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Abstract. A wheel graph consists of a cycle along with a center vertex
connected to every vertex in the cycle. In this paper we show that every
subgraph of a wheel graph has list coupled chromatic number at most 5,
and this coloring can be found in linear time. We further show that ‘5’
is tight for every wheel graph with at least 5 vertices, and briefly discuss
possible generalizations to planar graphs of treewidth 3.

1 Introduction

In this paper we study the problem of coupled choosability, the problem of finding
a valid coloring given list assignments to every vertex and face of a planar graph.
The problem is of great relevance to list coloring 1-planar graphs, as list coupled
coloring a planar graph corresponds to list coloring an optimal 1-planar graph.
(Detailed definitions will be given in Section 2.) Wang and Lih [13] show that
every planar graph is 7-coupled-choosable, and hence every optimal 1-planar
graph is 7-choosable. They further show that maximal planar graphs are 6-
coupled-choosable, planar graphs of maximum degree 3 are 6-coupled-choosable,
and outerplanar graphs (and more generally, all K4-minor free graphs) are 5-
coupled-choosable.

The result by Wang and Lih settles the coupled choosability for planar par-
tial 2-trees (which are the same as K4-minor free graphs). Initially wishing to
investigate the coupled choosability of planar partial 3-trees, in this paper we
investigate the coupled choosability of wheel graphs and their subgraphs. In The-
orem 2, we show that any subgraph of a wheel is 5-coupled-choosable, and the
coloring can be found in linear time. (Prior papers such as [13] did not address
the run-time of finding their colorings; it can clearly be done in polynomial time
by following the steps of their proof but linear time is not obvious.) In Theo-
rem 3, we characterize the coupled choosability of wheel graphs by showing that
5 is tight for wheel graphs with at least 5 vertices. In the last section of the
paper, we touch upon how these results could be relevant in finding the coupled
choosability of planar partial 3-trees.

As for related results, the (non-coupled) choosability of wheel graphs was
characterized in a different paper by Wang and Lih [12]: wheels of even order
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have list chromatic number 4, while wheels of odd order have list chromatic
number 3. This stands in contrast to our result, as the parity of the number of
vertices in the graph does not affect the coupled choosability of wheel graphs.
Wang and Lih also show that Halin graphs that are not wheels have list chromatic
number 3, while in Theorem 4 we prove the existence of a Halin graph that is
not 5-coupled-choosable (in fact, it is not 5-coupled-colorable).

Our paper is structured as follows: In Section 2 we will go over the necessary
definitions and terminology for graphs and graph coloring. In Section 3 we in-
vestigate the coupled choosability of wheel graphs. In Section 4 we examine how
coupled choosability behaves under certain graph operations. In Section 5 we
extend our analysis of wheel graphs to subgraphs of wheels, along with lower-
bounding the coupled choosability of wheel graphs. In Section 6 we go over
several possible extensions to our results, in particular some conjectures about
the coupled-choosability of planar partial 3-trees.

2 Definitions

We assume basic familiarity with graph theory (see [3]). In this paper all graphs
are finite and connected.

The complete graph K4 consists of four vertices and all possible edges between
them. A subdivision of a graph G is formed by repeatedly taking some edge
uv ∈ E(G), removing e from G, adding a new vertex x, and adding edges ux
and xv. A graph is called K4-minor free if none of its subgraphs is a subdivision
of K4.

We recall that a graph G is called planar if it can be drawn in the plane
without edges crossing, and plane if a specific planar drawing Γ is given. The
maximal regions of R\Γ are called faces; the unbounded region is known as the
outer face and all other faces are inner faces. An outerplanar graph is a graph
that can be drawn in the plane such that every vertex is on the outer face; such
a graph is K4-minor free. A bigon is a face that is bounded by two duplicate
edges between a pair of vertices. For a plane graph G, we use V (G), E(G), and
F (G) to denote the set of vertices, the set of edges, and the set of faces of G,
respectively. The dual graph G∗ of a plane graph is obtained by exchanging the
roles of vertices and faces, i.e., G∗ has a vertex for every face of G, and an edge
(f1, f2) for every common edge of the two corresponding faces f1, f2 in G.

A list assignment is a map L that assigns a set of colors for each vertex or
face in V (G) ∪ F (G). A coupled coloring with respect to L is a map c such that
c(x) ∈ L(x) for every x ∈ V (G)∪F (G), and L(x) 6= L(y) for incident or adjacent
elements x, y ∈ V (G) ∪ F (G). If such a map c exists, then we say that G is L-
coupled-choosable. If G is L-coupled-choosable for every L such that |L(x)| = k
for every x ∈ V (G) ∪ F (G), then we say that G is k-coupled-choosable. The
smallest integer k such that such that G is k-coupled-choosable is called the list
coupled chromatic number of G and denoted χL

vf (G). Observe that a list coupled
coloring of a graph G implies a list coupled coloring of the dual graph G∗, since



the roles of the vertices and the faces is exchanged but incidences/adjacencies
stay the same. Hence, we have χL

vf (G) = χL
vf (G∗).

A natural way to express the list coupled chromatic number is to define a
new graph X(G) with vertices for all vertices and faces of G and edges whenever
the vertices and faces G are adjacent/incident. This graph X(G) is 1-planar, i.e.,
can be drawn in the plane with at most one crossing per edge. In fact, if G is
3-connected then X(G) is an optimal 1-planar graph, i.e., it is simple and has the
maximum-possible 4n − 8 edges. (All optimal 1-planar graphs can be obtained
in this fashion [9].) A coupled coloring of G corresponds to a vertex coloring of
X(G), i.e., a coloring of the vertices such that adjacent vertices have different
colors. When restricting a vertex coloring to given lists L, then the respective
terms are L-choosable, k-choosable, and the list chromatic number χL(X).

The wheel graph Wn is formed by starting with a cycle Cn−1 on n−1 vertices
(the outer cycle), adding a center vertex inside the cycle and adding a spoke-
edge from the center vertex to every vertex on the cycle. We will label the center
vertex and the outer face of the wheel graph as x0 and f0, respectively. We
further label the vertices in the outer cycle as x1, . . . , xn−1, and label the inner
faces as f1, . . . , fn−1 such that xi is incident to fi and fi+1 for 1 ≤ i < n − 1,
and xn−1 is adjacent to fn−1 and f1 (see Figure 1).

3 Coupled Choosability of Wheel Graphs

In order to prove the desired result for all subgraphs of the wheel graph, we first
determine the coupled choosability of the wheel graph itself. It will be helpful to
recall the following result relating the choosability of a graph to the maximum
degree; it is an analogue to Brook’s theorem and similarly upper-bounds the
chromatic number of a graph by its maximum degree.

Lemma 1. (Erdős, Rubin, and Taylor [5]) Let G be a connected graph that is
neither an odd cycle nor a complete graph. Then G is ∆(G)-choosable.

Our main result in this section is:

Lemma 2. Every wheel graph Wn, n ≥ 4, is 5-coupled-choosable.

Proof. For n = 4, W4 is the complete graph K4. Wang and Lih [13] proved that
χL
vf (K4) = 4, so we assume n ≥ 5. Let L be a color assignment for Wn such that
|L(y)| = 5 for every y ∈ V (Wn) ∪ F (Wn). Our goal is to find a coupled coloring
with respect to L. Since x0 and f0 are both adjacent to all remaining vertices,
we will color them first and then color the rest of X(Wn). We will use Xn as
a shortcut for X(Wn) \ {x0, f0}. Observe that |V (Xn)| = 2n − 2 and that Xn

is 4-regular (see Figure 1). Furthermore, it suffices to find a vertex-colouring of
Xn with respect to L, plus two suitable colors in L(x0) and L(f0) for x0 and f0.
We have two cases:

Case 1: L(x0)∩L(f0) 6= ∅. Let a ∈ L(x0)∩L(f0), and assign color a to x0 and
f0. Observe that |L(y) \ {a}| ≥ 4 for every y ∈ V (Xn) and Xn has maximum
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Fig. 1. The graph W9 (left) and X9 (right). Circled numbers indicate a lower bound
on the list-length in L′.

degree 4. Moreover |Xn| = 2n − 2 is even, so Xn is not an odd cycle. Also x1
and x3 are not adjacent by n ≥ 5, so Xn is not a complete graph. Therefore, by
Lemma 1, we have a list coloring of the vertices of Xn that only uses colors in
L \ {a}, which in turn implies an L-list-coloring of the vertices and faces of Wn.

Case 2: L(x0) ∩ L(f0) = ∅. We find suitable colors for x0 and f0 by imitating
the method used for K4 in [13] (but adapted here to 5 colors). Define color-pairs
S := {{a, b} : a ∈ L(x0), b ∈ L(f0)}. By case-assumption |S| = 25.

We claim that | {s ∈ S : s ⊆ L(y)} | ≤ 6 for any y ∈ V (Xn). To see this,
let y ∈ V (Xn), and consider the disjoint sub-lists L1 := L(y) ∩ L(x0) and
L2 := L(y) ∩ L(f0). Since |L1| + |L2| ≤ |L(y)| = 5, and |L1| and |L2| are
integers, we have

| {s ∈ S : s ⊆ L(y)} | = |L1 × L2| = |L1| · |L2| ≤ 6.

Therefore, color-pairs of S appear as subsets of lists in Xn at most∑
y∈Xn

| {s ∈ S : s ⊆ L(y)} | ≤ (2n− 2) · 6 = 12n− 12

times. By |S| = 25, some element {a′, b′} of S appears at most

12n− 12

25
<
n− 1

2

times as a subset of a list in Xn. Color x0 with a′ and f0 with b′. For y ∈ V (Xn),
define L′(y) := L(y) \ {a′, b′}. For any y ∈ V (Xn), we have 3 ≤ |L′(y)| ≤ 5.
We call y a 3-vertex if |L′(y)| = 3 (this implies {a′, b′} ⊂ L(y)), and a 4-vertex
otherwise. From our choice of colors a′ and b′, we have

| {y ∈ V (Xn) : y is a 3-vertex} |
|V (Xn)|

<
(n− 1)/2

2n− 2
=

1

4



Therefore, more than three quarters of the vertices of Xn are 4-vertices. Consider
the cyclic enumeration

σ := 〈f1, x1, f2, x2, . . . , fn−1, xn−1〉

of the vertices of Xn. Since strictly more than 3
4 |V (Xn)| of the vertices are

4-vertices, we have four consecutive 4-vertices in σ. Up to exchange of fi and
xi and renumbering, we may assume that f1, x1, f2, and x2 are 4-vertices. Fig-
ure 1(right) illustrates the lower bounds on the size of L′.

We next color fn−1, xn−1 and x1 and have two sub-cases. If L′(fn−1) ∩
L′(x1) 6= ∅, then color fn−1 and x1 with the same color. Otherwise, since
|L′(fn−1) ∪ L′(x1)| ≥ 7 > |L(f1)|, there are colors p and q for fn−1 and x1 re-
spectively such that at least one of them is not in L(f1), i.e., |L(f1)∩{p, q}| ≤ 1.
Pick these colors for fn−1 and x1. In either case, two vertices adjacent to xn−1
have been colored, and |L′(xn−1)| ≥ 3, so xn−1 will have at least one valid color
left, and we pick this color for xn−1.

We now have colors p, q, and r for fn−1, x1, and xn−1 (respectively) such that
|L′(f1) ∩ {p, q, r}| ≤ 2. Removing these colors from the lists of their neighbors
produces new lists L′′ such that

|L′′(f1)| = |L′(f1) \ {p, q, r}| ≥ 4− 2 = 2

|L′′(f2)| = |L′(f2) \ {q}| ≥ 4− 1 = 3

|L′′(x2)| = |L′(x2) \ {q}| ≥ 4− 1 = 3

|L′′(xn−2)| = |L′(xn−2) \ {p, r}| ≥ 3− 2 = 1

|L′′(fn−2)| = |L′(fn−2) \ {p}| ≥ 3− 1 = 2

|L′′(xi)| ≥ 3 (for all 3 ≤ i ≤ n− 3)

|L′′(fi)| ≥ 3 (for all 3 ≤ i ≤ n− 3)

The figure on the right illustrates these lower
bounds on the list-lengths in L′′.
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Let X ′n := Xn\{fn−1, xn−1, f1, x1} (X ′n is solid in the above figure) and color
it with respect to list assignment L′′. This is feasible since X ′n is outerplanar and
outerplanar graphs are 3-choosable even if the colors of two consecutive vertices
on the outer face are fixed [8] (here we fix the colors for xn−2 and fn−2). This
colors all vertices except for f1, but |L′′(f1)| ≥ 2 and f1 has only one neighbor
in X ′n, so we can give it a color not used by f2. Therefore, we have a list vertex-
coloring of Xn that is compatible with the colors for x0, f0 chosen earlier and so
implies a list coupled coloring of Wn.

Note that this coloring can easily be found in linear time. This is obvious in
Case 1 due to the linear-time result for Lemma 1 [10]. Determining the colors
a, b for Case 2 takes linear time since all list-lengths are constant, and then we
mostly appeal to list-coloring an outer-planar graph, which can be done in linear
time since outer-planar graphs are 2-degenerate.



4 Coupled Choosability Under Graph Operations

In Section 5 we seek to prove that all subgraphs of a wheel are 5-coupled-
choosable. In pursuit of this, we examine how various graph operations affect the
list-coupled-chromatic number. First, in contrast to list-vertex-coloring, there is
no clear relationship between the list coupled chromatic number of a graph and
the list coupled chromatic number of its subgraphs. Indeed, a subgraph may
have larger list coupled chromatic number.

Observation 1. There exists a plane graph G with subgraph H ⊆ G such that
χL
vf (H) > χL

vf (G)

Proof. Let H be the graph obtained by deleting one edge of K4; see Figure 2.
From Theorem 10 of [13], we know that the graph K4 is 4-coupled-choosable,
i.e., χL

vf (K4) = 4. But in graph H, the incidences and adjacencies between

x0, x1, x2, f2, and f ′ form a K5, and therefore χL
vf (H) ≥ 5 > 4 = χL

vf (K4).

x2

x1 x3
x0

f2 f3

f1
f0

x2

x1 x3
x0

f2 f3

f ′

Fig. 2. K4 and subgraph H. Observe that χL
vf (H) = 5 since it is outerplanar.

Other graph operations are better behaved in this respect. For instance, there
is a clear relationship between the coupled choosability of some graph G and the
coupled choosability of any subdivision of G.

Lemma 3. For any plane graph G, any subdivision H of G is max{5, χL
vf (G)}-

coupled-choosable.

Proof. Let L be a list assignment for H such that |L(x)| = max{5, χL
vf (G)} for

every vertex and face of H. We prove the statement by induction on the number
of subdivisions performed on G to obtain H. If H is the result of subdividing
the edges of G zero times, then H = G and so trivially any L-coupled-coloring
of G is an L-coupled-coloring of H.

Otherwise, H was the result of performing k+ 1 subdivisions on G for some
k ≥ 0. In particular, H is the result of subdividing a single edge of some graph
H ′, where H ′ was the result of performing k subdivisions on G. Let uv ∈ E(H ′)
be the edge of H ′ that was subdivided, and let x be the vertex which was added.
By the inductive hypothesis, H ′ is max{5, χL

vf (G)}-coupled-choosable. Color the
faces of H and the vertices V (H) \ {x} according to how they would be colored
in H ′. Then we only need to color the remaining vertex x. Note that x has degree
two with neighbors u and v. Let f1 and f2 be the two faces adjacent to the edge



uv in H ′. Then u, v, f1, and f2 are the only vertices and faces that are adjacent
(respectively incident) to x. Hence, after coloring the vertices and faces from H ′,
x still has at least |L(x)| − 4 ≥ 5− 4 = 1 color left and can be colored.

This implies another result. For a planar graph G, subdividing an edge
corresponds in the dual graph G∗ to duplicating edges to form bigons. Since
χL
vf (G) = χL

vf (G∗) we therefore have:

Corollary 1. Let G be a plane graph, and H the result of duplicating some edges
of G to form bigons. Then H is max{5, χL

vf (G)}-coupled-choosable.

A similar result can also be had for adding a vertex of degree one to a graph.

Lemma 4. Let G be a planar graph, and let H be G plus a new vertex of degree
one. Then H is max{3, χL

vf (G)}-coupled-choosable.

Proof. Let x be the new vertex, and let L be a list assignment for H such that
|L(y)| = max{3, χL

vf (G)} for every vertex and face of H. Color the faces and
vertices of H−x according to how they would be colored in G. It remains to color
x. Since x is adjacent to only one vertex and incident to only one face in H, after
coloring the vertices and face of H −x, x still has at least |L(x)| − 2 ≥ 3− 2 = 1
color left and can be colored.

Note that for all three of the above lemmas, the coloring of H can be found
in constant time, given a suitable coloring of G.

Wang and Lih [13] proved that all K4-minor free graphs are 5-coupled-
choosable, but it is not clear whether their proof leads to a linear-time algorithm
to find the coloring. With the above two results, such an algorithm is immediate.

Theorem 1. All K4-minor free graphs are 5-coupled-choosable, and the coloring
can be found in linear time.

Proof. It is known (see [4]) that every K4-minor free graph G can be obtained
from some tree T via a series of duplicating edges, subdividing edges, and adding
vertices of degree one. Then by Lemmas 3 and 4, Corollary 1, and the 3-coupled-
choosability of trees, we have that G is 5-coupled-choosable.

To find the coloring efficiently, first split G into its 2-connected components
C1, . . . , Cd [7]. Then run on each component Ci the algorithm that recognizes
so-called series-parallel graphs in linear time [11]. Since 2-connected K4-minor
free graphs are series-parallel graphs, this algorithm will succeed on each Ci,
and following the trace of its execution one obtains how to construct Ci from a
single edge via a series of duplicating edges and subdividing edges. Combining
this with the tree of 2-connected components shows how to obtain G. Since trees
are trivially 3-coupled-colorable (choose a color for the unique face, then find a
2-coloring of the vertices), and each of our expansion steps takes constant time,
we can find the coloring of G in linear time.



5 Subgraphs of Wheels

We now turn to graphs that are subgraphs of wheels. As demonstrated in Ob-
servation 1, non-trivial work is required to demonstrate that any subgraph of
a wheel graph is also 5-coupled-choosable. The result comes quickly from the
results proved in the previous section.

Theorem 2. Let G be a subgraph of a wheel graph Wn, n ≥ 4. Then G is
5-coupled-choosable and the coloring can be found in linear time.

Proof. We examine several possibilities of the structure of G.

Case 1: G = Wn. Then by Lemma 2 G is 5-coupled-choosable, and the coloring
can be found in linear time.

Case 2: G is the result of deleting at least one edge or vertex of Wn that is
on the outer face. Then G is outerplanar and therefore K4-minor free, and so
by Theorem 1, G is 5-coupled-choosable and the coloring can be found in linear
time.

Case 3: G is the result of removing the center vertex of Wn. Then G = Cn−1 is
outerplanar and (as in the previous case) 5-coupled choosable.

Case 4: None of the above. Then all vertices of Wn belong to G, but we deleted
some edges which were not on the outer face. So G is the result of deleting
some of the spoke-edges incident to the center vertex. If at most two spokes
remain, then G has at most 3 faces and therefore is K4-minor free, and hence
is 5-coupled-choosable by Theorem 1. If at least three spokes remain, then G
is a subdivision of some Wk for k ≥ 4. By Lemmas 2 and 3 G is 5-coupled-
choosable, and we can find the coloring in linear time since we can detect all
subdivision-vertices by scanning for vertices in linear time.

Having established an upper bound on the list coupled chromatic number of
wheel graphs in Lemma 2, one might wonder whether this bound is tight or not.
In [13], it is shown that the graph K4 = W4 is 4-coupled-choosable. In fact, this
is the only wheel graph that is 4-coupled-choosable. For all other wheel graphs,
the bound of 5-coupled-choosability is tight.

Theorem 3. χL
vf (Wn) = 5, for n ≥ 5.

Proof. From Lemma 2, we know that all wheel graphs are 5-coupled-choosable.
It remains to show that they are not 4-coupled-choosable for n ≥ 5.

For n = 5, 6, we consider the list assignment L such that L(y) = {1, 2, 3, 4} for
every y ∈ V (Wn) ∪ F (Wn). (So these graphs are not even 4-coupled-colorable.)
Assume for contradiction that we have an L-coupled-coloring c of Wn. If c(x0) 6=
c(f0), then this leaves two colors for coloring the triangle x1, f1, f2 in Xn, im-
possible. Hence c(x0) = c(f0), say they are both colored 4. Then we have an
L′-coloring of Xn with lists L′(y) := L(y) \ {4} = {1, 2, 3}.

Observe that for X5 and X6, any putative L′-coloring would be unique up to
renaming the colors, since once we have colored one triangle, every other vertex



can be reached via a sequence of triangles. One verifies that for these graphs (and
indeed every Xk where k− 1 is not divisible by 3), attempting such a 3-coloring
leads to a contradiction (see Figure 3). This proves Theorem 3 for n = 5, 6.

For n ≥ 7, we construct a list assignment L such that Wn is not L-coupled-
choosable. Set L(x0) = {1, 2, 3, 4} and L(f0) = {5, 6, 7, 8}. We further define:

L(f1) = L(x1) = L(f2) = {1, 2, 5, 6}
L(x2) = L(f3) = L(x3) = {1, 2, 7, 8}
L(f4) = L(x4) = L(f5) = {3, 4, 5, 6}
L(x5) = L(f6) = L(x6) = {3, 4, 7, 8}

Observe that each of these triples forms a triangle in Xn, and for any a ∈
{1, 2, 3, 4} and b ∈ {5, 6, 7, 8}, one of these triangles has colors {a, b, x, y} for
some colors x, y. Assume for contradiction that we have an L-coupled-coloring c
of Wn. Up to symmetry, assume c(x0) = 1 and c(f0) = 5. But then f1, x1, and
f2 have two colors left, and therefore cannot be colored, a contradiction.

Fig. 3. The graphs X5 (left) and X6 (right).

With this, we can characterize the coupled choosability of wheel graphs.

Corollary 2. For a wheel graph Wn, we have χL
vf (Wn) = min{5, n}.

6 Towards Partial 3-trees

Our investigation of wheel graphs was motivated by wanting to determine the
coupled choosability number of planar partial 3-trees. To define these, we first
define Apollonian networks recusively as follows. A triangle is an Apollonian
network. If G is an Apollonian network, and f is a face of G (necessarily a
triangle) that is not the outer-face, then the graph obtained by stellating face f
is also an Apollonian network. Here stellating means the operation of inserting
a new vertex v inside face f and making it adjacent to all vertices of f . A
planar partial 3-tree is a graph that is a subgraph of an Apollonian network



(see Figure 4). (This definition is different, but equivalent, to the “standard”
definition of partial 3-trees via treewidth or via chordal supergraphs with clique-
size 4 [1].) We offer the following conjecture:

Conjecture 1. Every planar partial 3-tree is 6-coupled-choosable.

Fig. 4. A planar partial 3-tree. Dotted edges show the Apollonian network.

Note that the conjecture holds for Apollonian networks, since these are max-
imal planar graphs and these are known to be 6-coupled-choosable [13]. But
this does not imply 6-coupled-choosability of subgraphs, and so the conjecture
remains open.

Towards the conjecture, we studied several graph classes that are planar
partial 3-trees (and generalize wheels). One such class of graphs are the Halin
graphs, which are defined by starting with a tree T and adding a cycle between
the leaves of T . See also the solid edges in Figure 5. Wheel graphs are the special
case of Halin graphs where T is a star graph. A second class of planar partial
3-trees are the stellated outer-planar graphs, obtained by starting with some
outerplanar graph G, and stellating the outer-face. See also the dashed edges
in Figure 5. Wheel graphs are the special case of stellated outerplanar graphs
where the outerplanar graph is a cycle.

One can easily see that Halin graphs are exactly the duals of stellated out-
erplanar graphs. Therefore, any list coupled coloring of a stellated outerplanar
graph corresponds to a list coupled coloring of a Halin graph. Unfortunately, our
upper bound for the coupled choosability of wheel graphs does not in general
extend to Halin graphs.

Theorem 4. There exists a stellated outerplanar graph (equivalently a Halin
graph) that is not 5-coupled-colorable (in particular therefore it is not 5-coupled-
choosable).

Proof. The Halin-graph G is the triangular prism, see Figure 5 where we also
show the dual graph G∗ and the 1-planar graph X(G). The claim holds if we
show that there is no 5-coloring of the vertices of X(G).



Assume for contradiction that X(G) had a 5-coloring; up to symmetry we
may assume that the triangle formed by the three degree-4-faces of G is colored
1, 2, 3. Let (t, t′) be the edge that crosses the edge colored with 2 and 3. Vertices
t, t′ are colored with 1, 4 or 5; up to renaming of colors 4 and 5 hence one of
them is colored 4.

Starting with this coloring, propagate restrictions on the possible colors to
other vertices of X(G) along the numerous copies of K4 (note that all vertices
other than t, t′ are adjacent to the one colored 1). This leads to a triangle that
has only two possible colors left, a contradiction.

1
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3

4

53

52

4,5

4,5

4,5

t t′

Fig. 5. A Halin-graph G (black solid; the tree is bold), and the dual graph G∗ (blue
dashed) which is a stellated outerplanar graph (the outerplanar graph is bold). Tak-
ing both, and adding the face-vertex incidences (red dotted) gives graph X(G). We
also show the only possible 5-coloring (up to symmetry) of X(G), which leads to a
contradiction since a triangle must be colored with 2 colors.

In particular, this shows that we cannot replace ‘6’ by ‘5’ in Conjecture 1.
We also remark that, in line with Observation 1, a supergraph of the triangular
prism is 5-coupled-colorable. Namely, one can insert diagonals in the degree-4
faces and obtain the octahedron. An octahedron is 3-colorable because all faces
are triangles and the vertex-degrees are even. The dual graph (which is the cube)
is bipartite and hence 2-colorable. Therefore, using disjoint sets of colors for the
primal and the dual graph, we get a 5-coupled-coloring of the octahedron.

Returning to wheel graphs, Theorem 4 shows that wheels are strictly better
(as far as coupled choosability is concerned) than Halin-graphs. Now we study
a second graph class that lies between the wheels and the planar partial 3-trees.
These are the IO-graphs, which are the planar graphs that can be obtained by
adding an independent set to the interior faces of an outerplanar graph (see
Figure 6). Certainly any subgraph of a wheel is an IO graph.

Conjecture 2. Every IO-graph is 5-coupled choosable.



We studied subgraphs of wheel graphs because they may be an important
stepping stone towards Conjecture 2. In particular, consider some IO-graph G.
obtained from an outerplanar graph O and independent set I. Let G+ be a
maximal IO-graph containing G, i.e., add edges to G for as long as the result is
simple and an IO-graph. Then G+ is a tree of wheels, where each wheel consists
of a vertex x ∈ I with its neighbours, and the wheels have been glued together
at edges. Correspondingly G is a tree of subgraphs of wheels. It may be possible
to use Theorem 2 (enhanced with further restrictions on the coloring of some
parts) to prove Conjecture 2 by building a coloring of G incrementally in this
tree, but this remains future work.

Fig. 6. An IO graph G consists of an outerplanar graph (circles) and an independent
set (squares). Dotted edges at added to obtain G+, and some of the wheels used to
build G+ are shaded.

We end with some other open questions surrounding list-colorability and list-
coupled-colorability. Foremost, is every 1-planar graph 7-list-colorable? Borodin
states this to be true [2], but quotes the paper by Wang and Lih [13] which only
deals with 7-coupled-choosability. Hence all optimal 1-planar graphs are 7-list-
colorable but to our knowledge the problem remains open for 1-planar graphs
that are not subgraphs of optimal 1-planar graphs (e.g. any 1-planar graph that
contains K6 as a subgraph). Second, how easy is it to test whether a planar
graph is k-coupled-choosable? It is known that testing choosability is W [1]-hard
with respect to treewidth, but linear-time solvable for constant treewidth [6]. Do
these results transfer to coupled-choosability?
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