S′i := (Si \ U) ] {ui} for each i ∈ [k]. It is clear that this is now a
feasible solution to the k-way problem since all the sets S′i are non-empty and pairwise
disjoint, and their union ∪i∈[k]S′i = U ∪

(
∪i∈[k] Si

)
belongs to F since ∪i∈[k]Si ∈ F and F

is upwards closed. Moreover, the cost of the new solution is given by∑
i∈[k]

fi(S
′
i) =

∑
i∈[k]

fi(Si \ U + ui) ≤
∑
i∈[k]

fi(Si \ U) +
∑
i∈[k]

fi(ui) ≤
∑
i∈[k]

fi(Si) +
∑
i∈[k]

fi(ui)

≤ α ·OPT +OPT = (α+ 1) ·OPT,

where the first inequality follows from subadditivity (since the functions are non-negative
submodular) and the second inequality from monotonicity.

For the inapproximability result part, consider the family F = {V } and the setting
where all the functions fi are the same. Then the corresponding MA-Min(F) problem
has a trivial 1-approximation, while the k-way version corresponds to Mon-Sub-k-MP.
The latter, by Theorem 2, cannot be approximated in the value oracle model to a factor
of (43 − ε) for any ε > 0 without making exponentially many queries. It follows that for
these instances, the MA-Min version has an exact solution while the k-way versions have
an inapproximability lower bound of 4/3 − ε = 1 + 1/3 − ε. Hence, there are instances
where for any ε > 0, achieving an (α(n, k) + 1

3 − ε)-approximation requires exponentially
many queries in the value oracle model. This completes the proof.

For proving or improving the result from Theorem 3, one could be tempted to first
compute an optimal (or approximate) solution (S1, . . . , Sk) to the MA-Min(F) problem,
and then find an allocation of some of the elements of F := ]i∈[k]Si among the agents that
did not get any item. However, this approach can lead to a large additional loss, since a
set F ∈ F could be optimal for the MA-Min problem but highly suboptimal for the k-way
version. The following example shows this, even for the case of modular functions.

Let T ( V be an arbitrary set of size 2(k − 1). Let f1(S) = |S| and fi(S) = w(S) for
all i ≥ 2 where w : V → R+ is the modular function given by w(v) = 1 + ε for v /∈ T and
w(v) = M for v ∈ T , for some large value M . Moreover, let F = {S : |S| ≥ 2(k−1)}. Then
a feasible (and optimal) solution to the MA-Min(F) problem is given by the allocation
(T, ∅, . . . , ∅) with objective value f1(T ) = |T | = 2(k − 1). However, any splitting of
some of the items of T among the other k − 1 agents leads to a solution of cost at least
M(k−1)+(k−1) = (M+1)(k−1). On the other hand, an optimal solution for the k-way
version is given by any partition of the form (S1, {v2}, {v3}, . . . , {vk}) where S1 ⊆ V is
any set of k − 1 elements, and {v2, v3, . . . , vk} ⊆ V \ T . This leads to a solution of cost
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(k− 1) + (1 + ε)(k− 1) = (2 + ε)(k− 1). Thus having a gap in terms of objective value of

at least (M+1)(k−1)
(2+ε)(k−1) = M+1

2+ε .
Theorem 3 allows us to extend several results from monotone multi-agent minimization

to the k-way versions. We discuss some of these consequences next. An interesting
application is obtained using the O(log n)-approximation from [30].

Corollary 3. There is a tight O(log n)-approximation for the allocation problem

min
k∑
i=1

fi(Si) : S1 ] S2 ] · · · ] Sk = V and Si 6= ∅ for all i ∈ [k],

where all the functions fi are non-negative monotone submodular.

Proof. The approximation factor follows from Theorem 3 and the tightO(log n)-approximation
([30]) for the corresponding MA-Min instance. To see why this is tight assume that
an (asymptotically) better approximation factor of o(log n) is possible. Then given a
MA-Min instance we can reduce it to an instance of the k-way version by adding a set
D := {d1, d2, . . . , dk} of k dummy elements to the ground set. That is, consider an in-
stance of the k-way version with V ′ := V ∪D, F ′ = {V ′}, and f ′i(S) := fi(S∩V ) for each
i ∈ [k] and S ⊆ V ′. Then by assumption we have a o(log(n + k))-approximation for this
problem, and hence we also have the same approximation factor for the original MA-Min
instance. But this contradicts the lower bound of Ω(log n) for the MA-Min problem.

More generally, we can obtain approximation guarantees for families with a bounded
blocker. Given a family F , there is an associated blocking clutter B(F) which consists of
the minimal sets B such that B∩F 6= ∅ for each F ∈ F . We refer to B(F) as the blocker of
F . We say that B(F) is β-bounded if |B| ≤ β for all B ∈ B(F). Families such as F = {V }
or vertex covers in a graph, are examples of families with a bounded blocker. Indeed,
the family F = {V } has a 1-bounded blocker, since B(F) = {{v1}, {v2}, . . . , {vn}}. The
family F of vertex covers of a graph G has a 2-bounded blocker, since B(F) = {{u, v} :
(u, v) is an edge in G}. Recall that a set S ⊆ V is a vertex cover in a graph G if every
edge in G is incident on a vertex in S.

It is shown in [26] that families with a β-bounded blocker admit aO(β log n)-approximation
for the multi-agent monotone minimization problem. This, combined with Theorem 3, im-
plies a O(β log n)-approximation for the k-way versions. In particular, this leads to a tight
O(log n)-approximation for the k-way MA-Min(F) problem with monotone functions fi
and where F corresponds to the family of vertex covers of a graph. The tightness follows
from Corollary 3 and the fact that vertex covers generalize the family F = {V }.

3.1 The special case where all the functions fi are the same

Theorem 3 also leads to interesting consequences in the special case where fi = f for
all i. In that setting, it is easy to see that the single-agent and multi-agent versions are
equivalent. That is,

min f(S) : S ∈ F = min
∑
i∈[k]

f(Si) : S1 ] S2 ] · · · ] Sk ∈ F , (1)

10



and moreover F ∈ F is an optimal solution to the single-agent problem if and only if the
trivial partition (F, ∅, . . . , ∅) is an optimal solution to the multi-agent version. Again this
just follows from submodularity and non-negativity since then f(T ) ≤ f(S) + f(T − S)
for any S ⊆ T ⊆ V . That is, partitioning the elements of a set can only increase the value
of the solution. This leads to the following result.

Corollary 4. Let F be any upwards closed family, and assume there is an α(n)-approximation
for the single-agent monotone minimization problem: min f(S) : S ∈ F . If fi = f for all i,
then there is an α(n)-approximation for monotone MA-Min(F), and hence an (α(n) + 1)-
approximation for monotone k-way MA-Min(F).

Proof. By Equation (1), an α(n)-approximation for the single-agent monotone minimiza-
tion problem implies an α(n)-approximation for monotone MA-Min(F) in the setting
where fi = f for all i. Now the result for the corresponding k-way versions immediately
follows from Theorem 3.

We remark that by taking F = {V } the above corollary leads to a 2-approximation
for Mon-Sub-k-MP, which matches asymptotically the currently best known. Hence
improving the plus one additive term would lead to an improvement on the approximation
factor of the latter problem.

Corollary 4 leads to new results. For instance, using the 2-approximation from [11, 16]
for single-agent monotone minimization over families of vertex covers, we immediately
get a 3-approximation for the corresponding monotone k-way MA-Min(F) problem over
the same type of families. This now proves Corollary 1. More generally, given the β-
approximation results ([17, 19]) for minimizing a monotone submodular function over
families with a β-bounded blocker, we have the following.

Corollary 5. Let F be an upwards closed family with a β-bounded blocker. Then there
is a (β + 1)-approximation algorithm for the problem min

∑
i∈[k] f(Si) : S1 ] · · · ] Sk ∈ F

and Si 6= ∅ for all i ∈ [k], where f is a non-negative monotone submodular function.

3.2 A simpler and faster 2-approximation for Mon-Sub-k-MP

Another direct consequence of Theorem 3 is to provide a very simple and fast 2-approximation
for Mon-Sub-k-MP. We describe the procedure in Algorithm 1. The running time of the
(2 − 2/k)-approximation algorithm provided by Zhao et al. [32] is kn3EO, where EO
denotes the time that a call to the value oracle takes. On the other hand, the running
time of our procedure is O(nEO + n log n) and hence almost linear. All we need to do is
first make n oracle calls to evaluate f(v) for each v ∈ V , and then sort the elements so
that f(v1) ≤ f(v2) ≤ . . . ≤ f(vn) (which requires O(n log n) time).

Algorithm 1: Simpler and faster algorithm for Mon-Sub-k-MP

Input: A ground set V = {v1, v2, . . . , vn}, and a set function f : 2V → R with oracle access.
Sort and rename the elements so that f(v1) ≤ f(v2) ≤ . . . ≤ f(vn).
S1 ← {v1}, S2 ← {v2}, . . . , Sk−1 ← {vk−1}, Sk ← V \ {v1, v2, . . . , vk−1}.
Output: (S1, S2, . . . , Sk)
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Corollary 2. Algorithm 1 is a 2-approximation algorithm for Mon-Sub-k-MP running
in time O(nEO+n log n), where EO denotes the time that a call to the value oracle takes.

4 Conclusion and open problems

We revisited the class of Submodular k-Multiway Partitioning problems (Sub-k-MP). We
proved new unconditional inapproximability results for the monotone and symmetric cases
of Sub-k-MP in the value oracle model.

We introduced and explored a new class of submodular partitioning problems which
generalizes Sub-k-MP. We showed that several results from multi-agent submodular min-
imization can be extended to their k-way counterparts at a small additional loss. Thus
obtaining several new results for this class of problems.

Many interesting open questions remain, perhaps the most important being about
the approximation hardness of Sub-k-MP. It remains completely open whether these
problems are polytime solvable for fixed values of k > 4. In addition, given the conditional
hardness of approximation for Hypergraph-k-Cut based on Densest-k-Subgraph, we
believe it may be possible to prove strong unconditional hardness of approximation results
for Sub-k-MP in the value oracle model when k is part of the input.

It also remains open whether the 2-approximation for Mon-Sub-k-MP is tight. And
more generally, to close the gap between the upper bound and lower bound in Theorem 3.
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A NP-Hardness of Mon-Sub-k-MP

In this section we argue that Mon-Sub-k-MP is NP-Hard. This was already discussed
in [32], and we include it here for completeness. Given a graph G = (V,E) with a weight
function w : E → R+, let δ denote the weighted cut function δ(S) =

∑
e∈E, ∅(e(S w(e).

Also, let h : 2V → R+ denote the function h(S) =
∑

e∈E, e⊆S w(e), which sums the
weights of all the edges contained in the set S. It is well-known and not hard to see
that the function f = δ + h is non-negative monotone submodular. Moreover, the two
optimization problems

(Graph-k-Cut) min
1

2

k∑
i=1

δ(Si) : S1 ] S2 ] · · · ] Sk = V and Si 6= ∅ for all i ∈ [k]

and

min
k∑
i=1

f(Si) : S1 ] S2 ] · · · ] Sk = V and Si 6= ∅ for all i ∈ [k]

are equivalent (in terms of the optimal solution), since for any feasible solution S1, S2, . . . , Sk
we have

k∑
i=1

f(Si) =
k∑
i=1

δ(Si) +
k∑
i=1

h(Si) = w(E) +
1

2

k∑
i=1

δ(Si).

It then follows that an optimal solution to Mon-Sub-k-MP is also an optimal solution to
Graph-k-Cut. Hence, since Graph-k-Cut is NP-Hard when k is part of the input, it
follows that so is Mon-Sub-k-MP.

It is worth pointing out that the APX-Hardness of Graph-k-Cut does not translate
to Mon-Sub-k-MP. This is because in order to get solutions of equal optimal values,
the objective function should be f ′ := δ + h − w(E)

k , so that for any feasible solution

S1, S2, . . . , Sk we have
∑k

i=1 f
′(Si) = 1

2

∑k
i=1 δ(Si). However, in this case the function f ′

is not non-negative.

15


	1 Introduction
	1.1 Related work
	1.2 Our contributions

	2 Hardness results in the value oracle model
	2.1 A 2-factor inapproximability oracle hardness for Sym-Sub-k-MP
	2.2 A 4/3-factor inapproximability oracle hardness for Mon-Sub-k-MP

	3 From multi-agent minimization to the k-way versions
	3.1 The special case where all the functions fi are the same
	3.2 A simpler and faster 2-approximation for Mon-Sub-k-MP

	4 Conclusion and open problems
	A NP-Hardness of Mon-Sub-k-MP

